
Contagions (or diffusion) over com-
plex networks are pervasive in
social and physical sciences. Three

recent global-scale contagions that have
received attention in the media as well as
academic circles are (1) current and past
financial contagions (Desai 2003),1 (2)
failure of the coupled infrastructure sys-
tem caused by power-grid failure, for
example, the Northeast blackout of 2003,2

and (3) potential pandemics caused by
influenzalike illness (Halloran et al. 2008;
Germann et al. 1983). Individuals, institu-
tions, and governments could not prevent
the Northeast blackout. However, they are
aggressively developing interventions to
control the current financial contagion
and responding to reduce the economic
burden and human suffering of the cur-
rent H1N1 outbreak. Developing high-res-
olution computational models to reason
about these systems is complicated and
scientifically challenging for at least three
reasons. First, these systems are extremely
large (for example, pandemic planning at
the scale of the United States, requiring
models with 300 million agents). Second,
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n We discuss an interaction-based approach to study the coevolution
between sociotechnical networks, individual behaviors, and contagion
processes on these networks. We use epidemics in human populations as
an example of this phenomenon. The methods consist of developing syn-
thetic yet realistic national-scale networks using a first-principles
approach. Unlike simple random graph techniques, these methods com-
bine real-world data sources with behavioral and social theories to syn-
thesize detailed social contact (proximity) networks. Individual-based
models of within-host disease progression and interhost transmission are
then used to model the contagion process. Finally, models of individual
behaviors are composed with disease progression models to develop a real-
istic representation of the complex system in which individual behaviors
and the social network adapt to the contagion. These methods are embod-
ied within Simdemics, a general-purpose modeling environment to support
pandemic planning and response. Simdemics is designed specifically to be
scalable to networks with 300 million agents; the underlying algorithms
and methods in Simdemics are all high-performance computing-oriented
methods. New advances in network science, machine learning, high-per-
formance computing, data mining, and behavioral modeling were neces-
sary to develop Simdemics. 

Simdemics is combined with two other environments, Simfrastructure
and Didactic, to form an integrated cyber environment. The integrated
cyber environment provides the end user with flexible and seamless Inter-
net-based access to Simdemics. Service-oriented architectures play a criti-
cal role in delivering the desired services to the end user. Simdemics, in con-
junction with the integrated cyber environment, has been used in more
than a dozen user-defined case studies. These case studies were done to
support specific policy questions that arose in the context of planning the
response to pandemics (for example, H1N1, H5N1) and human-initiated
bioterrorism events. These studies played a crucial role in the continual
development and improvement of the cyber environment. 



the contagion, the underlying interaction network
(consisting of both human and technical ele-
ments), the public policies, and the individual
behaviors coevolve. This makes it nearly impossi-
ble to apply standard model-reduction techniques
that have been successfully used to study physical
systems. Finally, in practical situations, multiple
contagion processes simultaneously coevolve. 

Here we describe Simdemics, an interaction-
based multiagent approach to study diffusion
processes in very large sociotechnical networks.
Simdemics is an example of a disaggregated net-
work-based modeling approach in which interac-
tions between every pair of individuals connected
in the social contact network are represented. It
uses a realistic, synthetic representation of the
underlying social contact network. It is based on
the idea that a better understanding of the charac-
teristics of the underlying network and individual
behavioral adaptation can give better insights into
contagion dynamics and response strategies. It
should be noted that Simdemics by itself does not
prescribe a specific level of quality for the social
contact networks. The necessary quality (in terms
of accuracy, resolution, and fidelity) of the net-
works is determined by the questions that we aim
to address. 

Simdemics can be used to study a much larger
class of diffusion processes. These include epidem-
ic processes in ecologies; the spread of certain non-
infectious diseases such as obesity and smoking;
the spread of fads, conventions, norms, and infor-
mation in social systems; the spread of worms and
malware in communication networks (Channake-
shava, et al. 2009). Here, we will confine our dis-
cussion to the spread of infectious diseases in
human populations. Besides their obvious societal
importance, epidemics serve as an excellent exam-
ple of diffusion processes over interaction net-
works. Within the infectious disease context, Sim-
demics details the demographic and geographic
distributions of contagion spread. It also provides
decision makers with information about the con-
sequences of an outbreak, the resulting demand for
health services, and the feasibility and effective-
ness of various response options. A unique feature
of Simdemics is the size and scale of social and eco-
logical systems that can be analyzed through its
use. Planning and responding to the threat of pan-
demics presents an important societal and public
health challenge. Public health authorities around
the world are far more prepared to respond to pan-
demic threats now than they have ever been in the
past. However, a number of modern trends con-
tinue to make this a vexing problem. These include
(1) a larger global population and increased urban-
ization leading to a higher density of individuals
within cities; (2) higher levels of long-distance
travel, including international travel; and (3)
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increased numbers of elderly individuals and indi-
viduals with chronic medical conditions. 

An AI Perspective 
We first began to work on this class of problems 15
years ago. Our goal was to develop new computa-
tional and analytical techniques to understand
and reason about very large complex sociotechni-
cal systems. Solutions to these problems required
us to borrow ideas from diverse areas in science
and engineering, including network science, high-
performance computing, urban planning, eco-
nomics, nonlinear systems, algorithmics, statistics,
and so on. Over time, it became increasingly clear
that an AI perspective on complex sociotechnical
systems was extremely valuable; several ideas and
concepts in AI proved to be the conceptual glue
that was critical in developing an integrated solu-
tion. These ideas include multiagent systems for
representing large complex systems; causality, rea-
soning, and inference in complex systems; and
human-computer interaction. We have tried to
highlight this perspective throughout the article. 

Basic Approach 
Traditional epidemiological research has focused
on rate-based differential equation models of com-
pletely mixed populations, that is, all the individ-
uals are allowed to interact with each other (see
Bailey [1975] and Hethcote [2000] for a compre-
hensive discussion on this subject). An attractive
feature of this modeling approach is that it allows
one to obtain analytical expressions for a number
of interesting parameters such as the numbers of
infected, recovered, and susceptible individuals in
a population. But such a modeling approach does
not capture the complexity of human interactions
that serve as a mechanism for disease transmis-
sion. Typically the number of different subpopula-
tion types considered is small (for analytical
tractability), and parameters such as mixing rate
and reproductive number are either unknown or
hard to observe. Over the past several years, large-
scale, individual-based, disaggregated models have
been studied (Carley et al. 2006; Eubank et al.
2004; Ferguson et al. 2005; Ferguson et al. 2006;
Halloran et al. 2008). These new models use an
endogenous representation of individual agents
together with explicit interactions between these
agents to generate and capture the disease spread
across social networks. 

Simdemics differs in important ways from
recent individualized agent-based approaches.
First, the methodology used to synthesize social
contact networks in Simdemics generates far more
realistic social contact networks. The networks dis-
play the spatial as well as demographic hetero-
geneity that is absent in the prior work of Ferguson
et al. (2006), Germann et al. (1983), and Longini et



al. (2005). Networks lacking this heterogeneity use
stylized templates for small communities that are
then connected in a regular manner to form larger
communities and cities. Thus, the spatial diversity
of locations in these cities is absent in stylized net-
works. The important structural features exhibited
by more realistic social contact networks crucially
affect the disease dynamics and the effect of vari-
ous response strategies (see Barrett et al. [2009b] for
more discussion on this). The structure and the
details of the social networks have important
implications on the performance of the parallel
simulations as well. Although Germann et al.
(1983), Longini et al. (2005), and Parker (2007)
claim national- and global-scale models for simu-
lating pandemics on clusters, their ability to carry
out these computations crucially exploits the spa-
tial and demographic homogeneity present in
their networks. Second, although in theory various
interventions can be represented by Ferguson et al.
(2006), Germann et al. (1983), and Longini et al.
(2005), these representations are affected by the
underlying models of networks. In Simdemics, a
substantial effort has been made to find a realistic
representation of various interventions and to
develop a formal language structure for specifying
and executing various contagions and interven-
tions (Barrett et al. 2009b, Bisset et al. 2009b). The
variety of interventions combined with the flexi-
bility and naturalness of their specification is a
unique feature of Simdemics. Behavioral represen-
tation for systems by Ferguson et al. (2006) and
Germann et al. (1983) is not endogenous and does
not appear to be suitable to study the coevolution-
ary dynamics. Finally, Simdemics, in conjunction
with two additional computational systems, name-
ly, Didactic and Simfrastructure, provides seamless
access to the modeling capabilities of Simdemics. A
number of important analyses can be done on the
fly; this includes isolating the main effects, study-
ing interaction among various interventions, and
so on. This represents a radical departure in the
field of computational epidemiology. Such a capa-
bility is, at present, not generally available in oth-
er individualized urban-scale models (see Eubank
et al. [2004] for more details). 

Brief Description of Methods 
The overall approach consists of four distinct mod-
els: (1) a model for creating a set of synthetic indi-
viduals, (2) a model for generating (time varying)
interaction networks, (3) a model for simulating
the epidemic process, and (4) a model for repre-
senting and evaluating interventions and public
policies. Mathematically, these steps can be repre-
sented by a combination of (1) a discrete dynamic
system framework that captures the coevolution of
disease dynamics, social network, and individual
behavior (first three steps) and (2) a partially

observable Markov decision process (POMDP) that
captures various control and optimization prob-
lems formulated on the phase space of this dynam-
ic system. We describe these steps in detail below. 

In step 1, a synthetic urban population is creat-
ed by integrating a variety of databases from com-
mercial and public sources into a common archi-
tecture for data exchange. The process preserves
the confidentiality of the individuals in the origi-
nal data sets, yet produces realistic attributes and
demographics for the synthetic individuals. The
synthetic population is a set of synthetic people
and households, located geographically, each asso-
ciated with demographic variables recorded in the
census. Joint demographic distributions are recon-
structed from the marginal distributions available
in typical census data using an iterative propor-
tional fitting (IPF) technique. Each synthetic indi-
vidual is placed in a household with other syn-
thetic individuals. Each household is located
geographically using land-use data and data per-
taining to transportation networks. The process
guarantees that a census of our synthetic popula-
tion is statistically indistinguishable from the orig-
inal census. Since the population is synthetic, the
privacy of individuals is protected. The basic
process can be extended to assign other demo-
graphic attributes using additional data sources.
For example, in recent work we assigned individu-
als’ mobile devices using commercially available
survey data. 

In step 2, a set of activity templates for house-
holds is determined, based on several thousand
responses to an activity or time-use survey. The
modeling methodology is called activity-based
travel-demand modeling and is now accepted as
the de facto standard in transportation science
(Beckman, Baggerly, and McKay 1996). Our early
work in this area (Barrett et al. 2001) played an
important role in the development of this method-
ology. The activity templates include the activities
each household member performs and the time of
day they are performed. Each synthetic household
is then matched with one of the survey house-
holds, using a decision tree based on demograph-
ics such as the number of people in the household,
number of children of various ages, and income.
The synthetic household is assigned the activity
template of its matching survey household. For
each household and each activity performed by
this household, a preliminary assignment of a loca-
tion is made based on observed land-use patterns,
tax data, and so on A social network is formed out
of these activities as agents mix together with some
level of contact, at the locations visited, at various
times throughout the day. The dynamic social con-
tact network represented by a (vertex and edge)
labeled bipartite graph GPL, where P is the set of
people and L is the set of locations. If a person p �
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P visits a location � � L, there is an edge (p, �, label)
� E(GPL) between them, where label is a record of
the type of activity of the visit and its start and end
points. The edges between individuals capture
physical proximity between the individuals. The
existence of such edges and their attributes often
depends on the disease we wish to study. For exam-
ple, in a case of influenzalike illness, two individu-
als have an edge if they are within certain proximal
distance of one another for a certain period of
time. In case of sexually transmitted diseases, an
edge implies intimate physical contact. See figure 1
for a representation on how a small family’s activ-
ities during the course of a day are composed to
form a dynamic social network. Please note that it
is impossible to build such a network by simply
collecting field data; the use of generative models
to build such networks is a unique feature of this
work. 

Step 3 consists of developing a computational
model for representing the disease within individ-
uals and its transmission between them. The mod-
el can be viewed as a networked finite probabilistic
timed transition system (PTTS). Each individual is
associated with a timed probabilistic finite state
machine. A PTTS can be represented using appro-
priate stochastic local functions (with possibly
additional nodes to simulate a clock). A PTTS rep-
resenting an individual interacts with or is coupled
to PTTSs of other individuals that are neighbors in
the social contact network. PTTSs are an extension
of the well known finite state machines (FSMs)
with two additional features: the state transitions
are probabilistic or timed (or both). In other words,
the end point of state transitions may be chosen
probabilistically or deterministically; the transi-
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tions may be timed, that is, they may occur at a
specified time after the previous transition, or
there may be a fixed probability of transition for
each discrete time interval. In principle, each agent
can have a different probabilistic timed transition
system. More commonly, subsets of people deter-
mined by demographics such as age are assigned a
single parameterized PTTS, and individuals are
assigned values for the parameters at random from
an appropriate distribution. The coupling between
individual PTTSs is derived from the social contact
network. The dynamics of disease diffusion
processes can now be simulated using the above
coupled model. We have developed fast high-per-
formance computing-based algorithms to achieve
this (Barrett et al. 2008, Bisset et al. 2009a, 2009b). 

Step 4 consists of representing individual behav-
iors and their adaptations, public policies, and
interventions. Individual behaviors are represent-
ed and analyzed using finite PTTSs and are based
on well accepted and recently proposed socioeco-
nomic theories of individual and collective behav-
iors. Public policies are represented and analyzed
using partially observable Markov decision
processes (POMDPs). This allows us to capture
sequential decision-making processes related to
studying the efficacy of various interventions and
behaviors of individual agents in response to their
perception of disease spread. The POMDP is expo-
nentially larger than the problem specification,
and, in general, determining an optimal solution is
an intractable problem. We thus resort to efficient
simulations. A key concept is that of implementable
policies—policies or interventions that are imple-
mentable in the real world. Figure 2 shows a
schematic of a multinetwork, multitheory model

Individual Activities Social Network Public Health

Work Shopping

Home School Home

Work

Figure 1.

Schematic diagram showing how the activities from three individuals in a household (left) are combined to obtain a social contact network
derived from their human-human contacts throughout a daily routine (middle). A contagion process (right) is then laid down over this net-
work to model the spread of the disease from an infected individual (shaded) to two other locations. 



that results at the end of these steps. In the real
world, disease diffusion and information diffusion
are based on different models and potentially use
different social networks. 

Although interventions and individual behav-
ioral changes were studied in the past, their imple-
mentations were carried out in an ad hoc manner.
Computational efforts concentrated first on devel-
oping fast methods for simulating disease progres-
sion. Fast methods for disease progression that do
not consider the interaction with policies and indi-
vidual behaviors are insufficient due to coevolu-
tion within the underlying system. A modeling
environment is required in which simulation of
disease spread is carried out in lockstep with the
interventions that are instituted, and the resulting
effects on the network structure, and individual
attributes. 

This coevolution is where the classical analogy
between percolation and epidemics breaks down.
To date, most of the research efforts in building
large-scale models have represented this coevolu-
tion in an ad hoc manner. Recent advances in arti-
ficial intelligence and operations research are like-
ly to be useful in representing and analyzing this
aspect of the model. Figure 2 displays the interac-
tion between multiple networks and the possibili-
ty of affecting contagion. Two mathematical mod-
els are at play: coevolving graphical discrete
dynamic systems, or CGDDSs, form the basis for
simulating the coevolving dynamics, while
POMDPs and n-player games are suitable for repre-
senting and reasoning about interventions and
individual behaviors. This requires computations
over the configuration space of these dynamic sys-
tems. Note that the configuration space over
which POMDPs have to reason is exponentially
larger than their representations. Simulations that
implement a CGDDS are computationally as well
as conceptually much harder than simulations
that simply implement basic percolation processes.
In general, simulations implementing a CGDDS
comprise three operations that are repeated: simu-
late a state transition of disease progression over
the network; evaluate the state of the disease, and
test whether one or more triggering conditions
hold; and apply applicable pharmaceutical or non-
pharmaceutical interventions that change the
social network structure or individual disease mod-
els. The composite system in Simdemics facilitates
this type of representation and this multistep
process. The triggering condition can be based on
an individual or on a subpopulation and may
involve evaluating a complicated function. Inter-
ventions can be applied to individuals or to sets of
individuals (for example, school-aged children). 

Model Validation 
Usually the term model validation is associated with

a relatively simple-seeming view of predictive
validity — state-space predictions by the model
match the measured data. Furthermore, in large
social simulations, these predictions are usually
postdictions of historical information, for exam-
ple, the infection time series of the 1968 flu season.
Although this kind of examination of the model
can be useful, it can also be misleading and is not
adequate. One immediate implication of the pre-
vious section is that the configuration space
(which is the essence of causal structure for the
evolving system) is important to understanding
the system being represented as well as the mod-
eled representation of that system. However, any
measured real-world data is incapable of capturing
this structural range—only those modes that hap-
pened in the real world appear in the measured
data. Thus the process of postdiction is, alone,
inadequate. Additionally, usually while postdict-
ing, insufficient information about the context is
available to properly specify the initial and struc-
tural conditions that would allow the model to
predict. As a result, high-dimensional models are
often fit to relatively sparse data. In this sense, the
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Compliance

Fear

Friendship/Communication Network

Friendship/Communication Network

Fear Contagion

Scoial Influence Contagion

Social Contact Network

Disease Contagion

Figure 2.

Schematic diagram depicting multitheory, multinetwork diffusion processes.
The lowest level depicts a social proximity network over which aerosol-borne
infectious disease spreads. The individual behavioral model captures the host
disease progression model. The middle layer denotes the social influence con-
tagion: individuals might comply with nonpharmaceutical interventions (for
example, face masks) based on social influences, public information, and poli-
cies. The top layer denotes the fear of contagion that results when disease out-
break happens. Compliance in the social influence layer depends on the state
of disease contagion as well as the level of fear. Behavioral change causes
change in the networks as well as contagion dynamics. 



occurrence of a fit can be misleading because the
inverse being solved is nonunique. In both cases,
explanatory power is really at issue. In decision
making a causal basis for the choice of the best
option is more relevant than any particular kind of
detailed prediction of state. This raises fundamen-
tal issues for the idea of validation and is the focus
of ongoing work. Related concerns have been dis-
cussed by historians and philosophers (Oreskes,
Shrader-Frechette, and Belitz 1994; Oreskes 2000).
See table 1 for an overview of our modeling
approaches. 

Extensive efforts have been made to validate the
overall approach and specific components of the
model. This includes (1) structural validity of mod-
els, (2) matching the data produced to field data,
and (3) functional validation and formal specifica-
tions of these models for software verification (Bar-
rett 2009a). Several models used here are based on
work done by other researchers (see table 1).

Applications of AI Concepts 
Simdemics uses a number of concepts studied in
traditional and contemporary AI literature. This
includes multiagent systems, social network analy-
sis, Markov decision processes, and large n-player
games (Barrett, Eubank, and Marathe 2006; Bailey-
Kellogg, Ramakrishnan, and Marathe 2006). How-
ever, the practical use of this tool prompted the
investigation of several new basic and applied
research questions. For example, we had to devel-
op new efficient algorithmic and machine-learning
techniques to generate and analyze dynamic social
networks and simulate contagion on these dynam-
ic social networks (Eubank et al. 2004). These algo-
rithms were designed and implemented so that
they can scale to over 100 million node networks
and can be mapped onto 100–1000 processor-dis-
tributed memory architectures (Barrett, Eubank,
and Marathe 2006; Eubank et al. 2004). Similarly,
scalable data-mining methods are being developed
to analyze the vast data sets produced by Sim-
demics (Bailey-Kellogg, Ramakrishnan, and
Marathe 2006). These scalable simulations and

mining algorithms form the basis of practical and
usable decision-support systems that have been
built and that are being continually enhanced. As
presented by Barrett et al. (2009a), Simdemics uses
and extends several topics studied in AI: (1)
detailed multiagent models, (2) synthesis of large
urban social and relational networks, (3) concise,
realistic behavioral modeling, and (4) the theory of
graphical dynamic systems and games. We give
three examples to illustrate these ideas. 

Scalable Multiagent Systems. Developing scalable
multiagent systems for studying a real-world prob-
lem remains an active area of research in AI
(Wooldridge 2002; Shoham and Leyton-Brown
2008). We first note that the notion of agents as
used here should be distinguished from the notion
of entity and actor. Agents are actors that have
intent or motive and thus require an individuated
behavioral representation that is rich enough for
the problem at hand and yet lightweight so it can
be scaled to large populations of interacting indi-
viduals. We require three new ideas to achieve this:
(1) Parametric representation of individual behav-
iors and local actions: A single basic algorithm is
used for each agent and the behavioral variation is
obtained by randomization and agent specific
attributes. (2) Behavioral decomposition: We use
automata theoretic techniques to represent each
kind of local function associated with an agent by
a separate automaton (algorithm) and then use
generalized cross-product-like construction to
obtain a composite behavior. Thus each agent is a
multitheory intentional entity. (3) Finally, we
introduce the notion of “unencapsulated agents”:
In this notion of agency, intent and behavioral loci
are distributed and do not necessarily reside with-
in a single software object. For example, we have
only one within-host disease progression model
(represented using a probabilistic timed transition
system). However the specific manifestation of a
disease-within-host is a function of demographic
variables associated with the individual, computed
elsewhere asynchronously and used as parameters
that affect the local state transition properties. Sim-
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Urban Population Mobility Models (Bowman et al. 1998; TRBC 1995 2003; TRB ; Barrett et al. 2009b) 

Natural Disease History (Elveback et al. 1976; Longini et al. 2005; Halloran et al. 2008; 
Bailey 1975; Hethcote 2000) 

Transmission Models (Longini et al. 2005; Halloran et al. 2008; Hethcote 2000) 

Social Network Models (Newman 2003; Eubank et al. 2004; Halloran et al. 2008) 

Types of Interventions (Halloran et al. 2002; 2008; Ferguson et al. 2005; 2006) 

  

Table 1. Summary of Specific Models and Modeling Approaches Used in Simdemics. 

The overall system is obtained by composing these models.



ilarly, behavioral models that are used for individ-
ual decision making in the event of epidemics are
parameterized. An individual’s overall representa-
tion is composed of a within-host disease model
and the individualized behavioral model. The
description of the agent, or what an agent does, is
not confined to these local functions. The agent’s
interaction with other agents defines its overall
behavioral description. In this sense, the idea bears
certain resemblance to the notion of (non)-modu-
larity of functions in cognitive science (Fodor
1983) and the concept of population coding (McIl-
wain 2001) in neuroscience. So while local func-
tions and the state attributes associated with an
agent determine its local dynamic evolution, the
phase space encodes the system behavior and is
necessary to understand the behavior of an indi-
vidual agent. 

Coevolving Graphical Models. Researchers in AI have
been studying graphical models for solving prob-
lems pertaining to areas such as Bayesian infer-
ence, games, and constraint-satisfaction problems.
Graphical models of Bayesian inference and games
have been proposed and studied in AI to capture
the network structure inherent in certain applica-
tions (Pearl 2000, Kearns 2007, Pearl 2009, Russell
and Norvig 2009). Dynamic processes such as epi-
demics on social networks provide a new class of
applications (Kearns 2007, Lauritzen 1996, Pearl
2009) in this regard. Two aspects make this a very
challenging problem. First, in order to solve real-
world problems we need to deal with graphs with
10 million to 300 million vertices and 500 million
to 15 billion edges. Second, realistic social net-
works do not have a treelike property that has been
exploited in earlier work to obtain tractable algo-
rithms for computing Nash equilibria (Lauritzen
and Spiegelhalter 1988, Pearl 1988, Kearns 2007).
They are not even small-world networks or scale-
free networks as defined in the current literature
(Barrett, Eubank, and Marathe 2006; Eubank et al.
2004). Understanding the structure of these net-
works and exploiting this structure for designing
efficient computational solutions is an important
research question. Another interesting direction
for further research is to extend the notion of
graphical games and inference problems to coe-
volving graphical games and inference problems in
which the underlying network is changing due to
the decisions taken by individual agents, which in
turn change due to the interaction predicated by
the network. An example of an important applica-
tion-motivated inference question is the following:
Given sparse surveillance information about a
small subset of infected individuals in a region,
find the index cases, that is, the initial set of indi-
viduals who became infected. 

Intelligent Query-Processing Systems and Computa-
tional Steering of Simulation-Based Experiments. As

we began to answer real-world policy questions, it
became progressively clear that easy-to-use web-
based systems that employ our models would pro-
vide an appropriate mechanism for delivering the
results. As a result, we have been developing web-
based services so that complex high-performance
computing-based models can be used by analysts
who are not computing experts. The web-based
system is called Didactic. In essence, it provides
users a way to specify a factorial style adaptive
experimental design. Using Didactic, a public
health analyst can carry out a number of what-if
experiments, assess the trade-offs between various
intervention strategies, and more generally devel-
op a better understanding of how the outbreak is
likely to spread over social networks. In many ways
this effort is similar to the topic of cognitive pros-
theses (Ford 2008)—computational systems for
analysts to obtain better situational awareness
using Simdemics-like environments in conjunc-
tion with surveillance information. We are extend-
ing the system to become more interactive and to
allow for computational steering of experiments.
This requires methods for coordinating resource
discovery of computing and data assets; AI-based
techniques for translating user-level requests to
efficient work flows; reusing data sets whenever
possible and spawning computer models with
required initial parameters and coordination of
resources among various users. Our initial work on
this topic is described in Atkins et al. (2008),
Atkins, Barrett, and Marathe (2009), and Barrett et
al. (2008). A natural formal environment to repre-
sent and assess graph dynamic systems, their com-
position, and coevolution in both algebraic and
computational terms is necessary to deal with
these questions. 

Theoretical Foundations of Graph
Dynamic Systems and Their Coevolution 
Our formalization consists of two parts: (1) a dis-
crete graphical dynamic system framework that
captures the coevolution of disease dynamics,
social networks, and individual behavior, and (2) a
partially observable Markov decision process that
captures various control and optimization prob-
lems formulated on the phase space of this dynam-
ic system. The basic framework consists of the fol-
lowing components: (1) a collection of entities
with state values and local rules for state transi-
tions, (2) an interaction graph capturing the local
dependency of an entity on its neighboring enti-
ties, and (3) an update sequence or schedule such
that the causality in the system is represented by
the composition of local mappings. We formalize
this as follows. A coevolving graphical discrete
dynamic system � over a given domain � of state
values is a triple (G, �, W), whose components are
as follows:
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1. Let V = {vi:
n
i=1} be a set of vertices, and let (gi)i be a

vertex indexed family of graph modification func-
tions gi: {0,1}n → {0,1}n. The functions (gi)i, through
their applications, define an indexed sequence of
graphs G = (Gr = Gr(Vr = V, Er))r with labeled edges
and vertices. The graph Gr is the underlying contact
graph of � after r applications of functions gi. It is
assumed that the edge {vi, vi} � Er for all r and for all
i. We set mr = |Er|. 

2. For each vertex vi there is a set of local transition
functions {fvi,d}d where fvi,d : �d → �. Let N(i, t)
denote the set of vertices consisting of vi and the
neighbors of vi at time t, and let dt = |N(i, t)|. The
function used to map the state of vertex vi at time t
to its state at time t + 1 is fvi,dt, and the input to this
function is the state subconfiguration induced by
N(i, t). 

3. The final component is a string W over the alpha-
bet {v1(s), v2(s), …, vn(s), v1(g), …, vn(g)}. The string
W is a schedule. It represents an order in which the
state of a vertex or the possible edges incident on
the vertex will be updated. Here vi(s) intuitively
specifies that the state of the vertex vi is to be updat-
ed; vi(g) specifies that one or more incident edges
will be updated. 

From a modeling perspective each vertex repre-
sents an agent. Here we will assume that the states
of the agent come from a finite domain �. The
maps fvi,j are generally stochastic. Computational-
ly, each step of a CGDDS (that is, the transition
from one configuration to another), involves
updating either a state associated with a vertex or
modifying the set of incident edges on it. The

pseudocode in figure 3 shows the computations
involved in one transition. 

Let F� denote the global transition function
associated with �. This function can be viewed
either as a function that maps �n into �n or as a
function that maps �V into �V. F� represents the
transitions between configurations, and can there-
fore be considered as defining the dynamic behav-
ior of an CGDDS �. We make several observations
regarding the formal model just described. 

First, we will assume that the local transition
functions and local graph modification functions
are both computable efficiently in polynomial
time. In agent-based models used in the social sci-
ences these are usually very simple functions. Fur-
thermore, the functions gvi need to be specified
using a succinct representation, rather than a com-
plete table, which will be exponentially larger. 

Second, the edge-modification function as
defined can modify in one step a subset of edges
simultaneously. An alternate model might have
allowed a vertex to change exactly one edge at a
time. We chose the former due to the specific
application we had in mind. In all our applica-
tions, when an agent decides to not go to a loca-
tion (either due to location closure as demanded
by public policy or due to the fear of contracting
the disease), its edges to all other individuals in
that location are simultaneously removed while
edges to all the individuals who might be at home
are added. 

Third, the model is Markovian in that the
updates are based only on the current state of the
system; it is possible to extend the model wherein
updates are based on earlier state of the system.
Finally, we have assumed that there is exactly one
function for each arity for each node. This can be
relaxed easily; similarly these functions will, in
general, be stochastic. 

In the next step, we overlay a partially observable
Markov decision process framework over the dis-
crete dynamic systems framework. This allows us to
discuss control and optimization methods. The dis-
crete dynamic system provides us with a computa-
tional view of how state transitions are made. We
refer the reader to Mundhenk et al. (2000) for
detailed definitions and complexity theoretic
results on this topic. A POMDP M consists of a finite
set of states (S), actions (A), and observations (O). so
� S is the initial state of the system. t is the local
transition function from one state to another and
is probabilistic. o is the observation function that
assigns to each state an observation. Finally, r is the
reward function that tells the reward received when
action a � A when in state s.

Using the terminology of Mundhenk et al.
(2000), our POMDP is specified succinctly; we use a
dynamic systems specification rather than a circuit
representation to achieve this. The states of M are
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Initialize t = 0 

Repeat Until W is empty

(i) Let r be the the first symbol in W.

(iii) If r = vi(s), update the state of the vertex vi

as follows:

(a) Let degree of node vi in Gt be dt. Node vi

evaluates fvi ,dt
. (This computation uses the 

current values of the state of vi and those of 

the neighbors of vi in Gt.) Let x denote the 

value computed. 

(b) Node vi sets its state svi
to x.

(iii) If r = vi (g), update the edges incident on 

vi as follows:

(a) Use current graph Gt to compute gvi
.

(b) Let Gtemp denote the new graph. 

(ii) Set t = t + 1, Gt+1 = Gtemp and delete r from 

string W. 

End Repeat

Figure 3. Pseudocode.



all possible vectors of vertex states and edge states
(present or absent). Each vector of the underlying
Markov chain � is specified by a vector of length (n

2)
+ n, representing all the possible edges and vertices
in the graph. The state transitions are obtained by
composing the local functions fi and gi as we dis-
cussed. If these functions are probabilistic then so
is the transition function for the Markov chain.
Thus the chain consists of 2(n

2)+n states. Actions
should be thought of as interventions in our con-
text. Policies map observations to actions, and
actions in a state yield reward. The reward (cost)
function can be a combination of number of infect-
ed individuals and the economic and social costs of
the interventions. We have two possible classes of
reward functions, as is common in game theory: a
systemwide reward function and a local reward
function associated with each individual. Individu-
als attempt to maximize their local reward function
(for example, the probability of the individual or a
family member becoming infected), while public
policy attempts to maximize the systemwide
reward function (for example, the total number of
people not infected). An agent-based model serves
as the corresponding computational model for the
POMDP. Partial observability in our context will be
captured through various triggering conditions and
interventions that are instituted. 

Application Case 
Studies and Payoff 

Our cyber environment is fully deployed and
under continual development. Several studies
involving human networks, livestock networks,
and computing networks have been conducted
using this cyber environment. In an epidemiolog-
ical experiment, an application determines each
agent’s normative social network. A diffusion
process is then run over this social network as
agents probabilistically infect other agents con-
nected to them in the social network. 

At the start of the simulation, a set of individu-
als in the social network is initially seeded with an
infection. Through the use of the scenario script-
ing language, a researcher can model specific sce-
narios by developing the set of decision triggers,
individual and global interventions, and agents’
behavior to be modeled. The scenario can dynam-
ically modify the social network as the simulation
progresses. 

Simdemics has been developed continually in a
spiral R&D process over the last 12 years. It has
been deployed and used in a number of user-
defined studies, including recent pandemic plan-
ning studies undertaken for the U.S. Department
of Homeland Security (DHS), Department of
Defense (DOD), and Department of Health and
Human Services (DHHS). The studies have guided

the continued evolution of Simdemics both in
terms of its usability and model development. The
studies also helped us identify new research ques-
tions at the interface of multiagent modeling, data
mining, network science, and high-performance
computing. The following are notable case studies
undertaken using Simdemics. 

A study was conducted on behalf of the Office
of Homeland Security (OHS) to develop planning
and response strategies for a smallpox-based
bioterror attack (Eubank et al. 2004). In contrast to
earlier results, our experiments showed that early
detection and targeted interventions can be quite
promising in mitigating the effects of such an
attack. The study pointed to the importance of
developing realistic models of social contact net-
works but raised new questions on finding imple-
mentable policies for targeted interventions. 

Three separate studies were conducted for the
DOD regarding military preparedness and force
readiness. The studies elucidated how protecting a
small critical subset of a larger population is fun-
damentally different from public health epidemi-
ology. The studies provided guidelines for military
preparedness in the event of an epidemic outbreak.
The results showed the importance of early detec-
tion in implementing effective sequestration and
the apparently counterintuitive result that seques-
tration, if implemented late, might lead to more
infections rather than fewer infections. 

Another recent study (Barrett 2009b) was per-
formed to determine the social and economic
impact of public and private interventions, that are
typically adopted, during a flulike epidemic. The
economic costs included not only the loss in pro-
ductivity due to sickness but also the indirect costs
incurred through disease avoidance and caring for
dependents. The results showed that the most
important factor responsible for preventing
income loss is the modification of individual
behavior which reduced the total income lost by
62 percent compared to the base case. This result
highlights the importance of behavioral modifica-
tions undertaken by the private citizens based on
local and global disease prevalence levels. 

An Illustrative Use Case 
for Influenzalike Illness

We describe an example of a case study performed
at the request of one of our sponsors. Further
details of the study have been described by Bisset
et al. (2009b). Although the example is slightly
modified from the actual study in order to simpli-
fy it and present a more complete representation of
the features present in Simdemics, it provides an
accurate representation of multiple studies that
have been done. 

The population of the state of Alabama (4.3 mil-
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lion residents, 1.1 million locations, and 58 mil-
lion activities of six types) is simulated. About
14,000 of the residents have been marked as criti-
cal workers based on the demographics of the actu-
al critical worker subpopulation. A critical worker
is someone whose work is essential for the health
and welfare of the general population (for exam-
ple, first responders, health-care workers, power-
plant operators, and so on). The contagion that
will be spread is the H5N1 influenza virus (that is,
Avian flu). Figure 4 shows the PTTS associated with
the H5N1 disease model. 

There are several different interventions that
may be applied to different groups at different
times: vaccination of adults, children, and critical
workers (V), school closure (S), quarantine of criti-

cal workers (Q), and self-isolation (I). The vaccine is
assumed to be low efficacy, meaning that only 30
percent of the individuals vaccinated will be pro-
tected. This efficacy is representative of a vaccine
for a newly emerging strain of influenza. When
schools are closed, an adult caregiver is required to
remain home with any children under 13 years of
age. Sixty percent of the school children are con-
sidered to be compliant, meaning that they remain
at home for the entire day. The other 40 percent
participate in their normal after-school activities.
Critical workers will be isolated in some type of
group quarters in small groups of 16 where they do
not come in contact with people outside of their
subgroup. When an individual chooses to self-iso-
late, he stays home and does not participate in any
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PTTS for the H5N1 disease model. Ovals represent disease state and lines represent the transition between states labeled with the transition
probabilities. The line type represents the treatment applied to an individual. The states contain a label and the dwell time within the state,
and the infectivity if other than 1. 

 
Label Intervention Compliance Trigger Description 

V Vaccinate Adults 
Vaccinate Children 

Vaccinate Critical Workers

25% 
60% 

100% 

Day0 Prevent 30% of treated individuals from 
becoming infected. 

S School Closure 
School Reopen 

60% 1.0% of children diagnosed 
(by county) 

0.1% of children diagnosed 
(by county) 

Children stay home during school hours 
(with adult if under 13). 

Q Quarantine Critical 
Workers 

100% 1.0% of adults diagnosed Critical workers removed from general 
population and isolated in small groups. 

I Self Isolation 20% 2.5% of adults diagnosed Eliminate all activities outside of the 
home. 

Table 2.

Description of the experimental setup showing the sets of interventions, their compliance rates, and when the intervention takes effect.
The full experimental design of 16 cells consists of every combination of the four interventions. 



activities away from home, although the person
remains in contact with other people in the house.
Table 2 describes the four sets of interventions. 

The intrahost disease progression passes through
several stages (National Academies Press 2006; Hal-
loran et al. 2008). When a person is exposed to the
disease, it starts off in a latent stage, where the
individual is neither infectious nor symptomatic.
This is potentially followed by an incubating stage
during which the individual is partially infectious
but still does not exhibit symptoms. In the final
stage of the disease an individual is fully infectious
and displays one of four levels of symptoms from
asymptomatic to fully symptomatic. The probabil-
ity of a person staying home instead of participat-
ing in his normal activities increases with the
severity of the symptoms. Once the disease has run
its course, the infected individual is considered
recovered and cannot be reinfected. 

Vaccination takes effect at the start of the simu-
lation and the other interventions are triggered
when a certain percentage of a subpopulation is
diagnosed with the virus. It is assumed that 60 per-
cent of those who are symptomatic will be diag-
nosed. School closure is done on a county by coun-
ty basis, based on the number of sick children who
reside in each county. Each person who enters one
of the symptomatic X states has a probability of
withdrawing to home, depending on the severity
of the symptoms (symptom 1—20 percent, symp-
tom 2—50 percent, symptom 3—95 percent). 

Sixteen scenarios were simulated, specifying all
combinations of the four sets of interventions (I,
Q, S, V). Figure 4 shows the number of individuals
that are infected for each cell. They can be grouped
into four categories: those without vaccination or
school closure (labeled a in the figure), vaccination
(labeled b), school closure (labeled c), and both
vaccinations and school closure (labeled d). Self-
isolation and quarantine of critical workers have
little impact on the overall infection rates. Self-iso-
lation happens late in the epidemic (2.5 percent of
the adult population is infected on a single day),
limiting its effectiveness. In fact, when school clo-
sure or vaccination is included, the trigger level is
never reached. Quarantine of critical workers
affects such a small portion of the total population
(about a third of a percent) that its effects are not
apparent in the total population. However, quar-
antine reduces the percentage of critical workers
who are infected from 40 percent without quaran-
tine to 18 percent when critical workers are both
quarantined and vaccinated, which may be vitally
important for maintaining a functioning society. 

Another interesting phenomenon happens with
school closure. Schools are closed when 1 percent
of school children are diagnosed as ill on a partic-
ular day in a county. The schools are reopened, on
a county by county basis, when the number of
diagnosed children falls below 0.1 percent. Even at
that low level, there is enough residual infection to
cause another wave of infections. This can be
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Currently infected individuals by day for all combinations of interventions. The interventions can be divided into four
groups based on the shape of the epidemic curves. Both school closure (b) and vaccination (c) are a significant improve-
ment over doing neither (a), with school closure having the additional preparation and response benefit of delaying
the peak by about a month. Combining school closure and vaccination (d) leads to further improvement. 



observed in the dual peaks of the group of epi-
curves labeled b in figure 5. 

Concluding Remarks 
As our society becomes more connected, there

will be an increasing need to develop innovative
computational tools that will help policy makers
and analysts grapple with complex questions. The
advances in computing and information science on
one hand will likely make our society even more
connected and reduce the amount of time we have
for decision making. On the other hand, the same
technology will form the basis of new modeling
and data processing environments that will gener-
ate new kinds of synthetic data sets that cannot be
created in any other way (for example, direct meas-
urement). This will enable social scientists to inves-
tigate entirely new research questions about func-
tioning societal infrastructures and the individuals
interacting with these systems. The tools will also
allow policy makers, planners, and emergency
responders unprecedented opportunities for multi-
perspective reasoning leading to improved situa-
tion assessment and consequence management. 
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Notes
1. See also the 2010 IG24 workshop presentation “Finan-
cial Contagion: What Do We Mean? What Do We
Know?” by M. Dungey and D. Thambakis
(www.g24.org/Dungey-Tambakis2003.pdf). 

2. See the 2003 Network Reliability and Interoperability
Council report, Review of Power Blackout on Telecom, by
P. Aduskevicz, K. Condello, and C. Burton. 
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