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One of the central challenges in computational sus-
tainability is how to allocate resources in order to
optimize long-term objectives. An archetypal appli-

cation is conservation planning: managers recommend
patches of land in order to achieve long-term conservation of
biodiversity. In this and similar applications, we typically
have to make decisions over time: financial resources (or oth-
er budgets) are periodically made available and should be
used effectively. For example, every year, a certain budget
may be available to support land conservation. The problem
of how to optimally use this budget over time, facing uncer-
tainty about the availability of future resources, is a chal-
lenging optimization problem. Many other decisions have to
be made under substantial uncertainty about ecological func-
tion in the system of interest. Often times, this uncertainty
can be partially reduced by gathering information, for exam-
ple, through the application of management actions coupled
with monitoring of system responses, or through other stud-
ies or experiments, allowing for improved management out-
comes. Acquiring such information, however, is usually
expensive. Thus, it becomes an important and challenging
task to obtain the most valuable (decision relevant) informa-
tion at minimum cost.

In general, sequential decision making under uncertainty
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n Many problems in computational
sustainability require making a
sequence of decisions in complex, uncer-
tain environments. Such problems are
generally notoriously difficult. In this
article, we review the recently discovered
notion of adaptive submodularity, an
intuitive diminishing returns condition
that generalizes the classical notion of
submodular set functions to sequential
decision problems. Problems exhibiting
the adaptive submodularity property
can be efficiently and provably near-
optimally solved using simple myopic
policies. We illustrate this concept in
several case studies of interest in com-
putational sustainability: First, we
demonstrate how it can be used to effi-
ciently plan for resolving uncertainty in
adaptive management scenarios. Then,
we show how it applies to dynamic con-
servation planning for protecting endan-
gered species, a case study carried out in
collaboration with the U.S. Geological
Survey and the U.S. Fish and Wildlife
Service.
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in partially observable environments is notoriously
difficult. General-purpose techniques, such as plan-
ners for partially observable Markov decision prob-
lems, or POMDPs (for example, Smallwood and
Sondik [1973], Pineau, Gordon and Thrun [2006]),
typically do not scale to large problems. In this arti-
cle, we describe a structural property — adaptive sub-
modularity — that makes certain decision problems
amenable to highly efficient algorithms. In particu-
lar, for problems exhibiting adaptive submodularity,
simple myopic (also called greedy) policies are prov-
ably near optimal. We will illustrate this technique
on two case studies. We first consider the problem of
optimizing the decision-theoretic value of informa-
tion, with an application to resolving uncertainties
about the effectiveness of management strategies in
ecological settings. We then present results applying
adaptive submodular optimization to dynamic con-
servation planning. In this domain, our results
enable near-real-time, interactive decision support
with provable performance guarantees. Concretely,
we present results of a computational study carried
out in collaboration with experts from the United
States Geological Survey Patuxent Wildlife Research
Center and the United States Fish and Wildlife Serv-
ice. In this study, we demonstrate how our approach
can efficiently recommend patches of land suitable
for conserving three endangered species in the South
Puget Sound Region of the United States.

Adaptive Submodularity
To motivate our notion of adaptive submodularity,
consider the following running example. A core
challenge in computational sustainability is opti-
mization in adaptive management settings, that is,
deciding how to act in an iterative decision-making
environment, when uncertainty exists about system
function. We proceed in a sequential fashion, take a
management action, observe its effect, which may
provide some information about the managed eco-
logical system, and so on. How should we act effec-
tively in such settings? Generally, such problems are
very hard under reasonable complexity theoretic
assumptions. Instead, a natural, computationally
efficient approach is to act greedily by selecting
actions that provide the maximum immediate ben-
efit, that is, increase in expected utility. Because of
their computational efficiency, such myopic
(greedy) strategies are frequently used in practice.
But in general, greedy algorithms can perform arbi-
trarily poorly, since they do not look ahead and can
get stuck in suboptimal solutions. Adaptive submod-
ularity is a structural property of certain sequential
decision problems, which implies strong perform-
ance guarantees for greedy approximations, among
other benefits. 

More abstractly, we consider decision problems of
the following form. There is a set of actions, and we

wish to act in order to accrue maximal utility. In a
sequential manner, we choose an action, and make
an observation about its effect, pick another action,
make an observation, and so on. These observations
are modeled as (possibly dependent) random vari-
ables, for which the decision maker has a (Bayesian)
prior, but whose exact value is initially unknown.
The joint realization of these random variables (that
is, the configuration of values that these variables all
assume) represents the state of the world. By selecting
actions, the decision maker derives some utility,
which depends both on the chosen actions and the
world state (that is, the value assumed by all the ran-
dom variables). Her goal is to find a policy that max-
imizes the expected utility of her actions, under the
(only partially revealed) state of the world. At the
same time, she has to respect certain constraints, for
example, on the maximum number of actions that
can be taken, their total cost, or possibly even more
complex requirements. Generally, brute-force search
for the optimal policy may require exponential time
as the number of possible policy courses is equal to
the number of actions and observations available at
any decision point raised to the power of the man-
agement time horizon (that is, the number of deci-
sion points over which management will occur and
benefits will be realized). 

Instead of attempting to find an optimal policy,
consider a simple greedy strategy: this strategy
myopically chooses the action that maximizes the
expected marginal benefit (increase in utility caused
by a single action alone), conditional on all actions
taken and observations made so far. Without
assumptions, such a greedy strategy, while efficient,
may fail miserably, that is, produce arbitrarily poor

What Is Adaptive Submodularity?
A diminishing returns property, informally stating that
taking an action later can never provide a higher
increase in expected utility than taking the action now.

Why Is Adaptive Submodularity Useful?
Sequential decision problems satisfying this property
can be efficiently and near-optimally solved using
myopic (greedy) policies.

Where Does Adaptive Submodularity Apply? 
So far, several information gathering and resource

allocation problems are known to satisfy it.
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solutions: it may generally be possible to obtain
much higher reward in the future by accepting sub-
optimal utility now. However, if the decision prob-
lem instance satisfies two intuitive conditions, then
we can show that this simple myopic policy is com-
petitive with the optimal policy, that is, the solution
to the exponentially large planning problem. These
conditions (see figure 1 for an illustration) are (1)
adaptive monotonicity — the expected marginal
benefit of any fixed action is always nonnegative,
no matter which observations we have made so far,
and (2) adaptive submodularity — the expected
marginal benefit of any fixed action can never
increase as we make more and more observations.
In other words, if we compare how much our utili-
ty increases by performing a particular action now
(having already made some observations), as
opposed to choosing it later (that is, after we have
carried out some additional actions, and made more
observations about them), the expected increase in
utility can only get smaller by holding off.

It turns out, as shown by Golovin and Krause
(2011), these two natural conditions suffice to make
strong guarantees about the greedy policy. For exam-
ple, if we wish to maximize expected utility subject to
a constraint on the number of actions selected, the
value of the greedy policy is at least a constant frac-
tion of 1–1/e (which is approximately 63 percent) of
the value obtained by the optimal policy. Moreover,
under reasonable complexity theoretic assumptions,
no efficient algorithm will provide better approxima-
tion guarantees in general. Besides cardinality con-
straints, a variety of other constraints can be handled
too. Moreover, the adaptive submodularity property
can be exploited to accelerate the already efficient
greedy algorithm even more, by using a technique
called lazy evaluations. The key idea here is that, since
the expected benefit of any action can never increase,
one can prioritize the order in which the greedy algo-

rithm considers actions for selection, often avoiding
having to compute the expected benefit of large
numbers of actions. This insight can lead to dramat-
ic computational performance gains in practice,
without loss of solution accuracy. Such speedups can
be crucial in realizing interactive decision support
systems.

What if the state of the world is fully known to the
decision maker (that is, there is no uncertainty; the
random variables modeling the observations are in
fact deterministic)?

In this more restricted setting, a selection policy
simply chooses a fixed set of actions — since the
observations are fixed ahead of time, they cannot
affect which actions should be chosen. Thus, the
problem of finding an optimal policy corresponds to
choosing a subset of actions of maximum value, sub-
ject to some constraints. Here, the notions of adap-
tive monotonicity and adaptive submodularity
reduce to the classical notion of monotonicity and
submodularity for set functions, which have been
extensively studied in economics, operations
research, theoretical computer science and other
fields. In fact, the results described above can be seen
as lifting known results for submodular set function
maximization (in particular results by Nemhauser,
Wolsey and Fisher [1978] and Minoux [1978]; see
Krause and Golovin [2014] for a survey) to the
sequential (partially observable) setting.

The adaptive monotonicity and adaptive submod-
ularity properties are quite natural in situations
where it is generally preferable to take an action now
as opposed to later (such as models of discounted
rewards). However, in contrast to general sequential
decision problems under uncertainty (such as those
modeled through POMDPs), an important limitation
is that actions taken now cannot affect which actions
will be available in the future (only their expected
rewards).
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Figure 1. Adaptive Submodularity

Left: The classical notion of submodularity for set functions states that adding an element s to some set A provides at least as much utility
as adding s to a superset B of A. This captures diminishing returns, often present at economies of scale. Right: The new notion of adaptive
submodularity for value functions states that the conditional expected benefit of performing action s, given that a set of observations xA
has been performed, is at least as high as the conditional expected benefit given that a superset of observations xB have been made. Intu-
itively, this means that acting now is never worse (in expectation) than acting later.
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Case Study: Optimizing 
Value of Information

As our first case study1 we consider the problem of
collecting information in order to make effective
decisions, a central challenge in sustainability (see
Runge, Converse, and Lyons [2011] for a recent
example in ecology) and beyond. This problem has
been classically studied in the context of the deci-
sion-theoretic value of information (Howard 1966).
Here, one assumes that the world is in some
unknown state, over which the decision maker has
some prior belief. Ultimately, she needs to make a
single decision, and her utility depends on both her
decision and the state of the world. A classical exam-
ple is medical diagnosis, where the physician ulti-
mately must decide how to treat the patient. In
absence of any information, a rational decision mak-
er may choose the decision that maximizes the
expected utility. In order to reduce the uncertainty,
she can choose to acquire additional information by
carrying out several probing actions (such as per-
forming medical tests), which can allow her to make
a more informed final decision with higher expected
utility. Thus, one natural strategy is to repeatedly
choose information-gathering actions as if each
action were the last one before the final decision
must be made. In other words, this strategy selects an
information-gathering action that maximizes the
expected increase in utility achieved by making the
optimal decision according to the information
revealed. The expectation is calculated over the prior
belief about the true state of the world. Usually,
acquiring information is expensive, and one wishes
to maximize the net benefit of utility (the expected
gain in performance due to the reduction of uncer-
tainty) minus cost (of acquiring the information).
Equivalently, one may seek to accrue the most useful
information subject to a constraint on the amount
that can be spent on information acquisition. It is
important to note that there are cases in which the
value of information is zero or very small, and in this
case, devoting budget to accruing information may
not be advisable. 

In general, optimizing value of information is
computationally very challenging (NPPP complete
even in basic probabilistic models as shown by
Krause and Guestrin [2009]). Furthermore, often-
times, myopically (greedily) optimizing value of
information can lead to very poor solutions. The rea-
son is that often a single observation does not pro-
vide enough evidence to change the decision that
maximizes the expected utility. Only multiple obser-
vations together may increase the confidence
enough to affect which decision is determined to be
optimal. In the extreme case, the net utility of any
single observation may be negative, because of the
cost of making the observation outweighs its utility,
but multiple observations together may provide a

positive net benefit. Thus it is important to seek non-
myopic solutions to the value of information prob-
lem. This example also shows that value of informa-
tion is not submodular in general, as it may violate
the diminishing returns principle. 

An Adaptive Submodular 
Surrogate Function
Even though value of information is not submodular
by itself, we have recently shown (Golovin, Krause,
and Ray 2010) that it is possible to construct an alter-
native objective — a surrogate function — that in fact
is adaptive submodular. As a consequence, the crite-
rion can be efficiently optimized through a simple
and efficient greedy algorithm. The key idea behind
this approach is to translate the value of information
optimization problem into an equivalent, alternative
problem that we call the equivalence class determina-
tion problem. In this new, transformed problem, one
can naturally formulate an adaptive submodular
objective — the equivalence class edge cutting (EC2)
objective — that leads to efficient solutions for the
value of information problem with provably near-
minimal expected cost. The key idea behind this
reformulation is to identify different hypotheses
about the unknown world state as nodes in a graph.
Hypotheses are connected by (weighted) edges if and
only if they result in different optimal decisions (that
is, decisions that maximize the expected utility). The
weight of an edge is simply the product of the prior
probabilities of the incident hypotheses. Any obser-
vations made eliminate nodes in the graph that are
inconsistent with the observed information. All
edges connected to inconsistent hypotheses are also
removed. A crucial insight is that the optimal deci-
sion is identified if and only if all edges in the graph
are removed — as long as one edge is still left, we do
not know yet which action is optimal. The EC2 objec-
tive measures the total weight of all the edges cut,
and hence quantifies the progress towards identify-
ing the optimal decision. In this application, adap-
tive submodularity means that performing any fixed
information-gathering action earlier cuts edges with
at least as much weight than selecting the same
action later (that is, once additional information has
been obtained and thus additional edges have
already been cut).

Computational Study I: 
Experimental Design for Decision 
Making Under Uncertainty
As described by Golovin, Krause, and Ray (2010), our
approach was applied to an experimental design
problem with the goal of teasing apart different the-
ories that have been proposed in the field of behav-
ioral economics. These theories, including expected
value theory, prospect theory, portfolio selection, and
constant relative risk aversion, serve as hypotheses of
how decision makers act in uncertain environments.



Obtaining such understanding is potentially very
important when creating tools for decision support
in computational sustainability and beyond. Con-
cretely, an experimental paradigm called the Iowa
Gambling task was employed, in which participants
are asked to choose between two lotteries. Each lot-
tery corresponds to a real-valued, random payoff (for
example, winning $10 with 70 percent chance and
losing $5 with 30 percent chance). For certain choic-
es, some of the theories predict different preferences.
For example, one may accept slightly lower expected
return, in exchange for reduced variance. The goal of
this study was to adaptively determine the sequence
of choices (pairs of lotteries) presented to the partic-
ipants in order to gain as much information as possi-
ble about which of the four candidate theories best
explains their preferences. 

This problem can be set up as a value of informa-
tion problem, where the decisions correspond to clas-
sifying a participant as acting according to one of the
candidate theories and the information gathering
actions correspond to showing pairs of lotteries and
asking for the participants’ preferences. Our novel
surrogate objective (EC2) was compared with stan-
dard heuristics for experimental design, including
maximizing mutual information, random selection
of tests, and simply myopically optimizing value of
information. Figure 2 (left) shows the results of this
experiment. Interestingly, myopic optimization of
value of information performs worse than random
selection. Maximizing mutual information (known
as D-optimality in Bayesian experimental design)
performs much better than random selection, but is
still outperformed by our novel EC2 surrogate objec-
tive. In addition, by exploiting lazy evaluations (as
described earlier), tests can be chosen much more
efficiently than by using existing techniques (almost
10 times faster, approximately 4 seconds per test for

EC2, as opposed to 30 seconds when using mutual
information), which is crucial for real-time perform-
ance in a laboratory environment.

Computational Study II: Information 
Gathering for Adaptive Management
We further apply our EC2 approach to a value of
information problem arising in adaptive conserva-
tion management, as recently addressed by Runge,
Converse, and Lyons (2011). In this study, the
authors address the problem of deciding which
uncertainty should be resolved in order to effective-
ly carry out adaptive management strategies. Con-
cretely, they intend to determine effective manage-
ment strategies for the eastern migratory population
of whooping cranes, a species listed as endangered
under the U.S. Endangered Species Act. This popula-
tion was introduced by conservation biologists, but
suffered from reproductive failure with unknown
cause. The respective utility of several different man-
agement actions (seven in total), in context of dif-
ferent hypotheses (eight in total) about causes for
reproductive failure were elicited from a panel of
domain experts (see details in Runge, Converse, and
Lyons [2011]). Uncertainty about the hypotheses can
be resolved by specifically investigating one of the
potential causes of failure. Thus, the problem of
deciding which of the potential causes of reproduc-
tive failure to investigate, and in which order, can be
seen as a value of information optimization problem. 

In our study, we compare different selection poli-
cies applied to this value of information problem, as
quantified by Runge, Converse, and Lyons (2011). As
suggested by Runge, Converse, and Lyons, we con-
sider different levels of measurement error (noise),
which affects the accuracy with which the different
causes can be eliminated. Figure 2 (middle and right)
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Figure 2. Results on the Value of Information Case Study.

Left: Iowa Gambling task. Middle and right: Adaptive Management Study under low (middle, 10 percent) and high (right, 30 percent) noise.
Average accuracy / utility is plotted as a function of tests applied, when using different selection criteria. Responses are generated accord-
ing to the Bayesian prior. See Golovin, Krause, and Ray (2010) for details.



show the results of this experiment, with low noise
(10 percent) and high noise (30 percent). Both our
adaptive submodular EC2 criterion and myopically
optimizing value of information outperform random
selection and maximizing mutual information (sim-
ply reducing uncertainty about the cause of failure,
irrespective of utility). For low noise (10 percent),
myopically optimizing value of information leads to
the best performance early on, but eventually better
performance is obtained by optimizing the adaptive
submodular surrogate criterion, EC2. For large
amounts of noise (30 percent), our novel criterion
outperforms myopically optimizing value of infor-
mation from the outset.

Case Study: Dynamic 
Conservation Planning

We now present a case study2 demonstrating the
use of submodular optimization on conservation
planning as an important real-world example of
sequential decision making in computational sus-
tainability. We prove a surprising fact: under some
natural conditions, a simple policy that in every
round of the decision-making process opportunisti-
cally allocates the budget given the current reserve
and current resources, attains a performance that is
competitive with the optimal clairvoyant policy with
knowledge of the future availability of resources.
While there is a significant amount of both theoreti-
cal and applied work on conservation planning (Ball,
Possingham, and Watts 2009; Sheldon et al. 2010),3

we are unaware of principled approaches that can
solve such dynamic problems on a realistic scale. To
evaluate our approach, a detailed computational
study was conducted on the problem of conservation
planning for three rare taxa in the Pacific Northwest
of the United States (see figure 3). 

We now formalize the problem of recommending
parcels of land for conservation in order to maximize
the persistence probability of a set of species of inter-
est. As part of the problem description, we are given
a map, consisting of a set of parcels (atomic units of
land) in the geographic area. Often, individual
parcels are too small to be managed as separate
reserves, or to serve by themselves as a viable habitat
for any particular species. Multiple, spatially adjacent
parcels satisfying certain constraints (such as on the
minimum total size) can form a patch of land, which
can be recommended for conservation. Our goal is to
recommend a subset of viable patches as a reserve, in
order to maximize the long-term persistence proba-
bility of the species. There are two main questions
that we will formalize: (1) How can one quantify the
benefit of a particular reserve for the purpose of sus-
taining the species, and (2) how can one effectively
maximize this objective function?

Modeling Species Dynamics
Since we would like to ensure long-term survival of
the species, we model the population dynamics
among the parcels recommended for conservation.
We use a patch dynamics model, that is, employ
Bernoulli random variables to model whether a giv-
en species is present or absent on any given parcel at
any given time. We model the species survival as a
controlled dynamic Bayesian network. This model
captures the fact that the presence of a species at
time t + 1 depends on their presence at time t, as well
as which patches have been selected for conserva-
tion. Survival may also depend on environmental
conditions, for example, occurrence of a harsh win-
ter, a natural disaster, or other factors.

We need to capture two aspects with the species
survival model: the fact that a population may or
may not survive on its own within a parcel, and the
fact that other individuals of the same species may
colonize it from nearby parcels. These distributions
can be quite complex, and depend on habitat attrib-
utes of the parcels (such as vegetation, soils, and oth-
ers) as well as properties of the particular reserves (for
example, whether the contained parcels are separat-
ed by roads or waterways which hinder migration),
and global properties (for example, the likelihood of
a harsh winter).

The Static and Dynamic 
Reserve Design Problems
Once we are able to model the population dynamics
of the species, we would like to choose a reserve to
ensure long-term persistence. One natural goal is to
define an objective function that quantifies the
expected number of distinct species still present in at
least one parcel in the reserve after some prediction
horizon (for example, after 50 years). Typically, each
candidate patch also has some cost for reservation,
for example, its monetary cost, or the effort required
to negotiate for its protection with the owners of its
parcels.  The goal of the static conservation planning
problem then is to select a reserve that maximizes
the persistence probability while respecting a budg-
et constraint.

In many natural reserve design settings, such as
the one in our case study, it is not possible to con-
duct and implement a single optimization. Instead,
we have to solve a sequential decision-making
process where over time new resources (patches of
land and budget to spend) become available, and we
have to dynamically determine recommendations
based on our previous actions. 

Hence, we consider a sequential decision problem,
where at every time step, a (potentially different) set
of patches is available that can be recommended for
conservation. Furthermore, in each time step we are
given a budget, and can select a collection of patch-
es from among the available ones, taking into
account which patches we have already selected, and
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ensuring that we do not exceed our budget. Unused
budget from one time step does not carry over to the
next time step. For clarity of presentation, here we
consider the setting where conservation recommen-
dations are made on a faster timescale than the patch
dynamics. Thus, the goal is to plan the recommen-
dation of patches to protect such that the final
reserve maximizes the persistence objective. 

Formally, we are interested in a policy that speci-
fies which patches to recommend at time t, given
knowledge of the already selected patches, a fixed set
of patches to choose from, and a certain budget to
spend. What is a good policy? One natural (albeit
extremely optimistic) benchmark is a clairvoyant
policy that gets to know precisely which patches and
how much budget are available at any given point in
time (that is, gets to know this aspect of the future),

and chooses an optimal reserve maximizing expected
persistence. We call a policy α-competitive, if its
expected utility is at least an α-fraction of that pro-
vided by the optimal clairvoyant policy. We call the
problem of efficiently determining an α-competitive
policy the dynamic reserve design problem. 

Optimization Algorithm
Even for a single time step, selecting the set of patch-
es that maximizes the survival probability is an NP-
hard optimization problem. Despite this hardness, in
the following, we present an efficient policy that
exploits adaptive submodularity.

In particular, we prove that if species do not colo-
nize between separate patches, then we can guaran-
tee near-optimal solutions. Under this assumption,
the patch dynamics for a given patch depend only on
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Figure 3. The Conservation Planning Case Study.

Top: Endangered taxa considered. From left to right: Streaked Horned Lark, Taylor Checkerspot, Mazama Pocket Gopher (photo credits: Rod
Gilbert, Derek Stinson, Kim Flotlin). Bottom Left: A map consists of parcels, which are grouped into patches (one example marked in red).
Our model captures uncertain colonization and survival across parcels within a patch. Bottom right: A candidate solution to the (static)
reserve design problem consists of a set of selected patches (marked in red; map shows the show the South Puget Sound region). See Golovin
et al. (2011) for details.

Photographs courtesy (left to right) Rod Gilbert, Derek Stinson, and Kim Flotlin.



the state of all parcels in this patch, on whether it is
included in the reserve, and on the environmental
conditions. This condition is naturally satisfied if the
candidate patches are spatially separated, such that
natural barriers blocking colonization are likely to
exist. Note that crucially we do model colonization
between parcels within one patch.

Under this assumption, it can be shown that for a
fixed time step, our persistence objective is a sub-
modular set function. This result holds under rather
general conditions: in particular, it supports model-
ing complex relationships among species (such as
symbiosis or predator-prey relationships), and arbi-
trary (potentially correlated) priors on the initial
occupancy. Since our objective is submodular, we can
use classical results from submodular optimization to
find provably near-optimal solutions to the static
reserve design problem. For example, using an algo-
rithm that combines partial enumeration with
greedy selection, a set of patches can be found that
recoups a constant fraction of (1 – 1/e) ≈ 63 percent
of the optimal set, for arbitrary costs (Sviridenko
2004). 

The dynamic problem appears much more
demanding: in principle, to do well, one may need to
plan ahead based on which patches may become
available at future time steps, but there is a combina-
torial number of possibilities. Fortunately, this
dynamic problem satisfies adaptive submodularity.
In this application, this condition means that adding
a patch to our reserve today helps at least as much (in
expectation) as adding the same patch in the future.
As a consequence, we show that one can do well
purely by opportunistically selecting patches at each
time step, disregarding the potential availability of
patches in the future. Formally, at time t the oppor-
tunistic allocation algorithm implements the policy,
which finds a near-optimal reserve (using classical
submodular optimization; see Sviridenko [2004])
among the currently available patches. As a conse-
quence of adaptive submodularity, this simple, effi-
cient opportunistic policy obtains at least 38.7 per-
cent of the reward of any feasible policy, even
clairvoyant ones (which know when each patch will
become available).

Computational Study
As described by Golovin et al. (2011), a computa-
tional study was conducted in collaboration with the
U.S. Fish and Wildlife Service Washington Office, in
Washington State, USA. The eventual goal of this col-
laboration was to develop a tool that will facilitate
decision making about assembly of a reserve ade-
quate to protect three federal candidate taxa inhabit-
ing a remnant prairie ecosystem in the South Puget
Sound region. The target species are Taylor’s check-
erspot (TCS; Euphydryas editha taylori), Mazama pock-
et gopher (MPG; Thomomys mazama), and streaked
horned lark (SHL; Eremophila alpestris strigata). As part

of this effort, elicitation workshops were held to gar-
ner the input of biologists with expertise on the tar-
get taxa and the South Puget Sound prairie ecosys-
tem. The goal of these workshops was to para -
meterize patch dynamics models for each of the
species. Substantial uncertainty currently exists
about the ecological processes governing the behav-
ior of populations of the target taxa. The intent dur-
ing the workshops was to formally capture this
uncertainty, through interexpert variation, so that it
could be reflected in the predictive patch dynamics
models, and ultimately conservation recommenda-
tions could be obtained that are robust to this uncer-
tainty; to do so a modified Delphi process was used
for expert elicitation (Vose, 1996).

The primary objective was to maximize persist-
ence probability after 50 years for each of the candi-
date taxa. First the set of land parcels were identified
in appropriate portions of the Washington counties
of Grays Harbor, Lewis, Mason, Pierce, and Thurston
(including Fort Lewis Army Base): these are located at
least partially on appropriate prairie soil types; were
classified by county surveyors offices as undevel-
oped, agriculture, open space, or forest; and are at
least 5 acres in size and can be combined with adja-
cent qualifying parcels to assemble a contiguous
patch that is at least 100 acres in size. Furthermore,
spatial data on soil types, elevation, vegetation type,
and barriers (selected roads and water ways) was
obtained, and processed using ArcGIS 9.3 to deter-
mine the habitat properties of each parcel and the
barriers hindering colonization.

Parametric models for the stochastic aspects were
used in the patch dynamics model. 

Annual survival of a population in a parcel depend-
ed on the usable habitat size. This dependence of the
survival probability on habitat size, as well as the fac-
tors determining habitat size itself, were elicited
from ecologists. Since ecological processes vary over
time, and environmental conditions (for example, a
harsh winter, the spread of a disease) can affect sur-
vival, a spatially correlated reduction or increase in
the effective habitat area was estimated by using a
Gaussian process model with exponential kernel; the
components of this model (for example, the degree
of annual variance and spatial correlation in vari-
ance), were also elicited from experts.

The probability of species colonization was modeled
using a parametric function of the source parcel hab-
itable area (annually-varying, as described above),
the distance between source and target parcel, and
environmental conditions using models from the lit-
erature where available (for the Taylor’s checkerspot,
see Hanski et al. [1996]) or based on expert elicita-
tion. Barriers (interstates, major highways, and water
bodies) reduce migration probability to varying
degrees for TCS and MPG.

Prior distributions on the parameters of these sto-
chastic components were elicited from the expert
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panel. In order to capture the variation, multiple sim-
ulations were conducted, with parameters sampled
from the estimated prior distributions. The size (in
km2) of each parcel was used as conservation cost. 

Contiguous candidate patches were generated
from the parcels by a region growing process, which
picks a random parcel as seed, and then iteratively
grows the patch up to a random size. This growth
process was biased to avoid complex boundaries.
Using this procedure 10,000 candidate patches were
generated for selection. To evaluate the objective
function, 100 random samples were generated from
the Dynamic Bayesian network. To avoid overfitting,
two thirds of those were used for optimization (as
done, for example by Sheldon et al. (2010) for a sim-
ilar problem), and the quality of the solutions were
evaluated against the remaining one third. As noted
by Sheldon et al. (2010), the advantage of this proce-
dure is that preprocessing can be used to drastically
speed up computation and bounds on the general-
ization error can be obtained. Further, instead of
using the algorithm described by Sviridenko (2004)
for solving the nonadaptive problem, a faster algo-
rithm of Leskovec et al. (2007) was used that also car-
ries theoretical guarantees.

The experiments mainly aimed to investigate two
questions: (1) How much better do optimized solu-
tions perform compared to simple baselines? (2) How
much can be gained from dynamic optimization?

First, experiments were conducted on the static
reserve design problem. The budget was varied from

0 to 60 km2, and the optimized reserves were com-
pared with random selection, as well as selecting
patches according to decreasing area. Figure 4 (left)
presents the results. Note that the optimized selec-
tion drastically outperforms the baselines. Figure 3
(bottom right) shows a solution obtained for a budg-
et of 10 km2.

Then, our near-optimal policy for dynamic conser-
vation planning was evaluated. The set of all patches
was randomly partitioned into 10 different subsets.
In the experiment, the budget that is made available
in each round was varied from 0 to 60 km2. Each
round, patches were opportunistically selected, either
by optimization, in decreasing order of area, or at
random. All experiments were repeated, and results
averaged, over 10 random trials. In order to estimate
the benefit of dynamic selection, results were com-
pared against another baseline, where a fixed reserve
(having access to all patches and the entire budget)
was optimized a priori (approximately), and then, for
this fixed solution, patches were picked in the first
round in which they became available. 

The expected number of persistent species (after 50
years) was estimated after ten rounds of selection.
The dynamically optimized solution outperforms the
baselines. Even after all ten rounds (that is, after all
patches were made available) the sequential solution
outperforms the a priori solution. The reason is that
the static a priori optimization is not aware of the per
round budget constraints, and therefore may not be
able to select some patches as they become available.
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Figure 4. Simulation Results on the Conservation Planning Case Study.

Left: Performance (in terms of number of different species persistent at the end of the planning horizon) in the static reserve design prob-
lem for different selection methods as a function of the budget. Right: Performance on the dynamic reserve design problem, as a function
of planning rounds. See Golovin et al. (2011) for details.



Another experiment was performed, where the algo-
rithms at each round attempt to recommend some
patches for conservation. However, these recommen-
dations may fail (that is, cannot be implemented due
to external constraints). Here failures were consid-
ered that happen randomly, with probability 0.5
independently for each patch. Figure 4 (right) pres-
ents the result of this experiment. Here the dynamic
approaches achieved much better performance than
the static baseline. The reason for this is that the
dynamic approaches are able to substitute an
``important’’ failed selection by a similar alternative
that becomes available in a later round.

Running time for the optimization is less than 2
seconds for a typical problem instance on a standard
MacBook Pro with 2.2 GHz and 8 GB RAM, enabling
near-real-time decision support. The implementation
is interactive: it allows to easily modify parameters,
incorporate constraints such as unavailability of cer-
tain patches, carry out the optimization and visualize
the results.

Conclusions and Discussion
Sequential decision making under uncertainty is a
central, yet notoriously hard problem in computa-
tional sustainability and AI more generally. In this
article, we have reviewed the structural property of
adaptive submodularity, which generalizes the classi-
cal notion of submodular set functions to planning
problems. For problems that exhibit this problem
structure, simple, efficient greedy policies are prov-
ably near-optimal. We have illustrated the concept
on two applications of relevance to computational
sustainability: collecting information in order to
make effective decisions, and protecting rare species
by recommending patches of land for conservation.
The latter case study is carried out in collaboration
with the USGS Patuxent Wildlife Research Center
and the U.S. Fish and Wildlife Service. Here, our
adaptive submodularity approach enables near-real
time interactive decision support with provable qual-
ity guarantees.

There are several interesting questions for future
work. First, in our value of information study, we
have shown how it is possible to construct adaptive
submodular surrogate functions even for problems
that are not submodular if considered naively. Are
there general principles for how such surrogate func-
tions can be constructed for other applications? Sec-
ond, we have shown how some results can be lifted
from classical submodular optimization to sequential
decision making. Are there more results that carry
over to this more challenging setting? Last, we have
sketched two applications relevant to the field of
computational sustainability. Given that sequential
decision making is a core challenge in this area and
AI more broadly, are there other natural applications
that can be addressed using this framework?
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Notes
1. This case study was first published by Golovin, Krause,
and Ray (2010).

2. This study was originally published by Golovin et al.
(2011).

3. See also www.helsinki.fi/bioscience/consplan/software/
Zonation.
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