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Observations of human reasoning motivate AI research on
transfer learning (TL) and case-based reasoning (CBR).
Our ability to transfer knowledge and expertise from

understood domains to novel ones has been thoroughly docu-
mented in psychology and education (for example, Thorndike
and Woodworth 1901; Perkins and Salomon 1994; Bransford,
Brown, and Cocking 2000), among other disciplines. Transfer
learning uses knowledge learned from solving tasks from a
source domain to enhance an agent’s ability to learn to solve
tasks from a target domain. The differences between the source
and target problems characterize the transfer distance. Case-
based reasoning transfers problem-solving knowledge from spe-
cific examples or episodes, called cases, to new problems. 

While researchers typically work within each of these fields
independently, the purpose of this article is to summarize how
case-based reasoning can be applied to transfer learning.1 Our
analysis reveals three approaches for applying CBR to transfer
learning: (1) CBR as a transfer learning method, (2) CBR for
problem solving, and (3) CBR to transfer knowledge between
the domains. These correspond to using CBR for solving entire
transfer tasks or acting as a component within a transfer learn-
ing system. The transfer distance provides a new metric for CBR
researchers to assess the robustness of their systems. Further-
more, each CBR approach has implications for the importance
and interpretations of different transfer learning metrics.

We begin with an overview of transfer learning, case-based
reasoning, and the three approaches for applying CBR to trans-
fer learning. We provide examples of each from our research on
physics problem solving and controlling a player in a football
simulation and also describe related work. We close with a dis-
cussion concerning the applicability of each approach over dif-
ferent transfer distances, how transfer learning assists CBR
research, and some directions for future research.
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n Case-based reasoning (CBR) is a problem-
solving process in which a new problem is
solved by retrieving a similar situation and
reusing its solution. Transfer learning occurs
when, after gaining experience from learning
how to solve source problems, the same learner
exploits this experience to improve performance
and learning on target problems. In transfer
learning, the differences between the source and
target problems characterize the transfer dis-
tance. CBR can support transfer learning meth-
ods in multiple ways. We illustrate how CBR
and transfer learning interact and characterize
three approaches for using CBR in transfer
learning: (1) as a transfer learning method, (2)
for problem learning, and (3) to transfer knowl-
edge between sets of problems. We describe
examples of these approaches from our own and
related work and discuss applicable transfer dis-
tances for each. We close with conclusions and
directions for future research applying CBR to
transfer learning.
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Combining Two Methods 
for AI Research 

In this section, we first describe the transfer learn-
ing and case-based reasoning frameworks. Using
these frameworks, we define the three approaches
for applying CBR in transfer learning systems at
the end of this section.

Transfer Learning 
Machine learning has traditionally focused on
learning from a blank slate in isolated tasks. This
differs substantially with the way humans learn;
people frequently leverage experience gained from
learning one task to improve their performance on
different, novel tasks. Transfer learning is the
process of recognizing and applying knowledge
and skills learned from one or more previous
(source) problems to more efficiently or effectively
learn to solve novel (target) problems. Methods for
transfer learning hold the promise of being exceed-
ingly useful; they could dramatically decrease the
amount of training required by successfully
employing knowledge obtained from different, but
related, problems. This promise motivates the
development of computational models for transfer
learning, which has been the focus of workshops at
NIPS-05, ICML-06, AAAI-08, and NIPS-09, in addi-
tion to a large amount of work summarized in
recent surveys (Taylor and Stone 2009; Torrey and
Shavlik 2009; Pan and Yang 2010). 

Figure 1 summarizes a conceptual model of

transfer learning and its empirical evaluation,
where the domain representations, tasks, perform-
ance metrics, and environments may all differ
between the source and target problems. Transfer
learning involves three steps: (1) learning in the
source, (2) transferring the learned knowledge from
source to the target, and (3) learning in the target.

A transfer learning evaluation compares an
agent’s performance on a task defined in a target
domain after learning on a task or tasks from the
source (the transfer condition) to the agent’s per-
formance without any source experience (the non-
transfer condition). Common performance meas-
ures include initial advantage, learning rate, and
asymptotic advantage. Initial advantage (or jump
start) is the initial increase in an agent’s perform-
ance resulting from transfer. Learning rate is a
decrease in the time required to reach a particular
performance level, particularly asymptotic per-
formance. This is usually measured using k-step
regret (Kaebling, Littman, and Moore 1996).
Asymptotic advantage is that the agent’s final per-
formance may be improved through transfer.

Differences between the source and target prob-
lems may be categorized by their transfer distance.
Defining common transfer distances across a wide
range of tasks, for example, physics problem solv-
ing and strategy games, is quite challenging. Typi-
cally, individual researchers define transfer dis-
tance for particular evaluations. For example, Pan
and Yang (2010) proposed a new categorization
based on two assumptions made in traditional
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machine-learning studies. In particular, traditional
machine learning assumes that the task to be per-
formed (that is, classes and class objective func-
tions) and the domain of performance (that is, fea-
ture spaces and instance distributions) do not
change among the source and target problems. In
transfer learning, these assumptions are relaxed;
the source and target problems may involve differ-
ent tasks and domains. Refining definitions of
transfer distance is essential to maturing the field
of transfer learning, and we refer to this issue
repeatedly in this article.

Case-Based Reasoning 
Case-based reasoning is a problem-solving process
in which inferences about a situation are drawn
from individual instances called cases. While the
roots of CBR lie in observations of human reason-
ing (Schank 1982; Kolodner 1993), this discipline
is now aligned closely with computer science. CBR
research today focuses on the study of algorithms,
representations, and their applications for a large
variety of analysis and synthesis tasks (Aamodt and
Plaza 1994; López de Mántaras et al. 2005). For
example, there have been significant CBR contri-
butions on recommender systems, legal reasoning,
textual reasoning, and planning tasks (Aha, Mar-
ling, and Watson 2005).  Current research venues
include a dedicated conference (ICCBR), several
annual CBR-focused workshops, and other AI and
cognitive science venues.2

The traditional case-based problem-solving
cycle, shown in figure 2, includes four steps. Given

a new problem p to solve, this process begins by
retrieving one or more similar cases (that is, prob-
lem-solution pairs) from its memory, or case base,
and reusing their solutions. Solution reuse may
require an adaptation of the retrieved cases’ solu-
tions for use in solving p. The proposed solution s
may be revised in light of its performance. Finally,
the pair (p, s) may be retained as a new case. In this
manner, CBR systems learn by accumulating cases
and refining models that support their four steps.

Theories of analogy also computationally
explore reasoning from cases. The structure-map-
ping theory (Gentner 1983) defines analogy as an
alignment process between two structured repre-
sentations resulting in inferences about the target
from the source. This alignment process may be
used for retrieval and reuse within a CBR system.
We introduce analogy, and its connection to CBR,
here because it plays an important role in a num-
ber of the transfer learning methods discussed in
this article, either within CBR systems or as basis
for potential mappings between domains.

Approaches to Transfer Learning 
Using Case-Based Reasoning
Recall transfer learning involves three steps: learn-
ing in the source, transferring the learned knowl-
edge from source to the target, and learning in the
target. We categorize CBR approaches for transfer
learning by which transfer learning steps are per-
formed by the CBR cycle. We identify three types
of approaches, shown in table 1, for applying CBR
in transfer learning systems: (1) as a transfer learn-

Problem 
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Figure 2. The Case-Based Reasoning Cycle.

Adapted from López de Mántaras et al. (2005).
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ing method, (2) for problem learning, and (3) to
transfer knowledge. After defining each approach,
we present examples of them from our research
and related work.

CBR as a Transfer Learning Method. CBR can be
used directly as a transfer learning method. Recall
that all CBR methods involve transferring knowl-
edge from prior cases to new problems. In CBR as
a transfer learning method, the CBR cycle accounts
for all three steps of transfer learning. For example,
the learned and transferred knowledge could be
the case base after training on source problems.
During learning on target problems, the same CBR
cycle can be used to solve problems in the target,
updating the same case base. Thus, the CBR system
is unaware that it is being evaluated for transfer
learning and makes no distinction between source
and target cases. For these systems, transfer dis-
tance and initial advantage provide a useful metric
for evaluating the retrieval and reuse mechanisms
of the CBR system.

CBR for Problem Learning. CBR can be used for
problem learning (source, target, or both). In this
approach, the source and target cases are separated
and treated distinctly by the system. To be a trans-
fer learning system, the CBR system must be inte-
grated with another component to perform knowl-
edge transfer between the source and target
problems. Transfer learning provides structure
guiding the construction and evaluation of inte-
grated CBR systems.

CBR to Transfer Knowledge. CBR methods can be
used for transferring knowledge from source to tar-
get. These approaches either use a full CBR cycle to
modify source instances for use in target learning
by another algorithm, or they create analogical
mappings between problem domains to support
the transfer of abstract knowledge. These methods
must be integrated with a learning mechanism to
perform transfer learning.3 Thus, these approaches
convert established learning methods, such as,

hierarchical skill learning (Nejati, Langley, and
Könik 2006) or Q-learning (Watkins 1989), into
transfer learning methods. These methods support
transfer distances in which the problem and solu-
tion representations for the source and target
include different relations, types, and quantities.

In the next three sections, we discuss each
method in more detail along with an example
from our research.

CBR as a Transfer Learning
Method: AP Physics

To illustrate how a CBR method may be directly
used as a transfer learning method, we describe
Klenk and Forbus’s approach for advanced-place-
ment (AP) physics problem solving (2009a).
Physics problem solving requires reasoning over a
wide range of entities and scenarios. While the
authors sidestep natural language understanding
by using predicate-calculus representations, the
translation process leaves the everyday concepts in
place. That is, balls, buildings, astronauts, boxes,
baseball bats, flying, falling, and pulling all appear
in the formal problem descriptions. They used a
subset of the ResearchCyc (research.cyc.com)
ontology containing over 30,000 concepts. Under-
standing the relevant abstractions and assump-
tions for a physics problem stated as an everyday
situation is a difficult problem, in part because
modeling decisions are contextual. For example, a
coin falling off a building can be considered to be
a point mass. However, when modeling the exact
same coin spinning on a table, it cannot be con-
sidered a point mass since its shape and size must
be considered.

Solving Physics Problems Using 
Analogical Model Formulation
Given a scenario from a physics problem, an intel-
ligent problem solver can use model formulation
(Falkenhainer and Forbus 1991) to construct a sce-

 Source 
Learning 

Knowledge 
Transfer 

Target 
Learning 

Examples 

CBR as a transfer 
learning method    Hinrichs and Forbus (2007), Sharma et al. 

(2007), Klenk and Forbus (2009) 

CBR for problem 
learning    Wu and Dietterich (2004), Shi et al. (2009),

Aha et al. (2009)  

CBR to transfer 
knowledge    

Lui and Stone (2006), Kuhlmann and Stone 
(2007), Shi et al. (2009), Konik et al. (2009), 
Hinrichs and Forbus (2011) 

Table 1. Applications of CBR in Transfer Learning Systems.
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nario model, which consists of the relevant
abstractions, assumptions, and equations neces-
sary for answering the question. An important
contribution of the qualitative reasoning commu-
nity has been formalizing this process (Rickel and
Porter 1994). While successful in engineering
applications, these approaches are limited in that
they focus on abstract scenarios, require complete
and correct domain theories, and ignore learning.
To overcome these limitations, analogical model
formulation, or AMF (Klenk and Forbus 2009a),
builds scenario models of everyday situations
based on experiences. Analogical model formula-
tion incrementally learns by accumulating exam-
ples and making effective use of them, even when
its knowledge is incomplete.

Analogical model formulation was evaluated as
a transfer learning method for advanced-place-
ment physics problem solving using 460 AP
physics-style problems created by the Educational
Testing Service (ETS) and Cycorp. These problems
were generated using variations of four problem
types typically found on the AP physics exam. The
source consisted of 20 problems. Using these prob-
lems, ETS created sets of problems to exemplify six
distinct transfer distances representing systematic
differences between source and target problems:
parameterization (changing the parameter values,
but not the qualitative outcome), extrapolation
(changing the parameters such that the qualitative
outcome changes as well), restructuring (asking for
a different parameter), extending (including dis-
tracting information), restyling (changing the
types of everyday objects involved), and compos-
ing (requiring concepts from multiple source prob-
lems).

When learners study for the AP physics exam,
one important way in which they learn is by solv-
ing problem sets. For feedback, they often get
worked solutions — step-by-step explanations typ-
ically found in the back of textbooks. AMF per-
forms CBR by employing worked solutions as cas-
es. When presented with a new problem, AMF uses
the many are called but few are chosen structure-
mapping engine (MAC/FAC) (Forbus, Gentner, and
Law 1995) to retrieve an analogous worked solu-
tion and SME (Falkenhainer, Forbus, and Gentner
1989) to reuse its modeling decisions to construct
a scenario model of the new problem. MAC/FAC
selects an analogous case from the case base in two
stages: (1) a nonstructural match using feature vec-
tors whose weights are proportional to the number
of occurrences of each predicate in a representa-
tion and (2) a structural alignment to determine its
relational similarity. In the first stage, the problem
is compared to each case in the case base with the
three most similar selected for structural discrimi-
nation. To determine the closest structural match,
SME computes match scores by creating an ana-

logical mapping between each selected case and
the problem, and the closest match is selected.
Analogical mappings consist of correspondences
between the entities and expressions of the worked
solution and problem. From these correspondenc-
es, SME creates a set of candidate inferences, which
are conjectures about the problem using expres-
sions from the base, which, while unmapped in
their entirety, have subcomponents that are
included in the correspondences.

Analogical model formulation is implemented
in the Companion cognitive architecture (Forbus,
Klenk, and Hinrichs 2009), which is exploring the
hypothesis that analogical processing is central to
human reasoning and learning. After attempting a
problem, the Companion is provided with its
worked solution, which it retains for future prob-
lem solving by adding it to its case base.

Central to this approach is the use of candidate
inferences generated by the analogical mapping to
make modeling decisions. Consider the following
source problem:

An astronaut on a planet with no atmosphere
throws a baseball upward from near ground level
with an initial speed of 4.0 meters per second. If the
baseball rises to a maximum height of 5.0 meters,
what is the acceleration due to gravity on this plan-
et? (a) 0.8 m/s2; (b) 1.2m/s2; (c) 1.6m/s2; (d) 20m/s2

The worked solution to this problem includes
seven steps instantiating the relevant equations,
assuming parameter values and solving equations.
Figure 3 includes a subset of the representation,
simplified for presentation, of one step from the
worked solution and a restyling problem in which
the baseball, astronaut, and planet are replaced by
a rock, an alien, and an asteroid, respectively. In
this worked solution step, the speed of the baseball
is assumed to be 0 meters per second at the top of
its projectile motion event. Analogical model for-
mulation uses the candidate inferences resulting
from this worked solution step to make the mod-
eling decision that the rock’s speed at the top of its
projectile motion event is 0 meters per second.
While each of the worked solution steps results in
candidate inferences, analogical model formula-
tion applies only those representing modeling
decisions, such as instantiating equations, assum-
ing values, and checking boundary conditions, to
the problem. After creating the scenario model, the
Companion uses a rule-based problem solver to
solve for the sought quantity and select the appro-
priate multiple choice answer.

The following transfer learning evaluation was
designed by the Educational Testing Service and
Cycorp to evaluate a Companion’s ability to trans-
fer the knowledge necessary to solve AP physics-
style problems using analogical model formula-
tion. Given a source task of 20 problems and
worked solutions, target learning for six transfer
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distances was performed independently as follows.
The Companion was given a series of five training
sets each consisting of a sequence of four quizzes.
Each quiz consists of one problem from each of the
four types. After each quiz, the Companion
received the worked solutions for the problems on
that quiz. After each training set, the Companion’s
memory was reset. In the transfer condition, the
Companion began with the worked solutions to
the source problems and worked solutions in its
memory. In the nontransfer condition, the Com-
panion began with zero worked solutions.

The learning curves grouped by transfer distance
are shown in figure 4. Averaged across all the trans-
fer distances, the Companion achieved a 95.8 per-
cent initial advantage due to the source problems
and their worked solutions. On parameterization,
extrapolation, restructuring, extending, and
restyling problems, the Companion exhibited per-
fect transfer. That is, the system performed at ceil-
ing (100 percent) given just the source set worked
solutions. On composing problems, the system
recorded an initial advantage of 75 percent.  All of
the initial advantages are statistically significant (p
< .01).

These results illustrate that analogical model for-
mulation enables a system to transfer the model
formulation knowledge necessary to solve AP
physics-style problems for the six transfer distances
shown. The only failures of transfer involved limi-
tations in the verification of analogical inferences.
In particular, our system prevented a necessary
modeling decision from being made on a set of dif-

ficult problems (25 percent of the composing prob-
lems).

Other Evaluations of CBR 
as Transfer Learning Methods
Other researchers have explored the evaluation of
CBR as a transfer learning method. Also using SME
for analogical reasoning, Hinrichs and Forbus
(2011) transfer learned city management decisions
in a turn-based strategy game. The transfer dis-
tance in this work involves changing the configu-
ration of tiles around the cities. As another exam-
ple, CARL (Sharma et al. 2007) integrates CBR with
reinforcement learning to play a real-time strategy
game. CARL uses reinforcement learning for credit
assignment and CBR to estimate a value function
for a given task. After learning in the source
domain, the case base is used directly in the target.
CARL was evaluated on two transfer distances: (1)
the target scenario swapped the starting locations
of friendly and opposition forces, and (2) the num-
ber of scenario entities was at least 50 percent
greater in the target scenario than the source.
Using a weighted combination of state features as
a performance metric, CARL demonstrated a sig-
nificant positive initial advantage on both transfer
distances and an asymptotic advantage on the sec-
ond transfer distance.

Discussion
As transfer learning methods, CBR approaches
have predominately been applied to transfer dis-
tances where the representational vocabulary of

…
(groundOf Asteroid1 Ground2)
(performedBy Throwing2 Alien1)
(no-Gen QuantRelnFrom 

in-ImmersedFully Asteroid1 Atmosphere)
(eventOccursNear Throwing2 Ground2)
(objectThrown Throwing2 Rock1)
(querySentenceOfQuery Query2

(valueOf (AccGravityFn Asteroid1) Acc1))
…  

(stepType Step3 DeterminingValueFromContext)
(stepUses Step3 (isa Throwing1 ThrowingAnObject))
(stepUses Step3 (occursNear Throwing1 Ground1))
(stepUses Step3 

(no-GenQuantRelnFrom 
in-ImmersedFully Planet1 Atmosphere))

(stepUses Step3 (objectMovingUpward1 BaseBall1))
…
(stepUses Step3 (direction Upward1 UpDirectly)) 
(solutionStepResult Step3 

(valueOf 
(AtFn ((QPQuantityFn Speed) BaseBall1)

(EndFn Upward1))
(MetersPerSecond 0)))

Figure 3. A Portion of the Representation  of a Source Worked Solution (left) and Corresponding Restyling Problem (right).

(Simplified for readability.)
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the problem (that is, game states and physics sce-
narios) and what gets reused (that is, possible
actions and modeling decisions) are shared across
source and target. This permits cases from either
source or target to be directly applied to target
problems. Most CBR retrieval systems rely on fea-
ture similarity. Consequently, identifying and
retrieving analogous source instances is very diffi-
cult when the vocabulary of the problems and
solutions significantly differs between source and
target. Consequently, performing transfer learning
in a CBR cycle is unlikely to work for such transfer
distances.

One of the original motivations for CBR research
was to provide greater flexibility than rule-based
expert systems for solving unanticipated problems.
While measuring this flexibility is difficult, transfer
learning provides one approach for empirically
evaluating a CBR system by categorizing differ-
ences in source and target problems by transfer dis-
tance. Transfer learning contributes two important
metrics for evaluating the flexibility of CBR sys-
tems. First, the initial advantage metric empirical-
ly measures the flexibility of the CBR system’s
retrieval and reuse mechanisms. That is, the trans-
fer distance indicates how similar problems have
to be in order to retrieve and reuse a solution. Sec-
ond, when the system is unable to solve a target
problem with the source problems, the learning
rate measures the retrieval mechanism’s ability to
avoid source cases or the CBR system’s ability to
perform case-based maintenance (Leake et al.
2001). Empirically evaluating the same CBR system
across a range of transfer distances, as in the AP
physics evaluation above, provides information
regarding the flexibility of the CBR system.

CBR for Problem 
Learning: Rush Football

CBR systems learn by revising and retaining cases
as they gain experience. Approaches using CBR for
the problem learning transfer learning step main-
tain a case base for a set of problems (source or tar-
get). Here, we present an example of this approach
for both source and target problems with separate
case bases. The source task, intent recognition
(Sukthankar 2007), is to identify the opposing
team’s intent (that is, play), and the target task is to
control a player in the Rush 2008 American foot-
ball simulation (Rush 2008).4 Rush simulates a sim-
plified version of American football with only
eight players on each team and whose field is 100
by 63 yards. Figure 5 displays an annotated screen-
shot from the simulator. The offensive team’s
objective is to advance the ball into the defensive
team’s end zone, while the defensive team’s objec-
tive is to prevent this. The game is divided into
downs. Before each down, each team secretly
selects a play, which is a set of instructions for each
player on the team. Each down ends when the
offensive player is tackled by an opposing player or
a forward pass is incomplete.

Case-Based Q-Lambda 
with Intent Recognition
Case-based q-lambda with intent recognition, or
CBQL-IR (Aha, Molineaux, and Sukthankar 2009),
applies CBR separately to the source task, intent
recognition, and the target task, controlling the
quarterback. CBQL-IR uses CBR for both the source
and target problems. For intent recognition prob-
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lems, a k-nearest neighbor, or k-NN (Dasarathy
1991), is used to infer the opponent’s play. For the
QB control problems, CBR is used to approximate
the standard reinforcement learning Q-function. 

To perform the source task, intent recognition,
CBQL-IR uses a k-nearest neighbor classifier with
one example from each of the eight possible defen-
sive plays. Each example includes a feature vector
representing the movements of each of the eight
defensive players over the first three time steps of
the play. As a result of this source task learning,
CBQL-IR accurately classifies the current defensive
play after three time steps.

The target task is to control the quarterback (QB)
by selecting actions, shown in figure 6, at each
time step. There are nine actions available to the
quarterback: passing the ball to WR1, WR2, TE, or
RB, moving in one of four directions, and remain-
ing stationary. The other players all execute the
actions described in the offensive and defensive
plays. CBQL-IR models this as an RL task with
rewards based on the outcome of each play. At
each state, CBQL-IR uses the cases with the most
similar states to estimate the expected reward for
each action. States are represented using two fea-
tures: the predicted opposing play and the current

time step. At the end of the down, the received
reward is used to store new cases, if they are suffi-
ciently different from previous ones, or update the
existing similar cases accordingly.

By separating source and target tasks in this
manner, the transfer learning evaluation acts as an
ablation study, measuring the effects of intent
recognition on CBQL-IR’s ability to control the QB.
In the transfer condition, the predicted defensive
play feature was determined by the k-NN classifier
learned from training on source problems. In the
nontransfer condition, this feature was assigned a
random value because it had no knowledge from
the source problems.

The results are shown in figure 7. While CBQL-
IR begins with identical performance in the two
conditions, it learns faster and achieves a higher
ceiling in the transfer condition. There is no initial
advantage because CBQL-IR acts randomly when
there are no stored cases, as is true for any rein-
forcement learner before training occurs. As
detailed in Aha, Molineaux, and Sukthankar
(2009), intent recognition can significantly
improve the system’s task performance for this
application. To summarize, after target training,
the offense gained on average around 10 yards in

LOS: 50 yd line 

CB 
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LB LB 
S 
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WR WR TE

Figure 5. Screenshot at the Beginning of a Down. 

The QB is the quarterback and begins the play with ball. The wide receivers (WRs) and tight end (TE) move downfield
to receive a pass from the QB. The running back (RB) either takes a handoff from the QB or runs down field to receive
a pass.
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the transfer condition, but only about 3 yards in
the nontransfer condition. Therefore, transfer
learning measures the effects of integrating intent
recognition with controlling an offensive player.

The next section describes other systems that
use CBR solely for problem learning within the
transfer learning framework.

Other Applications of CBR 
for Problem Learning
Related research on instance transfer (Pan and
Yang 2010) includes approaches that integrate aux-
iliary (source) data into k-NN classifiers (Wu and
Dietterich 2004; Shi et al. 2009). These approaches
assume an abundance of source instances and few
target instances. When the known target instances
are insufficient for classification, these approaches
use similar source instances for classification.
These approaches are applications of CBR to target
task learning because they distinguish source
instances from target instances.

Wu and Dietterich (2004) demonstrate the utili-
ty of using source instances when the target
instances are insufficient. They minimized the
weighted sum for two loss functions: one over the
target instances, and the other using only the
source instances. This results in a classifier in
which target instances are weighted higher than
source instances for k-NN classification. By includ-
ing the source instances, they significantly
increased accuracies for classifying leaf species.
While Wu and Dietterich’s approach weights all
source cases equally, COITL (Shi et al. 2009) assigns
weights to each source instance based on their sim-
ilarity to the target task. The process of assigning
weights to source instances is also an application of
CBR to transfer knowledge, and the specifics are
discussed later. COITL demonstrates substantial
improvements in generalization and robustness
over previous approaches on a number of standard
datasets. In contrast to using CBR as a transfer
learning method, each of these systems maintains
a distinction between source and target instances.

Discussion
CBQL-IR illustrates how case-based reasoning can
be used in different source and target tasks. Classi-
fication of the opponent’s play enabled faster
learning and higher asymptotic performance when
controlling the Rush 2008 quarterback’s actions.
While the source learning, play classification,
informs the problem representation in the target
task, player control, the case-based reasoning in
the target task only reuses solutions from target
cases. This is due to the differences between source
and target case representations and solutions. One
cannot adapt a play classification directly into the
selection of an action.

When the source and target tasks are drastically

different, as in CBQL-IR, then measuring the trans-
fer distance is not applicable. Instead, transfer learn-
ing functions as an ablation experiment evaluating
the contribution of an individual component in an
integrated systems research. However, when the
source and target tasks are the same, as in the
instance transfer approaches, the transfer distance
is noteworthy. In such approaches, the features used
for classification may differ among source and target
problems, but they need to be derivable from each
target instance. Furthermore, the labels must be
shared among the source and target.

CBR for Transferring Knowledge:
Linear and Rotational Kinematics

Approaches using CBR to transfer knowledge focus
on identifying how the source and target relate to
each other. To illustrate this approach, we present
an application of domain transfer via analogy to
learn a mapping between linear and rotational
mechanics (Klenk and Forbus 2009b). In this work,
an analogical mapping is created between source
and target, which supports the transfer of abstract
source knowledge. As in the AP physics work, the
source and target consists of physics problems and
worked solutions. Following the same conventions
as the work in the CBR as a Transfer Learning
Method section, the problems and worked solu-
tions are represented in predicate calculus using
the ResearchCyc ontology. Unlike the AP physics
work, the system uses a domain theory of kine-
matics equations defined using equation schemas,
which specify the equation’s types, quantities, and
applicability conditions. In both the source and
target tasks, the system uses the available equation
schemas and rule-based problem solving to con-
struct the scenario model and solve for the sought
quantity. 

Domain Transfer Via Analogy
Domain transfer via analogy (figure 8) learns the
equation schemas necessary to solve target prob-
lems by cross-domain analogy with a source
domain. After failing to solve a target problem,
domain transfer via analogy is provided with its
worked solution. The inputs to domain transfer via
analogy are this worked solution, the source prob-
lems’ worked solutions, and the source equation
schemas. In step 1, domain transfer via analogy
uses MAC/FAC with the target worked solution to
retrieve an analogous source worked solution, and
SME to create a set of correspondences between the
types, quantities, and relations of the source and
target, called a domain mapping. During this
process, SME aligns nonidentical relations using
minimal ascension (Falkenhainer 1988), as
described in Hinrichs and Forbus (2011).

In step 2, this domain mapping is used to ini-
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tialize the target domain theory. For each source
equation schema in the domain mapping, domain
transfer via analogy replaces its types, predicates,
and quantities with the corresponding expressions
from the domain mapping. For example, the linear
kinematics (source) domain includes the equation
d = vit + .5at2, which has an applicability condition
stating that the predicate objectTranslating must
hold between the object and the movement event
of the equation schema. Consider a domain map-
ping resulting from step 1 that includes a corre-
spondence between the predicates objectTranslat-
ing and objectRotating. Therefore, the initialized
equation schema’s applicability condition is
defined in terms of the objectRotating predicate.
After all the substitutions, the rotational kinemat-
ics (target) domain includes an equation schema
defining = it + .5t2. In step 3, the target domain
theory is extended through an analogy between
the domain theories themselves. This permits
domain transfer via analogy to transfer equation
schemas not mentioned in the target worked solu-
tions. Finally, because analogical learning is not
sound, domain transfer via analogy verifies the
transferred equation schemas by attempting to

solve the target problem. If successful, the target
equation schemas are assumed to be correct and
retained for use in solving future target problems.
Otherwise, the transferred knowledge and domain
mapping are discarded. 

The following transfer learning evaluation was
performed to measure the effectiveness of domain
transfer via analogy for transferring knowledge
between linear and rotational kinematics. Each
domain includes five problems and worked solu-
tions. Target learning was measured by running
120 trials representing every possible ordering of
the test materials. In the transfer condition, the
domain transfer via analogy was provided with the
five worked solutions and the equation schemas
from the source domain. In the transfer condition,
after the system failed to answer a target problem
correctly, domain transfer via analogy was invoked
with its worked solution. In the nontransfer con-
dition, after failing to solve a target problem, the
equation schemas necessary to solve that problem
were added directly to the system’s target domain
theory. Two experiments were performed: one
with linear kinematics as the source and rotation-
al kinematics as the target, and vice versa.

Worked
Solution

Failed
Problem 

Domain
Mapping

Worked
Solution 

Step 1 
Retrieval +
Mapping

Source
Domain 

Target
Domain 

Step 2 + 3 
Initialize and Extend

Target Domain
Theory 

Equation
Schemas

Equation
Schemas 

Step 4 
Verify Learned

Knowledge

Figure 8. Conceptual Model for Domain Transfer Via Analogy.
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The results, shown in figures 9 and 10, graph the
percentage of problems the system answered cor-
rectly against a problem’s position within the trial.
In learning rotational mechanics, while domain
transfer via analogy transferred the equation
schemas necessary to answer correctly the remain-
ing questions after only one problem, the non-
transfer condition only answered the last problem
on the quiz correctly 80 percent of the time. In
learning linear kinematics, after any three prob-
lems both the nontransfer and transfer conditions
were able to correctly answer the rest of the prob-
lems. An analysis of the few linear kinematics
transfer failures indicates that increasing the num-
ber of subevents and time intervals in the problem
representation increases the difficulty in generat-
ing a useful domain mapping. The results from
both experiments demonstrate that domain trans-
fer via analogy outperformed the nontransfer con-
dition by learning faster and achieved the same or
higher ceiling. This work has been expanded to
demonstrate transfer between linear mechanical,
rotational, electrical, and thermal systems (Klenk
and Forbus 2009c).

Other Applications of CBR 
for Transferring Knowledge
We distinguish these approaches according to
whether they perform analogical or instance trans-
fer. Analogical transfer approaches, including
domain transfer via analogy, create mappings
between the source and target supporting the
transfer of abstract source knowledge. Instance
transfer approaches identify source instances that
are directly applicable to the target task.

Analogical Transfer Methods. As discussed earlier,
structure mapping theory (Gentner 1983) defines
analogy as an alignment process between two
structured representations. The resulting align-
ment is a mapping between entities and expres-
sions of the two representations, which satisfy the
analogical process model’s structural, semantic,
and pragmatic constraints (Holyoak and Thagard
1989). Different process models (SME, Falkenhain-
er, Forbus, and Gentner [1989]; LISA, Hummel and
Holyoak [2003]; AMBR, Kokinov and Petrov
[2001]) employ slightly different versions of these
constraints. Analogy research seeks to understand
the principles underlying the retrieval of analo-
gous cases, the mapping between them, the infer-
ences suggested, and the integration of analogical
reasoning in cognition. This alignment process is
essential for retrieval and reuse in CBR. Therefore,
we consider the transfer learning methods below
as using partial CBR cycles for transfer. These
approaches differ with respect to the model of
analogy, representations, and transferred knowl-
edge, which we summarize in table 2.

Lui and Stone (2006) present a method for ana-

logical transfer using a version of SME that was
optimized to map sets of qualitative dynamic
Bayes nets (QDBNs). QDBNs are provided for the
source and target RL problems describing the
effects of an action. The resulting mapping is used
to transfer Q-values between reinforcement learn-
ing problems. Transfer over QDBNs improved per-
formance in learning policies for keepaway soccer
games of various sizes.

Isomorphism between two graph representa-
tions underlies most analogy research. Kuhlmann
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and Stone (2007) transform general game playing,
or GGP (Genesereth, Love, and Pell 2005), game
rules into a conical form stored as a graph for each
game. Next, they find graph isomorphisms
between games to reuse Q-value functions learned
from playing the source game. Transformations
between source and target include different board
sizes (3x3 minichess to 4x4 minichess) or inverted
goals (winning tac-tac-toe to losing tic-tac-toe).

Hinrichs and Forbus (2011) use the static analy-
sis of GGP game rules to classify game predicates
into broad classes including types, quantities, spa-
tial coordinates, and ordinal relations. This infor-
mation enables the alignment of nonidentical
predicates through minimal ascension and
metamappings. Using the Companion cognitive
architecture, they transfer hierarchical task net-
work methods across five different transfer dis-
tances, enabling faster learning in the target prob-
lems.

The Icarus cognitive architecture employs goal-
driven analogical mapping (GAMA) to translate
acquired skills from source problems to related tar-
get problems (Könik et al. 2009). Icarus explains a
provided trace from a source problem using con-
cepts from its source domain theory. GAMA uses
this trace pragmatically to constrain the mapping
between source and target domain theories defined
by GGP rules. This mapping enables the transfer of
hierarchical skills learned in the source domain,
thereby accelerating search in the target domain.

Transfer in each GGP transfer problem requires
mapping nonidentical predicates. Each of these
approaches includes higher-order relations to con-
strain the matching process. While the tier-identi-
cality constraint of structure mapping theory
(Gentner 1983) for analogical mapping states a
strong preference for identical predicates, it also
permits nonidentical predicates to match, such as
those used in the works described in this section.
Future work on analogy from both AI and psycho-
logical perspectives will investigate when and how
these nonidentical matches may arise.

Instance Transfer Methods. An alternative
approach is to use CBR to learn weights for source

instances for use in solving target problems. For
example, COITL (Shi et al. 2009) assigns weights to
source instances based on their similarity to known
target instances. A classifier consisting of known tar-
get instances is used to classify each source instance.
If the classification succeeds, then the source
instance is given the weight of the labeling confi-
dence of the classifier. If the classifier fails, then the
source instance’s weight is set to zero. Transfer is
performed by adding the positive weighted source
instances to the target (k-NN) classifier. 

Discussion
Domain transfer via analogy creates an analogical
mapping between the source and target domains
to support the transfer of abstract source knowl-
edge. This enables the system to learn rotational
kinematics by analogy with linear kinematics, and
vice versa. Using SME and minimal ascension,
domain transfer via analogy successfully transfers
the kinematics equation schemas necessary for
problem solving and demonstrates improved
learning over the nontransfer condition. The trans-
fer distance between these domains includes dif-
ferent relations, quantities, and types. 

The two types of CBR for knowledge transfer,
analogical and instance transfer, are applicable
over different transfer distances. As indicated in
the previous discussion subsection, instance trans-
fer methods are applicable for transfer distances
where source and target feature spaces differ but
use the same class labels. Analogical transfer sys-
tems are applicable for domains that include dif-
ferent relations in both the problem and solution
representations. In fact, the GGP representations
for source and target included only a small number
of shared relations. Each of the analogical
approaches employs higher-order relations to con-
strain the matching process. 

Conclusions
CBR research is the study of how and under what
circumstances knowledge from specific cases may
be applied to new problems. Therefore, it is implic-

Model of Analogy Base and Target Representations Transferred Knowledge 

Lui and Stone (2006) SME-QDBN QDBNs of Task Models RL Value Function 

Kuhlmann and Stone (2007) Graph Isomorphism Canonical GGP Game Rules RL Value Function 

Klenk and Forbus (2009)  SME Physics Worked Solutions Equation Schemas 

Konik et al. (2009) GAMA Analyzed GGP Game Rules Hierarchical Skills 

Hinrichs and (Forbus  2011) SME Analyzed GGP Game Rules HTN-Methods 

Table 2. Analogical Transfer Methods for Transfer Learning.
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itly tied to transfer learning, which measures the
performance difference resulting from a system’s
experience in a source task on a related target task.
We identified three distinct approaches for using
case-based reasoning in transfer learning: CBR as a
transfer learning method, CBR for problem learn-
ing, and CBR for transferring knowledge from
source to target domains. Our analysis of these
approaches illustrates how transfer learning and
case-base reasoning inform one another.

CBR as a transfer learning method: These CBR sys-
tems perform transfer learning by accumulating
cases and applying them to new problems without
any distinction between source and target prob-
lems. Currently, these systems have only been
applied to the transfer distances where the repre-
sentation vocabulary for problems and solutions
are shared across source and target. In addition to
performing near transfer, the transfer learning
framework provides these systems with two ways
for evaluating their utility. First, by measuring per-
formance as target cases are accumulated, it meas-
ures the (potentially negative) impact of the source
cases on retrieval and reuse. That is, as the agent
accumulates target cases, its retrieval mechanism
should ignore the source cases in favor of the more
applicable target cases. Second, the division of
source and target problems allows the initial
advantage metric to empirically assess the CBR sys-
tem’s retrieval and reuse mechanisms for a partic-
ular transfer distance.

CBR for problem learning: These integrated sys-
tems distinguish source and target cases. As in
CBQL-IR, the source and target problem types may
be sequential (and differ). CBQL-IR uses the output
from the (classification) source task as input to the
(reinforcement learning) target task. Transfer learn-
ing measures the ability of the CBR problem learn-
er to leverage source knowledge while performing
the target task, similar to an ablation study. Alter-
natively, the source and target problem types may
be the same. Here, the source instances act as aux-
iliary knowledge sources that complement the lim-
ited number of target instances. For these systems,
transfer learning measures the effects of these aux-
iliary cases. 

CBR for transferring knowledge: In these approach-
es, a CBR process transfers knowledge from the
source for use by the domain learner in the target.
Analogical transfer methods have been used for
transfer distances in which different relations,
types, and quantities define the source and target
problems and solutions. These approaches have
been integrated with a variety of domain learners
for classification, reinforcement learning, hierar-
chical skill learning, and hierarchical task network
method learning. Furthermore, they provide a link
between machine learning and cognitive science.
We hope this communication continues, as an

interdisciplinary approach to studying intelligence
is essential to scientific progress in AI.

In the Transfer Learning subsection, we dis-
cussed an important contribution of transfer learn-
ing: the categorization of differences between
source and target problems by transfer distance.
We expect future researchers to define and use
transfer distances to better understand the
strengths and weaknesses of their CBR approaches.
Pan and Yang’s (2010) categorizations are a strong
step forward for characterizing transfer learning
approaches, and we suggest four additional dimen-
sions.

The first is direct applicability of source knowl-
edge. Knowledge learned on source problems is
directly applicable if it assists with solving target
problems with no additional transformations. For
CBQL-IR, the source and target problems differ, but
the knowledge gained in the source was from the
same frame of reference, and thus was directly
applicable. On the other hand, the analogical
transfer methods transform the source knowledge
for application in the target.

The second dimension is whether the learning
problem types are consistent. For example, Wu and
Dietterich’s (2004) learning task is classification for
both source and target problems. As an example of
inconsistent types, CBQL-IR’s (Aha, Molineaux,
and Sukthankar 2009) source task is classification
and target task is reinforcement learning. This can
impact ease of transferring learned source knowl-
edge.

The third dimension concerns problem labeling.
Transfer learning approaches typically assume that
target problems will be identified distinctly from
source problems. However, some research in CBR
as a transfer learning method relaxes the assump-
tion that these different kinds of problems are dis-
tinctly identified; all new problems are presented
as the same, regardless of whether they are source
or target problems.

The fourth dimension concerns multiple repre-
sentations. In complex domains, such as strategy
simulations, AI systems must integrate representa-
tions for planning, execution monitoring, and spa-
tial reasoning. The incorporation of multiple rep-
resentations, such as hierarchical task network
methods and spatial diagrams, may assist transfer
learning approaches in finding and exploiting sim-
ilarities between the domains (Klenk 2009). While
transfer learning has not explicitly explored this
dimension, Klenk et al. (2005) applies analogical
model formulation to solving physical reasoning
problems involving spatial and conceptual repre-
sentations.

In summary, research on CBR has varied among
these dimensions. Future work remains on meas-
uring how these dimensions characterize transfer
distance, and how transfer distance can be used to
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predict a given CBR method’s transfer learning per-
formance. Transfer learning is not an end of itself;
it is an important stepping stone to developing
agents that exist over a long period of time and
learn to solve a wide variety of problems. While
transfer learning methods enable the reuse of
knowledge learned in the source to improve future
performance, in autonomous situations, there is an
additional problem of selecting an analogous
source. This problem has received infrequent
attention in the transfer learning literature.

In addition to purely autonomous agents, trans-
fer learning is an important technology for collab-
orative agents that work with users on a wide range
of problems. These agents could leverage transfer
learning methods directly to exploit user-provided
cross-domain analogies, such as “rotational
motion is analogous to linear motion” or “a heat
pump is like a water pump.” Further dialogue
between agents and users could explore the analo-
gy between the domains to highlight important
correspondences and identify the causes of nega-
tive transfer. While difficult to construct, advances
in transfer learning may substantially increase the
competence of intelligent agents.
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Notes
1. Transfer learning can also support CBR methods in a
variety of ways, but we leave that analysis for future work.

2. For more information, see the CBR Wiki, cbrwiki.fdi.
ucm.es/wiki/index.php/Main_Page.

3. CBR for problem learning and CBR to transfer knowl-
edge are not mutually exclusive. An integrated system
could use two separate CBR cycles, one for problem learn-
ing and one to transfer knowledge, to perform transfer
learning.

4. See www.knexusresearch.com/projects/rush.
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