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An adequate use of land resources is an essential guarantee
of sustainable development, and many authors have suggested
different approaches (Chi-Mei et al. 2002; Stewart, Janssen, and
van Herwijnen 2004; Matthews et al. 2000; Tsuruta, Hoshi, and
Sugai 2001; Bocco, Sayago, and Tartara 2002). The optimal use
of soils is the basis of all forms of sustainable land use, that is,
agricultural land use that remains productive in the long term.
There are many benefits of an optimal use of soils, such as a
decrease of rural poverty, watershed protection, increased bio-
diversity, more sustainable agricultural production, and
increased food security (Schroth and Sinclair 2003). Therefore,
optimal soil use planning is an important problem with social,
economic, and ecological implications.

Cultivation areas are usually divided in parcels, each one
becoming a production unit. Every year farmers have to decide
what to plant in each parcel. This requires the analysis of trade-
offs between investments that have to be made, expected prof-
its, economical risks, and environmental effects of cultivation
(Schroth and Sinclair 2003). Sustainable agricultural soil use
requires making the land available for farming as productive as
possible while considering the environmental impact of the cul-
tivation process. Under natural conditions, soils present chem-
ical restrictions for crop development. Chemical soil tests are
used to provide information about acidity and nutrient levels of
each land parcel. According to the requirements of crops to be
cultivated, it is usual to modify soil chemical characteristics,
changing the quantity of nutrients and acidity through fertiliz-
ing and liming, making productive agriculture possible but
affecting the quality of soils, groundwater repositories, and the
overall environment (Johnson, Adams, and Perry 1991). Fur-
thermore, economic restrictions may constrain farmers to use
small quantities of mineral fertilizers or sometimes none at all,
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n Farm managers have to deal with many con-
flicting objectives when planning which crop to
cultivate. Soil characteristics are extremely
important when determining yield potential.
Fertilization and liming are commonly used to
adapt soils to the nutritional requirements of
the crops to be cultivated. Planting the crop that
will best fit the soil characteristics is an inter-
esting alternative to minimize the need for soil
treatment, reducing costs and potential envi-
ronmental damages. In addition, farmers usu-
ally look for investments that offer the greatest
potential earnings with the least possible risks.
Regarding the objectives to be considered, the
crop-selection problem may be difficult to solve
using traditional tools. Therefore, this work pro-
poses an approach based on multiobjective evo-
lutionary algorithms to help in the selection of
an appropriate cultivation plan considering five
crop alternatives and five objectives simultane-
ously.
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exist among the conflicting objectives and help
them to implement better cultivation strategies.

In this article we will first address the multiob-
jective crop-selection problem solved in this work.
Then we will introduce multiobjective evolution-
ary algorithms in crop-acreage planning and
explain the presented approach and algorithms.
Later, some experimental results will be discussed.
Finally, we will summarize and present an outlook
on possible future developments. 

Multiobjective Crop Selection
Cultivation areas are divided in parcels, which may
be of different sizes. To represent the geographic
position of each parcel, this work uses a grid repre-
sentation, that is, a two-dimensional array of val-
ues. This is probably the simplest geographic rep-
resentation (Matthews 2001). Cultivation
alternatives are coded using integer indexes. Thus,
for the crop-selection problem, values in the array
are cultivation alternatives. Each cell in the array
represents a geographic area of a fixed size—the
size of cells determines the level of detail and the
size of the data structure that must be manipulat-
ed (Matthews 2001). In the simplest case, each par-
cel is represented by a single cell, that is, adjacent
parcels of the same size. Figure 1 shows an exam-
ple of a cultivation area divided in 7 by 7 parcels.
Each cell is used to represent a single parcel, and
numbers between 0 to 4 represent soybeans,
wheat, corn, sunflower, and sorghum, respectively
while 5 indicates that the parcel should not be cul-
tivated. As a matrix representation is used, a pair of
indexes (i,j) identifies each parcel.

Regarding the soil characteristics, the crop-culti-
vation cost is considered to have a fixed and a vari-
able cost component. Fixed costs for a crop are
those that are not influenced by chemical charac-
teristics of the parcel, for example, the cost of
plowing, insecticide application, harvest picking,
and harvest hauling. On the other hand, variable

making it necessary to use the nutrients available
in the soil as efficiently as possible (Schroth and
Sinclair 2003). Hence, determining the crop that
best fits the chemical characteristics of each pro-
duction unit is an interesting alternative to reduce
the cost of soil treatment at the same time as min-
imizing the potential ecological damages. On the
other hand, farmers want to cultivate crops with
the best possible return and minimum economic
risk under a set of possible scenarios. Historical
yield values and crop prices can be used to simulate
future economic scenarios in order to obtain
expected values and measure economic risks.

Ecological and economical considerations make
the selection of a crop cultivation strategy a diffi-
cult multiobjective problem. In searching for solu-
tions to multiobjective problems, there is no single
optimal solution but rather a set of solutions.
These solutions are optimal in the sense that no
other solutions in the search space are superior to
them when all objectives are considered. They are
generally known as Pareto optimal solutions (Coel-
lo Coello, van Veldhuizen, and Lamont 2007).

Multiobjective evolutionary algorithms
(MOEAs) have proved to be useful tools to solve
multiobjective problems in various domains (Coel-
lo Coello, van Veldhuizen, and Lamont 2007).
Therefore, this work uses an MOEA-based
approach that combines aspects of knowledge in
agricultural science and an economic scenario gen-
erator to approximate the solution set for an opti-
mal agricultural soil usage of various parcels con-
sidering five different crops (soybeans, wheat,
corn, sunflower, and sorghum) and the optimiza-
tion of five different objectives simultaneously.
Objectives considered in this work are (1) to mini-
mize the costs of fertilizing and liming, (2) to min-
imize the total cost of cultivation, (3) to maximize
the expected return, (4) to maximize the worst-case
return, and (5) to minimize the standard deviation
of possible returns. 

The approach presented in this work was
applied using real data and run using the strength
Pareto evolutionary algorithm (SPEA) (Zitzler and
Thiele 1999) and the strength Pareto evolutionary
algorithm 2 (SPEA2) (Zitzler, Laumanns, and Thiele
2001). These algorithms are two of the most out-
standing algorithms developed to solve multiob-
jective problems. Also, parallel implementations of
these algorithms were developed for searching for
solutions in the considered crop-selection prob-
lem, different runs of parallel and sequential ver-
sions were carried out, and the obtained solutions
were compared using the coverage metric (Zitzler,
Deb, and Thiele 2000). Comparison shows that, for
the considered problem and data, parallel imple-
mentations outperform their sequential counter-
parts. The obtained results are used to give insights
to the decision makers concerning trade-offs that

Cultivation Alternatives

0: Soybean 3: Sunflower
1: Wheat 4: Sorghum
2: Corn 5: To fallow

1 1 2 0 0 0 5
1 3 3 3 2 4 5
0 1 1 1 2 4 3
4 2 2 2 1 2 2
4 2 5 3 4 4 2
0 0 3 3 4 1 1
1 2 4 4 0 0 0

Figure 1. Representation of a Solution.



costs are those related to the soil treatment that
needs to be made to obtain the maximum yield of
a given crop and varies according to the nutrients
and acidity levels of the soil.

A fixed-cost table is used to store fixed-cost esti-
mations for each crop. Thus, given a cultivation
plan, the fixed cultivation cost for each parcel, rep-
resented by a matrix position, is obtained by using
the crop index in that position to look for its cor-
responding value in the fixed cost table.

Nutritional requirements are unique for each
crop. Optimal fertilization and liming values
depend on crop requirements and soil test results
(Baker, Ball, and Flynn 2002). This means that for
an optimal yield, each crop-soil combination may
have a different soil treatment cost. The soil analy-
sis considered in this work provides a profile of
each land parcel in terms of nitrogen, phosphorus,
potassium, and pH level. The two components of
soil treatment cost considered in this work are
mineral fertilization cost and the pH corrective
application cost. 

In order to approximate fertilization and correc-
tive application costs to cultivate a given crop in a
parcel it is necessary to make some estimates about
the total amount of fertilizers and correctives to be
used for an optimal yield. Agricultural science pro-

vides information about the crop requirements for
each soil component. Then there are recommen-
dation tables for effective fertilization for each
crop-nutrient combination. In this work, these
tables are used to estimate the amount of fertilizers
to be applied in parcels. Thus, the amount of
chemical components to be added in a parcel is
estimated by using the soil test results of the parcel
and the particular recommendation table for the
component according to the crop that is supposed
to be cultivated. As an example, figure 2 outlines
the procedure used to calculate the amount of
phosphorous by hectare to be applied in parcel
(7,5) for a given cultivation strategy. The crop
index indicates that it is supposed to cultivate soy-
beans in the considered parcel. Soil test results can
be stored in a bidimensional array C with each ele-
ment containing values of a given parcel. In this
case we are interested in C7,5, which indicates that
the amount of phosphorous in parcel (7,5) is 14.7
milligrams per decameter. Then the information
about the phosphorous level is used to look up the
optimal fertilization value of phosphorous by
hectare for soybeans in the corresponding fertil-
ization table. This way, the optimal quantity of
phosphorous for parcel (7,5) for soybean cultiva-
tion is obtained. The cost is estimated by multi-
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c7,1 c7,2 c7,3 c7,4 c7,5 c7,6 c7,7

c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c1,7
… … … … … … …

… … … … … … …

… … … … … … …

… … … … … … …

… … … … … … …

Step 1: For a given solution
get the crop to cultivate in
parcel (i, j). As an example,
for parcel (7, 5) crop index
0 indicates soybean

Step 3: Use the
Soybean / Phosphorous
recommendation table to
lookup the optimal
fertilization value for the
parcel (7, 5), i.e. 80 Kg / Ha    

Soybean / Phosphorous
recommendation table  

Step 2: Get the soil
profile of the parcel and
retrieve its phosphorous
value. In case of (7, 5) it
is 14.7 mg / dm3  

Solution representing a
cultivation strategy 

14.7mg / dm3 
 

Phosphorus level in soil (mg / dm3) 

0–7 0–16 17–41 > 42

Expected
Productivity
(Kg / Ha) 
 

Fertilization Recommendation (Kg / Ha) 

3500-4000 100 80 50 40

Soil profile date
K

P
N

pH

1 1 2 0 0 0 5
1 3 3 3 2 4 5
0 1 1 1 2 4 3
4 2 2 2 1 2 2
4 2 5 3 4 4 2
0 0 3 3 4 1 1
1 2 4 4 0 0 0

Figure 2. Outline of the Procedure Used to Estimate the Amount of Phosphorous to Be Used in a Parcel.
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plying the obtained quantity by phosphorous price
and parcel size. A similar procedure is applied to
calculate fertilization cost of each other chemical
component. Adding up these costs, an estimate of
the total fertilization cost of a parcel is obtained.
Finally the total fertilization cost of a given culti-
vation strategy is the summation of the expected
cost of every parcel. Mathematical formulation is
presented in von Lücken and Brunelli (2008).

The other variable cost considered in this work
is related to the soil acidity or pH correction. Soil
acidity can be modified by adding a basic element,
usually agricultural limestone or aglime. There is
an optimal pH value for each crop and there is an
optimal amount of aglime to be used. Tables can
be used to store recommendations for aglime
application according to the actual pH level and
crop. Aglime recommendation tables and explana-
tions about how to obtain them can be found in
Kelling et al. (1998) and the related bibliography.
Using aglime application tables, the cost to correct
the acidity of a production unit for a given crop
can be obtained by retrieving the recommended
aglime application per hectare for the crop-soil
combination and multiplying this value by the
parcel size and by the cost of aglime application.
Thus, considering a given cultivation plan, the
total variable cost is obtained by adding the total
cost of fertilizers and aglime application for all
parcels. 

Soil treatment cost is directly related to the
amount of fertilizers and correctives that need to
be used. Therefore, minimization of this cost
implies a reduction of the amount of fertilizers and
correctives to be applied, which in turn reduces the
environmental impact of the cultivation process.
The total investment cost of a given cultivation
strategy is obtained by adding all the costs related
to the acreage allocation of crops.

The future earnings of a given crop in a parcel
are uncertain as well as the final yield and selling
price. One way of modeling uncertainty is through
a set of feasible scenarios. Each scenario represents
a hypothetical realization of all uncertain parame-
ters in the model. In this work, the uncertain val-
ues are the production market prices of the crops at
the time of selling the production. These scenarios
may be provided by an analyst or be obtained by
means of a scenario generator (Yu, Ji, and Wang
2003). Then, after determining a solution that
indicates which crop to cultivate in each parcel,
farmers use scenarios to calculate the different
objectives.

Multiobjective Soil 
Planning Using MOEAs

Real-world crop-selection problems involve simul-
taneous optimization of several objective func-

tions. Some of these functions, such as maximize
the expected return and minimize the risk, are
often conflicting objective functions. Usually mul-
tiobjective optimization problems with conflicting
objectives do not have a single optimal solution
when all objectives are considered simultaneously
but rather a set of optimal compromise solutions.
Compromise solutions are called Pareto optimal or
nondominated regarding a given subset if no ele-
ment in the subset can be considered better than
any other when all objectives are taken into
account. A true Pareto optimal solution is non-
dominated considering the whole search space.
True Pareto optimal solutions form the so-called
true Pareto optimal set, and its image in the objec-
tive space is called the true Pareto optimal front
(Coello Coello, van Veldhuizen, and Lamont
2007). Ideally, decision makers must choose a solu-
tion from the true Pareto optimal set. Then the
essence of multiobjective optimization is to find
the Pareto front. If the true Pareto optimal set is
not known and exact methods cannot be applied,
a good approximation may be useful to aid deci-
sion makers in selecting the best compromise solu-
tion according to their preferences. 

Traditional optimization methods applied to
multiobjective problems usually work by means of
an aggregated weight sum of all the objectives.
Then they really work with only one objective
obtained by a scalar combination. These methods
are not well suited to finding multiple solutions for
a multiobjective problem in a single run. In fact,
classical search methods identify one solution at a
time, requiring multiple executions to identify a
set of different solutions (Coello Coello, van Veld-
huizen, and Lamont 2007). Meanwhile, MOEAs
have been demonstrated to be efficient and effec-
tive in exploring huge and complex search spaces,
finding good approximations of the entire true
Pareto optimal set for many difficult multiobjec-
tive problems in a single run. 

As we discussed in the previous section, when
planning the crops to cultivate in a set of land
parcels, farm managers have to deal with issues
such as crop options and their nutritional require-
ments, production costs, chemical characteristics
of each parcel and the potential economic scenar-
ios. Considering these issues simultaneously makes
the crop-selection problem difficult to analyze
with common tools. Therefore, this work presents
an optimization framework based on multiobjec-
tive evolutionary algorithms to aid decision mak-
ing in difficult crop-selection problems with con-
flicting objectives. 

Figure 3 shows the general architecture of the
proposed approach. Main elements of the model
are an optimization core, an agricultural science
knowledge base, a scenario generator, and a solu-
tion viewer. The agricultural science knowledge



base contains information regarding soil test
results and optimal application values of fertilizers
and aglime. The economic scenario generator
module implements the model to generate a data-
base of future feasible scenarios from historical
crop prices and yields of the different considered
crops. In this work, information about the mean
and variance of the productivity and market values
of each crop is used to produce scenarios by gener-
ating normally distributed random variables.
Experts using the system may want to analyze
some specific scenarios. Thus, the system allows
introduction of scenario sets in the database. Both
the science knowledge base and the scenario data-
base feed the optimization core composed of an
MOEA that receives as inputs soil test results and
dimensions of each parcel, nutritional require-
ments of considered crops, a set of feasible scenar-
ios, and specific algorithm parameters. The MOEA
evaluates candidate solutions, searching for opti-
mal ones to obtain a Pareto set of crop-cultivation
strategies. Finally, solutions are saved in a database
and passed on to the solution viewer.

MOEAs mimic the mechanisms of natural evo-
lution, where a biological population evolves over
generations to adapt to an environment by selec-
tion according to fitness, recombination, and
mutation of genes. The first step to solve a multi-
objective problem using the Pareto-based multiob-
jective evolutionary algorithm is to determine the

function to be optimized and the solution repre-
sentation or chromosome. The previous section
presents the representation used in this work. After
representation setting, it is necessary to integrate it
to a specific MOEA algorithmic search process. This
search process typically begins with the random
generation of a so-called genetic population, that
is, a set of possible solutions of the problem or
individuals. Then, the algorithm assigns a fitness
value to each solution in the population according
to its relative quality. The selection probabilities of
individuals are calculated based on their fitness
values. Then individuals are selected based on their
selection probabilities. Selected individuals, called
parents, interchange information by means of a
crossover procedure. Also, in order to preserve the
diversity, a mutation operator that randomly mod-
ifies some solutions is introduced. The overall
sequence of fitness assignment, selection,
crossover, and mutation is repeated until some cri-
teria are met, or the maximum number of genera-
tions is reached. It is expected that populations
improve from one generation to the next one. A
general background on various multiobjective evo-
lutionary algorithms is provided in the paper by
Coello Coello, van Veldhuizen, and Lamont
(2007).

Using the framework presented in figure 3,
sequential and parallel versions of SPEA (Zitzler
and Thiele 1999) and SPEA2 (Zitzler, Laumanns,
and Thiele 2001) were implemented to solve the
crop-selection problem. Figures 4 and 5 present the
flowchart diagram of SPEA and SPEA2, respective-
ly. In spite of the vast literature on the imple-
mented algorithms, it is important to point out the
most outstanding characteristics of them. First,
they work simultaneously with a set of solutions
known as the evolutionary population. Second, each
algorithm processes its population iteratively using
random-based genetic operators (such as selection,
mutation, and crossover). Third, SPEA and SPEA2
are Pareto-based fitness assignment MOEAs, that is,
they explicitly use Pareto dominance in order to
determine the reproduction probability of each
individual. In this way, a good approximation to
the Pareto set may be obtained from the final set of
solutions. Fourth, both use an elitism mechanism
to avoid losing good solutions once they are
found. 

SPEA (Zitzler and Thiele 1999) stores nondomi-
nated solutions in an external set representing the
known front among all solutions considered so far.
Figure 4 outlines the SPEA computational flow.
The algorithm starts generating a random initial
genetic population P0 and an empty external set
A0. Nondominated solutions are copied from the
genetic population to the external set. If the num-
ber of elements in the external set exceeds a given
limit, a clustering technique is used to get a set of
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Figure 3. Basic Architecture of the System.
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Generate Initial Population P0  and
an empty archive A0. Set  t = 0

t = max generation?
yes 

no 

Copy nondominated solutions
from Pt to At

Calculate fitness of
individuals in Pt  and At

Set t =  t + 1 

 Selection, crossover, and mutation
using Pt  and At to form Pt + 1

Size of At > max. size? 
Prune At applying a

clustering  procedure  

Get final solution set
from At

yes 

no 

Figure 4. SPEA Flowchart.

centroids of the individuals in the external set;
otherwise, the evolutionary procedure goes on.
The SPEA clustering procedure is based on creating
clusters according to the value of solutions in the
objective space and the select centroids. This way,
the procedure loses boundary solutions. The evo-
lutionary process is executed until the stop condi-
tion is reached, in this case a maximum number of
generations. A fitness value is assigned to individ-
uals in both the external and genetic populations.
The procedure that SPEA uses to set the fitness val-
ue for individuals ensures that the search is direct-
ed to nondominated solutions while, at the same
time, both dominated and nondominated solu-
tions are maintained. It starts with the so-called
strength assignment procedure that assigns a real
value in [0, 1] called strength for each element in
the Pareto optimal set proportional to the number
of individuals covered by the solution. In this case,
the strength of a Pareto solution is at the same time
its fitness. Then the fitness of each individual in
the population is the sum of the strengths of all
external Pareto solutions by which it is covered,
adding one to the resulting value. This fitness val-
ue is used in the selection process that operates
using individuals in the genetic and external sets.
Evolutionary operators are in charge to create a
new offspring in the genetic population. Then
from this new population nondominated solutions
are copied in the external population. When the
algorithm reaches the stop criterion, the solutions
are in the external set.

As figure 5 shows, SPEA2 (Zitzler, Laumanns,
and Thiele 2001) also uses two populations, but
only members of the archive participate in the
selection process. The main differences between
SPEA and SPEA2 are the method to calculate the
scalar fitness and the external set truncation oper-
ator. The SPEA2 fitness assignment procedure
incorporates density information to discriminate
between individuals having identical fitness val-
ues. This information is related to the number of
solutions that are near in objective space. After fit-
ness evaluation, all nondominated solutions from
both the current genetic population and the exter-
nal population are passed to a next population
At+1. If the number of solutions in this population
is less than a defined size, it is filled with the “best”
dominated individuals from both populations
considering its fitness value. In case of having a
greater number of solutions SPEA2 uses an
enhanced archive truncation method based on a
nearest neighbor criterion that guarantees the
preservation of boundary solutions as described in
the reference paper. At the end the external set
contains the optimal solutions obtained so far.

Many factors affect the quality of final solutions
obtained by MOEAs, such as population size, the
number of generations, and the number of evalu-

ated scenarios. To improve the final solutions, par-
allel MOEAs (pMOEAs) based on the island model
are used (van Veldhuizen, Zydallis, and Lamont
2003). In island evolutionary algorithms, one pop-
ulation is divided into subpopulations called
islands, or regions. The evolution of solutions pro-
ceeds in each island independently. In addition to
the basic operators of evolutionary algorithms, a
migration operator is introduced to control the
exchange of individuals between islands. By divid-
ing the population into regions and by specifying
migration criteria, the island model adapts well to
various parallel architectures.

The parallel model used in this work is com-
posed of a collector and several pMOEAs (Barán,
von Lücken, and Sotelo 2004). The collector
spawns all pMOEA processes and receives calculat-
ed solutions from them. In addition, it maintains
an archive of the nondominated solutions inter-
changed between islands and provides the final
Pareto approximation set. This process does not
utilize any evolutionary operator and does not



interfere with the evolutionary process. Mean-
while, pMOEAs perform the real computation. 

pMOEAs are based on sequential multiobjective
evolutionary algorithms that were modified to
incorporate a migration operator. Figure 6 shows a
general pMOEA. Initially, parallel MOEAs receive
evolutionary parameter values and a set of feasible
scenarios. Then a randomly generated genetic pop-
ulation and an empty archive are created. Before a
new generation starts, if solutions arrive from oth-
er islands, individuals in the genetic population
are replaced by received ones. To preserve diversi-
ty between islands only a random selected per-
centage of received individuals are chosen for
replacement. Then the evolutionary process con-
tinues by generating a new population as defined
by the MOEA specification. After each generation,
the migration condition is tested. If the migration
condition is true, migrants are selected. In this

work, the migration condition is based on a prob-
ability test. Since there is not a unique best solu-
tion to migrate, some criterion must be applied.
Thus, elements to migrate are considered only
among nondominated solutions in the current
archive. A parameter controlling the maximum
number of migrants is provided. Therefore, migra-
tion of individuals is controlled by two parameters,
one for the frequency of communications and
another for the number of migrants. Migrating ele-
ments may represent a fraction of the nondomi-
nated set of individuals that currently are in an
MOEA’s population. Then, as long as a stop criteri-
on is not reached, the evolutionary process con-
tinues. If the stop criterion is reached, pMOEAs
send nondominated solutions in the external
archive to the collector. Once the collector receives
the solutions obtained in each island, nondomi-
nated solutions are saved and passed on to the
solution viewer for presentation to the decision
maker who is in charge of selecting one of the pro-
posed solutions to be implemented. An extended
review of pMOEA approaches is presented in the
papers by van Veldhuizen, Zydallis, and Lamont
(2003) and Coello Coello, van Veldhuizen, and
Lamont (2007).

Experimental Results
Sequential and parallel implementations of SPEA
(Zitzler and Thiele 1999) and SPEA2 (Zitzler, Lau-
manns, and Thiele 2001) with real data of a cul-
tivable area in Alto Parana, Republic of Paraguay,
were implemented to test the practicality of the
approach presented in figure 3. The scenario gen-
erator used in these runs is based on normal distri-
bution of historical values. 

The implemented algorithms produce solution
sets having many different cultivation schedules.
These result sets were compared in order to deter-
mine the best multiobjective approach for system
implementation and extensions. Using the same
problem parameters and population size, 10 differ-
ent runs of sequential and parallel versions of SPEA
and SPEA2 using two, four, and eight processors
were carried out. Results obtained by each imple-
mentation were combined and the Pareto front
extracted. As the true Pareto front is unknown, the
coverage metric (Zitzler, Deb, and Thiele 2000) was
used for a direct comparison of the solution sets.
The coverage metric compares two result sets and
indicates the number of points in one set that
dominate or are equal to points in the other set.
According to comparison results, parallel versions
outperform sequential ones, and in all cases SPEA2
obtains better solutions than SPEA. According,
with such metric, SPEA2 with eight processors
obtains the best solution set. 

Members from the Soil Department of the Agri-
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Figure 5. SPEA2 Flowchart.
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Solutions
received ?

Migrate? 

Choose migrating
individuals and send to 
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Yes 

Generate a new population 

No 

Stop criterion
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No 

Replace individuals in
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Yes 

Yes 

Send solutions to collector 

End 

No 

Generate initial
populations

Receive execution
parameters  

Start 

Figure 6. Computational Flow of a General Parallel MOEA.

culture School of the National University of Asun-
ción and users from the private sector helped us in
the design and development of the application,
providing experimental data and information
about the problem and evaluating the obtained
results. 

As a pest-control measure some sustainable pro-
duction models consider that crops of the same
kind (or family) do not have be planted in consec-
utive periods or adjacent parcels. This collides with
the practical desire that adjacent parcels are likely
to be used for the same kind of crop in order to
make best use of agricultural machinery and farm
equipment. The system presented in this work
does not consider these criteria in the search of
solutions; thus, decision makers must analyze solu-
tions considering these issues before selecting a
solution for application. Because the search for
solutions does not consider decision-maker prefer-
ences from cause to effect, the system is allowed to
obtain solutions that may not be considered if the
search space is pruned before execution. However,
these questions will be considered in future exten-
sions of the system in order to set decision-maker
preferences iteratively as the search process goes
on. This will simplify the work that must be done
after the solution set is provided. 

It is very important to extend the system to
consider crop rotations. It will give a schedule of
crops to be planted in consecutive periods. As was
indicated it is very important for some agricultur-
al models to alternate different crop types in the
same or adjacent parcels in consecutive periods
but also to take into account the uses of other
resources. Issues to consider in rotation include
restrictions about crops to be planted in succes-
sive seasons and the use of cover crops between
main crops. Besides, it is very important to take
into account nitrogen management since insect
damage can be reduced by avoiding excess nitro-
gen levels.

It was shown to be useful to present a large num-
ber of solutions to give insights of the different
alternatives that exist. However, as the number of
proposed solutions is around 200, it is very diffi-
cult to examine and compare each proposed solu-
tion to determine the solution to be applied. Also,
the number of considered objectives makes it diffi-
cult to process solutions. A graphic interface to fil-
ter solutions serves to select a subset of alternative
solutions in order to analyze them more carefully
before selecting one for implementation. This
module offers the capacity to export solutions to
spreadsheet formats, a very useful function
because users usually want to use the tools they
usually work with. 

The results obtained by the system vary consid-
ering different cultivation areas, fixed and variable
cost structures, and economic scenarios. Thus, it is

not possible to determine an optimal strategy for
all cases. However, as an example of the kind of
results we have, in figure 7 the obtained values in
the objective space are shown, using SPEA2 with
eight processors and the particular soil analysis
result, scenario set, and parameter values used in
the runs we carried out. Figure 7 also includes the
values obtained considering the option of using all
the available land for only one kind of crop. Axis
X represents the minimum net gain, axis Y the
expected total cost, while the bubble size repre-
sents the standard deviation of returns. As shown,



considering these three objectives, solutions pro-
posed by the system dominate the cultivation
option of having all soybeans or all corn, that is,
they have a lesser total cost, obtain a greater mini-
mum net gain, and have a better standard devia-
tion value. In all cases the diversification strategy
proposed by the system obtains minimum values
for standard deviation. As can be seen, there are
many proposed solutions from which the decision
maker may choose. 

Summary
This work proposes an approach based on multi-
objective evolutionary algorithms to solve multi-
objective crop-selection problems considering
different objectives and crops simultaneously.
Using the proposed model, both sequential and
parallel implementations of two MOEAs were
implemented as optimizers. A comparison
between the different implementations was car-
ried out using the coverage metric. For the imple-
mented test problem, pSPEA2 with eight proces-
sors appears to be the best suited optimizer for
the problem at hand. 

The obtained solutions were passed on to a solu-
tion viewer that presents solutions to decision
makers for them to select one for further analysis
and implementation. The visualization module
shows the various obtained solutions and objec-

tives, helping decision makers to gain insight
about the problem at hand. 

Multiobjective evolutionary algorithms applied
to crop selection have significant potential for
assisting decision makers in determining better
cultivation strategies considering various objec-
tives at a time. According to the expert’s prefer-
ence, the implemented tool may be used to aid the
selection of a solution that will improve soil usage,
reduce cultivation costs, minimize economic risks,
maximize the economic return, adjust fertilization
use to a given budget, and minimize the environ-
mental impact of the cultivation process. Also,
tools such as those proposed in this work may
allow farmers to become better informed about the
different alternatives and interactions between the
different objectives analyzed.

Future work includes testing the proposed
framework using other multiobjective metaheuris-
tics as optimizers and a planning scope that con-
template crop rotations. It is also proposed to
extend the solution model to include the related
resource allocation issues and to include the deci-
sion makers’ preferences in an interactive way
while the search procedure goes on. It is important
as well to improve the tools to show multiobjec-
tive solutions.
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