
state are both associated with visual attention and
awareness. For example, the authors of this article
explored the relationship between alpha activity and
participants’ introspective judgments of attentional
state as each varied from trial to trial during per-
formance of a challenging visual detection task. We
collected participants’ subjective ratings of perceptu-
al decision confidence and attentional state on con-
tinuous scales on each trial of a rapid serial visual
presentation detection task while recording EEG. We
found that confidence and attentional state ratings

were largely uncorrelated with each other, but both
were strongly associated with task performance and
poststimulus decision-related EEG activity (Macdon-
ald, Mathan, and Yeung 2011). Crucially, attentional
state ratings were also negatively associated with
prestimulus EEG alpha power: periods of low atten-
tion were associated with high levels of alpha oscil-
lations, and vice versa. Attesting to the robustness of
this association, we were able to classify attentional
state ratings through prestimulus alpha power on a
single-trial basis (figure 5). Moreover, when we
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Figure 3. Contour Map of Sites Identified Using Feature Selection Techniques to 
Discriminate Between Brain Activity Associated with High and Low Difficulty Text. 
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Figure 4. Demonstration of Honeywell Cognitive State Sensing Technology at Aberdeen Proving Ground.

EEG activity was measured using low-density wireless EEG sensors (left).



instructional applications. The time required to con-
figure large arrays of sensors, restrictions on move-
ment associated with cables, and mess associated
with conductive gel or saline electrolytes represent
significant user inconveniences that have largely
restricted the use of EEG systems to research settings.
However, in recent years several technology develop-
ments, including dry contact sensors from Wearable
Sensing, Inc. (San Diego, CA), a dry electrolyte gel
from Advanced Brain Monitoring, Inc., both of
which can provide a mess-free conductive medium,
and consumer-oriented systems from NeuroSky, Inc.
(San Jose, CA), and EMOTIV, Inc. (San Francisco, CA)
promise to support EEG data collection, signal classi-
fication, and estimation of cognitive effort and atten-
tion in training and tutoring environments. These
systems eliminate wires and transmit EEG data over
wireless radio connections, simplify donning and
doffing of sensors, improve comfort, and provide
integrated data logging and processing capabilities to
enhance the practicality of EEG systems.

Real-time estimates of cognitive state can help in
tutorial interaction in several ways. Attention often
lapses when learners watch video or read text pas-

repeated these analyses after smoothing the time
series of attentional state ratings and alpha power
with increasingly large sliding windows, both the
correlations and classification performance improved
considerably, with the peaks occurring at a sliding
window size of approximately 7 minutes worth of tri-
als. Therefore, our results suggest that slow fluctua-
tions in attentional state in the order of minutes are
reflected in spontaneous alpha power. Because these
subjective attentional state ratings were associated
with objective measures of both behavior and neural
activity, they can provide a simple and effective esti-
mate of task engagement as the basis for AI assistance
in operational settings that require human operators
to maintain a sustained focus of visual attention.

Conclusion
This review supports the feasibility of making reliable
estimates of cognitive state in a wide range of appli-
cation contexts. However, the practicality of EEG
data collection in training and operational environ-
ments has limited the development of EEG-based
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Figure 5. Data from 12 Subjects Showing the Relationship Between Alpha Power and 
Subjective Ratings of Attention During a Target Detection Task.

Black lines: alpha power. Red lines: subjective ratings of attention.
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sively, which hampers skill acquistion. Mitigation
strategies triggered by cognitive state classifiers could
minimize the negative impact of low attentional
states during declarative instruction. For instance,
when the intelligent automated cognitive tutor
detects low attentional state in a student during pres-
entation of online text or video, the system could
intervene and step the student through the material
with interactive prompts. These prompts could pres-
ent questions related to concepts just covered and
give students the chance to respond using multiple-
choice responses. Additionally, the system could
index text or video segments presented during low
attentional states and prompt students to revisit
these segments at a later time. 

Neurophysiological assessments of working mem-
ory can provide augmentation of hands-on practice
by dynamically matching working memory demands
imposed by the learning environment with a stu-
dent’s working memory capacity. For instance, the
grain size of instructional content could dynamical-
ly vary the level of assistance or scaffolding provided
to students following errors during practice based on
neurophysiological assessments of cognitive state
(Anderson et al. 1995). Students experiencing high
levels of cognitive load would receive instructional
scaffolding to step interactively through the series of
subgoals necessary to accomplish a problem-solving
objective and maximize learning performance. In
contrast, students experiencing lower cognitive load
levels could simply be reminded of the overall prob-
lem-solving goal, leaving negotiation of the underly-
ing problem space and its maintenance in memory
to the student. As a student becomes more proficient
at performing tasks, the working memory resources
associated with task execution normally diminish.
The intelligent tutor system could detect this change
and modulate workload levels to adapt the pace or
complexity of the task environment to the learner’s
working memory capacity to maximize learning and
retention.

These examples highlight promising avenues for
creating closed-loop neural feedback systems that
could accelerate learning through individually tai-
lored training. Each example is based on current
technologies and existing theories about the cortical
underpinnings of cognitive functions. We can expect
the impact of neurotechnology on AI-based tutoring
systems to only increase as the technology is refined
— or revolutionized — as research uncovers ever
more sensitive and nuanced indices of the cognitive
processes of interest.
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Please Join Us for ICWSM-16!

The Tenth International AAAI Conference on Web and Social Media (ICWSM) will be held in Cologne, Germany,
from May 17–20. This interdisciplinary conference is a forum for researchers in computer science and social sci-
ence to come together to share knowledge, discuss ideas, exchange information, and learn about cutting-edge
research in diverse fields with the common theme of online social media. This overall theme includes research
in new perspectives in social theories, as well as computational algorithms for analyzing social media. ICWSM
is a singularly fitting venue for research that blends social science and computational approaches to answer
important and challenging questions about human social behavior through social media while advancing com-
putational tools for vast and unstructured data.

ICWSM-16 will include a lively program of technical talks and posters, invited presentations, and keynote talks
from prominent social scientists and technologists. The ICWSM Workshop program will return in 2016 and will
be held on the first day of the conference, May 17. Tutorials Day will also be May 17. Registration information
will be available at the ICWSM-16 website in March. For full details about the conference program, please visit
the ICWSM-16 website (icwsm.org) or write to icwsm16@aaai.org.
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