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Recent advances in smart human-machine systems,
including wearable robotic technologies and neural
interfaces, which are able to detect conscious choice,

decision, and intent from the patient, now allow the design
of wearable robots and powered prostheses and exoskeletons
that assist and work cooperatively with people with disabili-
ties (figure 1). Recently, the U.S. Food and Drug Administra-
tion (FDA) defined a powered exoskeleton as “a prescription
device that is composed of an external, powered, motorized
orthosis used for medical purposes that is placed over a per-
son’s paralyzed or weakened limbs for the purpose of provid-
ing ambulation.” Moreover, the FDA determined that pow-
ered exoskeletons are class II devices with special controls
that provide reasonable assurance of the safety and effective-
ness of the device. 
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n Human-centered design of wearable
robots involves the development of
innovative science and technologies that
minimize the mismatch between
humans’ and machines’ capabilities,
leading to their intuitive integration and
confluent interaction. Here, we summa-
rize our human-centered approach to
the design of closed-loop brain-machine
interfaces powered prostheses and
exoskeletons that allow people to act
beyond their impaired or diminished
physical or sensorimotor capabilities.
The goal is to develop multifunctional
human-machine interfaces with inte-
grated diagnostic, assistive, and thera-
peutic functions. Moreover, these com-
plex human-machine systems should be
effective, reliable, safe, and engaging
and support the patient in performing
intended actions with minimal effort
and errors with adequate interaction
time. To illustrate our approach, we
review an example of a user-in-the-loop,
patient-centered, noninvasive BMI sys-
tem to a powered exoskeleton for per-
sons with paraplegia. We conclude with
a summary of challenges to the transla-
tion of these complex human-machine
systems to the end user.
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Figure 1. Two Examples of Exoskeletons with Bilateral Powered Ankle, Knee, and Hip Joints. 

On the left is the Exo-H2 device (CSIC, Madrid, Spain) and on 
the right is the Rehab REX (Rex Bionics, Auckland, New Zealand).



Future generations of these human-machine sys-
tems will be designed with integrated diagnosis, assis-
tive, and therapeutic capabilities, and will include
brain-machine interface (BMI) subsystems that detect
and interpret the patient’s intent, make context-based
decisions, and allow people to act on dynamical envi-
ronments beyond their impaired or diminished phys-
ical, cognitive, or sensorimotor capabilities.

The design of effective wearable human-machine
systems is a multifaceted effort that requires close
collaboration among academia, clinical centers,
industry, regulatory agencies, and end users to
address the entire regulatory, engineering, and clini-
cal life cycle for these devices, leading to fast transla-
tion to the end user. To accelerate the development
and deployment of such complex human-machine
systems, acting in direct support of individuals and
groups, the multiagency U.S. National Robotics Ini-
tiative (NRI) was launched in 2011 by President
Barack Obama. The most recent program solicitation
can be found in National Science Foundation (NSF)
(2015). 

Indeed, consensus at the NRI workshop on Clini-
cal Brain–Neural Machine Interface Systems held at
the Houston Methodist Research Institute in Spring
20131 showed that although neuroprostheses, neu-
rally controlled exoskeletons, and other types of BMI
systems have achieved success in a handful of inves-
tigative studies, translation of closed-loop neuro-
prosthetic devices from the laboratory to the market
is challenged by gaps in the scientific data regarding
long-term device reliability and safety, uncertainty in
the regulatory market and reimbursement pathways,
as well as patient-acceptance challenges that impede
their fast and effective translation to the end user
(Liew et al. 2013). 

In the past, wearable robotic prostheses and
exoskeletons have been designed primarily to restore
the mechanical function of impaired limbs in
humans with physical disabilities — although pow-
ered exoskeletons have also been specifically
designed to augment strength, endurance, and
mobility of humans. However, by deploying a
human-centered approach, BMI-enabled human-
machine systems can be designed and specifically
prescribed to provide direct health benefits across
multiple physiological systems in health and disease
(Contreras-Vidal and Grossman 2013). For instance,
BMI systems could be specifically designed to trigger,
facilitate, or enhance cortical plasticity leading to
faster and more complete functional recovery of the
patient. Moreover, health benefits through enhanced
structured physical activity with exoskeleton-assisted
mobility could serve as a stimulus to improve skele-
tal muscle structure and metabolism, skin and vascu-
lature including vasomotor reactivity in legs and
brain, bone health, and cardiorespiratory fitness of
patients with paralysis and other forms of paraplegia
(Evans et al. 2015). Importantly, intelligent human-

machine systems based on human-centered design
principles could also serve to empower patients to
engage in their own health care and wellness while
allowing clinicians to harness diverse (multimodali-
ty) data to improve health outcomes through big
data analytics, improving health-status predictions,
and medical support decision making. 

In this article, we summarize human-centered
design principles for the development of BMI systems
to multifunctional wearable robots. To illustrate our
approach we discuss engineering and clinical chal-
lenges in the development and validation of a pow-
ered lower-body exoskeleton augmented with a non-
invasive scalp EEG-based BMI capabilities to assist or
restore independent walking to a mobility-impaired
person. This approach has been extended recently to
rehabilitation robotics for stroke patients by devel-
oping noninvasive neural interfaces to the NASA X1
exoskeleton (He et al. 2014) and the European H2
robotic exoskeleton (H2 2014; Bortole et al. 2015). 

Human-Centered Design Principles
Figure 2 depicts a systems-level schematic of subsys-
tems regulating context-dependent human-machine
interactions between a mobility-impaired user or
patient and an assistive powered exoskeleton while
providing real-time monitoring of neurological,
physiological, biomechanical, behavioral, location,
and environmental signals with diagnostic value. The
design of such human-machine systems operating in
dynamic environments requires a human-centered
approach to ensure that they are effective, reliable,
safe, and engaging. To accomplish these aims, our
laboratory employs several human-centered design
principles for human-machine systems (HMSs)
reviewed next.

Design Principle I.
Closed-loop human-machine systems require real-
time coordination and management of power transfer
between the user, robot, and their working environ-
ment.

Close physical contact between the wearable
exoskeleton and the patient and the surrounding
dynamic environment leads to power transfer (for
example, interaction and gravitational torques, and
possible forces due to collisions with movement
agents or the built environment) that cannot be
avoided. Seamless and comfortable physical inter-
faces between the patient and robot, and optimized
mechanical design (weight, active power provided,
materials, and others) of wearable robots are essential
to enable efficient power transfer among three enti-
ties in HMS. Additionally, the human-machine inter-
face needs to gather information from the patient’s
intent, the exoskeleton’s states. and the envi-ron-
ment (“context”) to coordinate power transfer to
achieve optimal performance, stability, and safety
during locomo-tion and nonlocomotion tasks. Thus,
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the first human-centered design principle involves
the adequate real-time coordination and manage-
ment of power transfer in the human-machine-envi-
ronment system.

Design Principle II.
Closed-loop human-machine systems require a direct
and intuitive communication interface to allow ade-
quate information transfer about the user’s intent to
the machine (for example, wearable prosthesis or
exoskeleton), which is essential in determining func-
tion and usability of the powered device. 

A wide range of assistive devices, from canes, walk-
ers, and wheelchairs to electric scooters, power
chairs, and lifters, and more recently powered
exoskeletons, have been designed to assist, augment,
restore, or enhance the functional capabilities of
their users. Typically, these systems are either passive
(that is, walking cane), and their functionality and
stability are left to the user’s strength and adequate
managing of power transfer; or the systems are pow-
ered (that is, wheelchair or first-generation exoskele-

ton) and able to receive simple electronic command
signals from the user or caregiver through a joystick,
pushbutton, or other available input — an example
of this type of system is the Ekso powered exoskele-
ton from Ekso Bionics (Ekso 2012, 2014). These assis-
tive systems unfortunately are limited in their capa-
bility to interact with the user and the environment
and they provide limited information about the
users’ internal states or the environment with which
they interact. 

Current control of lower-extremity powered pros-
theses is based on intrinsic (autonomous) control
without involving the user’s intent. For example,
they use intrinsic feedback (that is, feedback meas-
ured by mechanical sensors in the prosthetic system)
to adjust the knee and/or ankle joint impedance or
position based on gait phase (that is, stance and
swing; Martinez-Villalpando and Herr [2009]; Sup,
Bohara, and Goldfarb [2008]; Hogan [1985]) and
locomotion mode (that is, level-ground walking and
stair ascent) (Martinez-Villalpando and Herr 2009;
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Figure 2. Closed-Loop Human-Machine System with Diagnostic, Assistive, and Therapeutic Functions.



Sup, Bohara, and Goldfarb 2008; Hogan 1985),
which significantly limits the function of these
devices in the presence of changing environments
(for example, transitioning from level-ground walk-
ing to stair ascent, or from sitting to standing). In
such cases, manual or ad hoc approaches such as
body motions (for example, the ReWalk exoskeleton
senses that the user’s body shifts to command the
robot [ReWalk 2011]) may be inadequate when the
number of commands required from the user increas-
es due to highly dynamic environments or condi-
tions). Therefore, the second human-centered design
principle involves creating a direct and intuitive
communication interface (that is, information trans-
fer links depicted in figure 2) between the user and
the wearable prosthesis, which is essential in deter-

mining function and usability of the powered device. 
Neural interfacing systems decode neural signals

from the brain, peripheral nerves, or muscles and
enable users to intuitively operate such assistive
robotic devices (figure 3). For example, electromyo-
graphic (EMG) signals represent the neuromuscular
control and have been explored to build intuitive
voluntary connection between the amputees and
robotic lower-extremity prostheses (Huang, Kuiken,
and Lipschutz 2009; Huang, et al. 2011, Hargrove et
al 2013; Zhang et al. 2014) and to extract intent from
chronic spinal cord injury (SCI) patients to command
powered exoskeletons using a shared control frame-
work (Aach et al. 2014). These approaches are, how-
ever, challenged by the patient populations who have
a limited number of muscles (for example, amputees)
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Figure 3. Neural Interfacing Systems Decode Neural Signals. 

Neural interface system extracts information about user’s intent through a brain-machine interface that translates brain activity (scalp EEG)
into command and control signals for control of powered exoskeletons or prosthetic legs. Peripheral signals such as surface EMG signals
that also reflect the user’s intent can be combined with brain signals and autonomous robot control to increase accuracy and reliability.
Examples of decoded actions spaces, from a continuum of high-level, discrete tasks (for example, walk forward) to low-level continuous
decoding of movement kinematics (for example, joint trajectories) are shown.



or diminished or abnormal muscle activities (for
example, SCI patients). 

Noninvasive BMI systems enable various clinical
populations intuitively to operate assistive robotic
devices based on their voluntary control signals gen-
erated in their brains and acquired through scalp
electroencephalography (EEG). BMI systems also
allow the development of adaptive shared control
strategies to control wearable robotic devices with
multiple degrees of freedom by allowing modulation
of the level of interaction and attention required by
the user to command the prosthetic or orthotic
device. For example, in a task-oriented human-
machine system, the neural decoding algorithms
may allow shared control modulation between a
high-level neural controller that extracts the user’s
intentions from his/her patterns of brain, maybe
fused with peripheral nerve/muscle activities, and
the intrinsic low-level controller of the prosthetics
(Au, Berniker, and Herr 2008; Hargrove et al 2013;
Zhang et al. 2014) and exoskeleton. The distribution
of the controller’s loads based on the information
extracted from the EEG signals and the exoskeleton
controller can therefore be modified according to
task performance (Kilicarslan et al. 2013). Such
approach requires the user’s mental effort only in
task transitions and can operate multiple powered
joints with coordinated motions based on the prede-
fined autonomous control that implements each task
or action (for example, turn left, sit down, or walk for-
ward) in the robot operating system.

In some human-machine applications such as in
rehabilitation robotics, it may be important for the
user or patient to deploy “assist-as-needed” (for
example, undesirable gait motion is resisted and
assistance is provided toward desired motion) or full
volitional control of the prosthetic/exoskeleton. In
this scenario, the neural interface translates scalp
EEG signals into kinematic and/or kinetic gait vari-
ables such as joint angles or surface EMG patterns
associated with the various phases of walking (Pre-
sacco et al. 2011; Presacco, Forrester, and Contreras-
Vidal 2012). These signals are in turn used to control
powered exoskeletons or virtual walking avatars in
rehabilitation applications.

Neuroprostheses and exoskeletons that provide
real-time feedback to the user, engage their user by
harnessing the user’s intent from his or her own neu-
ral signals, and provide assist-as-needed functionali-
ty may also enhance motor learning and therefore
neurological rehabilitation (Venkatakrishnan, Fran-
cisco, and Contreras-Vidal 2014). The availability of
safe and reliable robotic therapy can also facilitate
intense practice — at a reasonable cost — as well as
continuous challenge during rehabilitation, which
may accelerate neural plasticity and recovery and
improve rehabilitation outcomes. In summary, BMI-
enabled human-machine systems could offer person-
alized therapy, greater levels of patient engagement,

increased efficiency of training at a lower cost, and
new sensing capabilities to the user, trainer, or phys-
ical therapist to quantify the user’s or patient’s
progress. 

Design Principle III.
Human-centered design involves empowering patients
to engage in their own health care and wellness, while
harnessing diverse data to improve health outcomes.

The user’s internal state signals, acquired through
the neural interface and the powered robot, as well as
location and environmental sensors embedded in the
exoskeleton and the built environment, provide use-
ful information signals that can be used not only to
compensate for unwanted interaction forces between
the patient, exoskeleton, and environment, but also
to provide diagnostic functions leading to individu-
alized therapy (figure 4). Thus, big data streams car-
rying multimodal signals about the patient can be
harnessed using big data analytics (for example,
machine learning) for diagnostic purposes and to
adapt exoskeleton control algorithms based on the
user’s current health and cognitive-motor capabilities
while ensuring safety. 

Specifically, human-centered design of wearable
exoskeletons requires systematic safety and tolerabil-
ity assessment of key cardiometabolic, musculoskele-
tal, skin, and biomechanical factors along with
assessment of neurological and cognitive-behavioral
deficit profiles that may define the user profile. For
example, cardiopulmonary safety is paramount as
individuals with stroke and spinal cord injury (SCI)
may have autonomic instability that can alter blood
pressure, and their heart rates may not reflect or
respond correctly to increased cardiopulmonary
demands, depending on the lesion level and com-
pleteness (Ivey et al. 2010, Roth 1994). The car-
diopulmonary demands of steady state and sustained
exoskeleton usage must be initially assessed and care-
fully monitored for two further reasons: (1) mean
peak cardiovascular fitness levels after spinal cord
injury vary considerably depending on the lesion
characteristics, but are generally much lower than
normal; (2) skeletal muscle after SCI or stroke shifts
in a deficit-severity-dependent manner from slow
twitch to a fast twitch molecular phenotype, which
predisposes to anaerobic metabolism, reduced
insulin sensitivity, and oxidative injury. Patients with
abnormal gait biomechanics, anaerobic muscle
metabolism, and fitness levels similar to those in
heart failure patients must show adequate cardiopul-
monary tolerance based on the subject’s own per-
ceived exertion scales, and objective monitoring of
cardiopulmonary and metabolic profiles. These meta-
bolic measures, careful clinical surveillance, and
blood markers to assess for muscle injury are key to
validating cardiopulmonary, metabolic, and muscle
safety of exoskeleton use. 

Rehabilitation clinician scientists are also highly
aware that robotics may impose unusual joint kinet-
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Due to the diversity of potential users and the
spectrum of human-machine systems that have been
emerging in the past few years, it is clear that users
may differently prioritize their needs, and also their
assessment of the benefits to risk ratio may vary
when selecting a powered exoskeleton (for example,
in terms of accepting a lower operating speed in
exchange for a system with a higher margin of sta-
bility or less cost). 

Users may also differently evaluate human-
machine systems in regard to usability (for example,
form factor, cosmesis, setup time, and others), func-
tional gains, and other factors that may influence the
user’s acceptance of the neurorobotic system. More-
over, clinical outcome measures by themselves may
not reflect the overall benefit that robotic exoskele-
tons bring to the patient nor do they accurately cap-
ture the functional gains as interpreted by the patient

ics and kinematics that could potentially injure bone
or skin, particularly in SCI or stroke populations that
characteristically have accelerated osteopenia or
osteoporosis, unusual spasticity patterns, abnormal
movement synergy patterns, or contractures. Sys-
tematic screening for bone health and assessment
ahead of time for hot spots of abnormal torque or
impulses that could predispose to injury are key to
safe utilization. While impedance control and torque
cutoffs successfully assure safety in upper extremity
robotics, cumulative experience is limited for mobil-
ity devices, warranting caution and careful consider-
ation between engineers, clinicians, and individuals
with neurological disability to appropriately apply
this exciting new technology.

Design Principle IV.
Validation of human-machine systems requires a careful
balance of engineering, clinical, and end-user metrics. 
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Diagnostic functions of closed-loop human-machine systems harness the patient’s information across multiple physiological systems
through big data analytics allowing the patient to engage in his/her own health care while improving health outcomes. Adapted, with per-
mission, from Venkatakrishnan, Francisco, and Contreras-Vidal (2014).



in a real-world context outside the clinic. Thus, vali-
dation of such systems requires careful selection of
engineering, clinical, and end-user metrics that make
sense to the developer, the physician or prescriber of
the technology, and ultimately the end user. This area
is unfortunately still in development (Contreras-Vidal
2014) and thus we are only able to review here a com-
pact set of metrics that we believe are critical for the
assessment of powered exoskeleton technology:

The International Classification of Functioning, Dis-
ability, and Health (ICF): The ICF is the international
standard to describe and measure health and disabil-
ity. It includes a list of environmental factors to
address functioning and disability of an individual
that occurs in an environmental context.2

The System Usability Scale (SUS): The SUS provides a
simple, user-friendly, reliable tool for measuring the
usability of a wide variety of products and services,
including hardware and software. It consists of a 10-
item questionnaire with five response options for
respondents, from strongly agree to strongly dis-
agree. The SUS has become an industry standard, and
it can be used on small sample sizes with valid and
reliable results.3

The Technology Readiness Levels (TRL): The TRL is a
type of measurement system used to assess the matu-
rity level of a particular technology. Each technology
project is evaluated against the parameters for each
technology level and is then assigned a TRL rating
based on the project’s progress. There are nine tech-
nology readiness levels. TRL 1 is the lowest and TRL
9 is the highest.4

Reliability Metric: The operational system availabil-
ity of the human-machine system addresses the con-
tinued dependence of the patient or end user on the
system for the execution of desired tasks, including
activities of daily living. Reliability metrics should
include physics-of-failure analysis with respect to
expected life-cycle stresses and lifetime of the robot-
ic exoskeleton, syndromic monitoring studies, and
the design of sensor canaries (for example, redundant
subsystem components that fail earlier than primary
subsystems and thus provide an opportunity for
maintenance and added safety) for self-diagnosis of
signal quality may be required for characterizing the
reliability and robustness of complex human-
machine systems. In addition, methods for real-time
anomaly detection and error correction, as well as
novel methodologies for estimating model uncer-
tainty using model performance data, are needed.
Unfortunately, these reliability analyses methods
have not yet fully reached the wearable robots indus-
try yet.

Availability Metric: It reflects the probability that
the system will operate satisfactorily at time t when
called upon for use. It is expressed as the total system
up time divided by the total operating hours.

In the last section of this review, we present a case
study with a neurally controlled powered exoskele-
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ton to illustrate the human-centered design princi-
ples reviewed.

A Self-Balancing Neuroexoskeleton
for Users with Lower Body Paralysis

At the University of Houston, we have been con-
ducting longitudinal testing with a BMI system to a
powered exoskeleton (Rehab REX, Rex Bionics, Auck-
land, New Zealand) for restoration of walking after
spinal cord injury (Kilicarslan et al. [2013]; Contr-
eras-Vidal and Grossman [2013]; see figures 1 and 3
for illustrations of this system). 

The REX exoskeleton provides a set of prepro-
grammed motions including sitting down, standing
up, walking, right and left turns, and standing still,
which are naturally the immediate focus of a real-
time BMI application of restoration of gait function
for users with lower body paralysis. The REX system
is designed to keep its state kinematically balanced
for combination motion types, which eliminates the
requirement of crutches or any other external sup-
port system. Combined with a wireless EEG acquisi-
tion and real-time gait intent decoding interface, the
NeuroREX system provides on-site model training
and real-time application scheme for individuals
with paraplegia. We use the advantage of the closed-
loop joint position control (that is, the leg joint
angles to provide a safe and balanced walk) that is
embedded into the exoskeleton design, and decode
the user’s intention of different types motions, to be
passed to the exoskeleton controller, thus forming a
shared control design. Inclusion of a BMI control
provides a paradigm shift on the use of such devices;
as one of our subjects stated, 

It provides the perception of being in control of the
exoskeleton, as opposed to the exoskeleton moving
my body around.

There are however several engineering challenges
regarding the use of such systems while providing a
more human-centered experience. Elimination of the
usage of external support mechanism for balancing is
indeed a significant step forward in the design of
such lower-body exoskeleton systems. Despite the
advantages, the design of the exoskeleton structure,
selection of the actuators, and the overall motion
speed has to evolve around this self-balancing design
specification. 

Real-time decoding of the user’s intention of
motion should also revolve around the capabilities of
the exoskeleton. For example, the exoskeleton sys-
tem should complete a predefined motion cycle for
safe execution for each decoded neural command,
thus bringing in inherent time delays for motion-to-
motion transitions. Depending on the configuration
(that is, instantaneous joint configuration while
moving) of the robot, once a new motion command
has been received, the BMI system should be able to
hold the correct command until the execution of the



previous command has been safely completed. One
approach is to model this variable time delay and
build an adaptive BMI, which requires access to the
low-level exoskeleton measurement/control algo-
rithms. Another solution is to provide the users
informative feedback on the current decoding result,
and help them focus on their intended motion until
it is correctly executed. Moreover, daily practice with
the NeuroREX system is expected to lead not only to
changes in human-machine interaction performance
due to sensorimotor learning but also changes across
multiple physiological systems, including brain
activity.

Human-Centered Validation of 
Powered Exoskeletons

A clinical BMI roadmap for validation of lower-body
wearable neuroprosthetics and orthotic devices is
clearly needed. Several clinical trials are currently in
progress to assess safety and usability (for example,
Contreras-Vidal and Grossman [2013]; Ekso [2012,
2014]; Kilicarslan et al. [2013]; ReWalk [2011]; H2
[2014]). Here we summarize general clinical and
patient-centered metrics for system validation.

First, it is necessary to determine the sensorimotor
profile of individuals whose locomotion can be
enhanced by the use of specific exoskeleton capabil-
ities. This will elucidate the severity and neurological
segmental levels of motor and sensory deficits that
an individual must have to benefit from the use of a
given human-machine system (for example, whether
repetitive training and use of the exoskeleton leads
to gains in mobility, health, and quality of life). Of
particular importance is knowledge of the strength
required for maintaining an erect posture in the
exoskeleton, the strength required in muscles of the
trunk, shoulders, arms, hands, and neck. 

Second, specifications of primary and secondary
outcomes are required for both system validation
and regulatory approval (Contreras-Vidal and Gross-
man 2013). Among some of the relevant metrics, it is
important to determine the incidence of adverse
events associated with use of the system, including
instability and falls; injury to skin, joints, and mus-
cles; pain and fatigue; hypo- or hypertension; and
arrhythmias. It is also necessary to determine the
degree of mobility that can be achieved with such
systems. Some clinical rating may include the time
to completion for tasks such as (1) standing from a
sitting position, (2) walking in a straight line, (3)
turning right and left, and navigating obstacles. 

The health and quality of life due to training with
exoskeletons also needs to be quantified, including
muscle strength and sensory function; cardiovascular
function; pulmonary function; spinal cord inde-
pendence measures with attention to bowel, bladder,
and autonomic functions; and quality of life (Ware
and Sherbourne 1992). Other relevant metrics in

exoskeleton systems augmented with brain-machine
interfaces include quantification of (1) changes in
patterns of brain activity (for example, EEG); (2) neu-
ral adaptation assessed with spatial, temporal, and
frequency-based measures of signal stability and
information content; (3) EEG source analysis to
understand the origin of changes in the brain signals;
(4) effects of artifactual components on EEG, includ-
ing contribution of physiological (for example, eye
blinks and eye movements, muscle activity, and so
on) and nonphysiological sources (for example, pow-
er line noise, motion artifacts, and so on) that
degrade signal quality and decoding of user’s intent.
As described earlier, measures of usability, user’s
acceptance of the device, reliability, task perform-
ance, and body image (for example, sense of owner-
ship of the prosthetic or orthotic device) are also
important for validation of the system.

Conclusions 
Although significant advances in the design of brain-
machine interfaces for the control of wearable pros-
theses and exoskeletons have been achieved in the
recent past, current closed-loop human-machine sys-
tems have not yet reached the level of performance
required to function in complex dynamic environ-
ments, have limited bandwidth for human-machine
information exchange, usually require extensive
training and/or a trained staff to set up or operate,
put insufficient emphasis on understanding long-
term system-level plasticity, and suffer from cognitive
overload or from the changing effects of the patient’s
neurological status, biomechanical condition, atten-
tion, stress, medication, and fatigue (Courtine et al.
2013; Venkatakrishnan, Francisco, and Contreras-
Vidal 2014).

Moreover, the long-term reliability of these com-
plex systems is currently unknown, and the lack of
standard metrics to quantify their effectiveness and
reliability impede fast translation to the end user. In
addition, we still do not know the potential adaptive
and maladaptive emergent properties of neuroplastic
changes that may arise from long-term dynamic
interaction of complex human-machine systems
with BMI systems (Hochberg et al. 2006). Systems
engineering approaches complemented with big data
analytics could be deployed to inform about these
emergent properties across multiple neurobiological
and physiological systems (Figure 2). Thus, these
challenges also present significant multidisciplinary
opportunities for researchers interested in human-
machine systems for restoration, rehabilitation, or
augmentation of motor function in humans.
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