
Answer set programming (ASP), described in other arti-
cles in this issue, is based on an extension of the lan-
guage of logic programming under the answer set

semantics. In ASP, an instance of a computational problem is
encoded by an answer set program in such a way that the
Herbrand models of the program determine all solutions for
the problem instance. Thus, at an abstract level, answer set
programs are specifications of finite Herbrand structures
(those that are models of the programs), and the key reason-
ing task supported by ASP systems is to compute them. That
task is often referred to as model generation.

Other logics that can express constraints on Herbrand
structures (or even non-Herbrand structures) could also be
used as the basis for this form of declarative problem solving.
Implementing the model-generation task for theories in such
logics yields declarative programming tools with the same
basic functionality as that of ASP systems. Two examples of
such an alternative approach are the model generators NP-
SPEC (Cadoli et al. 2000) and aspps (East and Truszczyński
2006) for extended Datalog. In both cases, the specification
language is an extension of Datalog with clausal constraint
rules. This formalism captures the class NP in the sense that
any decision problem from the class NP can be specified. The
system NP-SPEC offers a compiler for recursion- and nega-
tion-free NP-SPEC problems to SAT whereas aspps is a native
system supporting recursive Datalog, making it suitable to
model problems involving transitive closure.

A further step in this direction is the logic FO(ID). The ori-
gin of the logic FO(ID) can be traced to the fundamental
problem of logic programming that also triggered the devel-
opment of stable semantics and later ASP, namely, the prob-
lem of negation as failure (Lifschitz 2016). The essence of the
negation problem was that negation as failure in Prolog had
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� In answer set programming (ASP),
programs can be viewed as specifica-
tions of finite Herbrand structures. Oth-
er logics can be (and, in fact, were) used
toward the same end and can be taken
as the basis of declarative programming
systems of similar functionality as ASP.
We discuss here one such logic, the log-
ic FO(ID), and its implementation
IDP3. The choice is motivated by
notable similarities between ASP and
FO(ID), even if both approaches trace
back to different origins.



so many useful and intuitive applications, and yet,
the original view of logic programs as sets of materi-
al implications (Horn clauses extended with negation
in the body) could not account for the derivation of
a single negative literal. As noted by Lifschitz (his
article appears in this issue), one solution was
inspired by research in nonmonotonic reasoning and
consisted of adapting the semantics of default logic
(Reiter 1980) to the syntax of logic programs. This led
to stable semantics and later to ASP.

An alternative solution was to interpret a logic pro-
gram as a definition of its predicates. In this view, a
logic program consists of, for every predicate, an
exhaustive list of rules that define the cases in which
it is true. Unlike sets of implications, definitions
entail negative information. Moreover, a case-based
representation of definitions and, in particular,
inductive definitions is a common way to specify def-
initions in mathematical texts. The view of logic pro-
grams as a definition was already implicit in Clark’s
first-order completion semantics (Clark 1978). How-
ever, as was well known in mathematical logic and
databases, in general, inductive definitions cannot be
expressed in first-order logic (FO) (Aho and Ullman
1979). Hence, Clark’s semantics did not not correct-
ly interpret recursive logic programs as inductive def-
initions. This weakness spurred the development of
so-called canonical semantics such as the perfect
model (Apt, Blair, and Walker 1988) and the well-
founded model semantics (Van Gelder, Ross, and
Schlipf 1991). The latter (in a suitably extended ver-
sion) turned out to correctly formalize definitions,
including the most common forms of inductive defi-
nitions (Denecker 1998, Denecker and Vennekens
2014). Since definitional knowledge is an important
form of expert knowledge and since in general it can-
not be expressed in first-order logic, it is natural to
seek extensions of classical logic to incorporate it.
This has been recognized by the database communi-
ty, which developed such extensions in support of
more expressive database query languages (Abite-
boul, Hull, and Vianu 1995). It has also motivated a
similar effort in knowledge representation. In partic-
ular, these considerations led to the logic FO(ID), an
extension of first-order logic with inductive defini-
tions expressed as sets of logic programlike rules
under well-founded semantics that represent the base
cases and (possibly) inductive cases of the definition
(Denecker 2000; Denecker and Ternovska 2008).

The logic FO(ID) has a standard Tarskian model
semantics. A structure satisfies a theory if it satisfies
its first-order logic sentences and is a well-founded
model of its definitions. Thus, the logic FO(ID) can be
understood as a conjunction of its formulas and defi-
nitions and, in particular, it is a conservative exten-
sion of first-order logic. These features make the log-
ic FO(ID) well suited as the basis of declarative
knowledge representation systems.

Two systems were developed for significant frag-

ments of the FO(ID) language: enfragmo (Aavani et
al. 2012) and IDP3 (De Cat et al. 2014). The key infer-
ence task supported by these systems is (finite) mod-
el expansion: given an FO(ID) theory and a partial
structure as input, the goal is to output one or more
structures that are models of the theory and expand
the input structure. The enfragmo system provides
support for arithmetic and aggregates in its theories,
and also some limited support for inductive defini-
tions. The IDP3 system has a similar functionality as
enfragmo but provides a more advanced treatment
and support for inductive definitions; in addition to
model expansion, it also supports several other forms
of inference.

In this article, we present the logic FO(ID) and the
IDP3 system. Our presentation is not formal but
relies on a series of examples. We start by illustrating
the importance of structures in knowledge represen-
tation and how they lead to a methodology for
knowledge modeling and for declarative problem
solving through the model-expansion task. We then
describe the IDP3 system. This discussion is inter-
twined with references to the logic FO(ID), the theo-
retical foundation for the IDP3 system. Next we
briefly discuss the relationship between FO(ID)
(IDP3) and ASP and conclude with comments on the
role these formalisms may play in the future of com-
putational logic.

Structures in 
Knowledge Representation

First-order logic has proved to be a powerful formal-
ism for representing knowledge largely because of
two key interrelated factors. Structures used as inter-
pretations of first-order formulas are well suited to
model practical situations and application domains;
and our intuitive understanding of how first-order
formulas constrain the space of possible structures
matches exactly the formal definition of the satisfia-
bility relation. Our goal in this section is to present
structures in their role as a fundamental abstraction
for knowledge representation. When modeling a
problem domain, we start by selecting symbols to
denote its functions and relations. Collectively, these
symbols form the vocabulary of the domain. Each
symbol in the vocabulary comes with a nonnegative
integer called the arity that denotes the number of
arguments of the corresponding function or relation.
If a is a relation or function symbol, we write a/k to
indicate the arity of a. Function symbols of arity 0 are
called constants.

To illustrate, let us consider a hypothetical soft-
ware company that holds weekly lunch meetings for
its software development teams. These lunch meet-
ings take place on certain weekdays. Some teams are
in a (scheduling) conflict (for instance, they may
share a team member). The meeting days for teams in
conflict must be different.

Articles

70 AI MAGAZINE



Articles

FALL 2016   71

This short text describes a problem domain. The
underlined terms indicate relations and functions in
that domain. Figure 1 shows symbols that could be
selected to denote them, as well as their intended
meaning. Together, these symbols form the vocabu-
lary of the lunch meeting domain.

A structure (also called an interpretation) S over a
vocabulary consists of a nonempty universe D and,
for each symbol σ in the vocabulary, the value σS of
σ in S (also called the interpretation of σ in S). More
specifically, for every relation symbol r/k, rS is a rela-
tion on D with k arguments (that is, rS ⊆ Dk), and for
every function symbol f/k, fS is a function on D with
k arguments (that is, fS : Dk

→ D). Figure 2 shows an
example of a structure over the vocabulary from fig-
ure 1.

A structure over a vocabulary is an abstract repre-
sentation of a concrete instance, or state of affairs, of
a problem domain modeled in terms of this vocabu-
lary. The universe of the structure is an abstraction of
the set of objects in that instance, while the relations
and functions of the structure — the values of the
symbols in the vocabulary — abstract the relations
and functions in the instance.

For instance, the structure S in figure 2 represents
a state of affairs with five teams referred to as T1, …,
T5 and five (working) days referred to as M, …, F. The
structure also specifies conflicts between the teams
(for example, teams T1 and T2 are in conflict), and an
assignment of meeting days to teams (for example,
team T3 meets on Monday). Since functions in struc-
tures are total, the function mtng_dayS is also defined
on days. This is redundant, as those assignments do
not represent any pertinent information. The struc-
ture S is an abstraction of a possible state of affairs of
our problem domain: one in which the properties of
the domain mentioned in the specification of this
problem domain are satisfied. Indeed, the mapping
mtng_dayS assigns weekdays to teams (other assign-
ments it makes are immaterial or, as we said, redun-
dant), and two teams in conflict are not scheduled to
have lunch on the same day.

To formally model this domain, these and other
properties present in the informal description (some
only implicitly) need to be expressed as sentences of
the logic over the chosen vocabulary. Three proper-
ties relevant to our scenario are shown in figure 3. We
see there formal sentences in the language of first-
order logic over the vocabulary from figure 1, as well
as their informal reading. The first sentence says that
the relation conflict applies to teams only. It specifies
the types of the arguments of the relation conflict.
Incidentally, this information is not explicitly pres-
ent in the narrative. Nevertheless, it is implicit there
and can be included in any formal representation of
the problem. The second sentence is of a similar
nature. It describes the type of objects the function
mtng_day maps to. The last sentence represents the
essential constraint of the problem that teams in con-

flict do not hold their lunch meetings on the same
day.

First-order propositions (first-order logic sentences)
are true or false in structures (we also say satisfied or
unsatisfied, respectively). For example, the third
proposition of figure 3, expressing that conflicting
teams do not meet on the same day, is true in the
structure from figure 2. However, it is false in the
structure that is the same except that the interpreta-
tion of conflict is extended with the pair (T4, T5).
Indeed, we now have two teams in conflict that are
scheduled to meet on the same day.

More formally, given a structure S interpreting all
symbols in a first-order sentence F, we can evaluate F
in S, that is, assign to it a logical value true or false.
When F evaluates to true in S, we say that S is a mod-
el of F or that F is satisfied by S. The property of a sen-
tence being true in a structure yields a satisfaction
relation between structures and first-order logic sen-
tences. It provides first-order logic sentences with a

Figure 1. A Vocabulary of 
Symbols for the Lunch Meeting Domain.

Relation symbols
team/1, day/1, conflict/2

team(x): x is a team
day(x): x is a weekday
conflict(x, y): x has a conflict with y

Function symbols (here only one) 
mtng_day/1

mtng_day(x) = y: the time of lunch meeting 
of x is y

Figure 2. A Structure S for the Vocabulary from Figure 1.

Domain of S
DS = {T1,T2,T3,T4,T5,M,Tu,W,Th,F}

Relations
teamS ={T1,T2,T3,T4,T5}
dayS ={M,Tu,W,Th,F}
conflictS =

{(T1,T2), (T1,T5), (T2,T3), (T2,T5), (T3,T4)}

Functions
mtng_dayS =

{T1 → M,T2 → W,T3 → M,T4 → Tu,T5 → Tu,
M → M,Tu→ M,W → M,Th→ M,F → M}



semantics (the first-order semantics) that captures
precisely their informal reading. Figure 4 illustrates
these concepts for sentences from the language based
on our example vocabulary. The second sentence
would evaluate to false in case the relation conflictS

contained the extra pair (T4, T5).
The satisfaction relation is of crucial importance.

In some cases, we fully know the relevant state of
affairs of the problem domain or, more precisely, we
know the structure that serves as its abstract repre-
sentation. However, in other cases the precise state of
affairs is not known or is only partially known. In
that case, our knowledge frequently consists of sepa-
rate informal propositions. They implicitly specify
possible states of affairs as those in which these
propositions hold true. As we argued, structures are
formal representations of states of affairs. Those

structures that represent possible states of affairs are
called intended. Given this terminology, knowledge
representation can then be understood as the art and
practice of formulating knowledge as a formal theo-
ry so that models of that theory are precisely the
intended structures. For instance, the original speci-
fications of the problem domain are correctly ex -
pressed by axioms in figure 3, which also shows their
informal semantics. The structure from figure 2 is an
intended one, and it indeed satisfies (is a model of) all
the sentences in figure 3. That latter claim can be ver-
ified formally and is also easy to see intuitively: con-
flicts are between teams, the mapping mtng_dayS

assigns days to teams (and also to days, but that is
immaterial), and two teams in conflict are not sched-
uled on the same day.

To say that all models of the theory are intended
structures here is slightly imprecise. For example, the
theory has infinite models that hardly count as
intended structures. The problem is that some implic-
it information such as what are weekdays and teams,
is not expressed in the theory. This information is
expressed in the values assigned to the symbols team
and day by structures like the one in figure 2.

To recapitulate, in this setting the satisfaction rela-
tion allows us to use sentences over the fixed vocab-
ulary to constrain structures over that vocabulary to
those that satisfy the sentences. These sentences can
be seen as specifications of classes of intended struc-
tures over that vocabulary, that is, the structures that
represent those states of affairs that are possible
(might be encountered in practice).

The setting we presented supports several impor-
tant reasoning problems. Say the manager in our run-
ning example is reviewing a schedule proposed by
one of her assistants or, more formally, the corre-
sponding structure. The manager wants to know
whether certain propositions hold for the schedule
or, formally, whether the formal sentences expressing
the propositions are satisfied in that structure. We call
that reasoning task model checking or querying. For
instance, we might want to know whether team T2
has its meeting scheduled on the same day as team T4
in the structure (schedule) in figure 2 (that query
would evaluate to false). Model checking is a special
instance of this task; it verifies that a structure satis-
fies the specifications, that is, that it indeed is an
intended structure. In the case of our example and
the structure in figure 2, it consists of verifying that
all statements of the theory in figure 3 are satisfied by
the structure.

Even more interesting and important is the situa-
tion when the schedule is yet to be constructed. How
can the manager find one? She knows the axioms in
figure 3. This information specifies the class of
intended structures, each of them representing a
valid instance of a lunch meeting domain. It is also
reasonable to assume that she knows which teams
she needs to schedule, what scheduling conflicts she

Articles

72 AI MAGAZINE

Figure 3. Relevant Properties as First-Order Sentences.

Vocabulary:  As in figure 1

Sentence:
∀X∀Y (conflict(X, Y ) → team(X) ∧ team(Y ))
Reads:  for all X and Y, if X and Y are in 
conflict then both X and Y are teams

Sentence:  ∀X∀Y (mtng_day(X) = Y → day(Y ))
Reads: for all X and Y, if Y is the meeting day 
for X then Y is a day

Sentence: ∀X∀Y (conflict(X, Y ) →
mtng_day(X) ≠ mtng_day(Y ))

Reads: for all X and Y, if X and Y are in conflict 
then the meeting day for X is different from 
the meeting day for Y

Figure 4. The First-Order Semantics 
Applied to Some Sentences from Figure 3.

Vocabulary: As in Figure 1

Structure: S defined in Figure 2
Sentence: ∀X∀Y (conflict(X, Y ) → team(X) ∧ 
team(Y ))
Evaluates to true . Indeed, for every (a, b) ∈ 
conflictS, both team(a) and team(b) hold in 
S (figure 2)

Sentence: ∀X∀Y (conflict(X, Y ) →
mtng_day(X) ≠ mtng_day(Y ))

Evaluates to true. Indeed, for every (a, b) ∈ 
conflictS,teams a and b meet on a different 
day (figure 2)



has to take into account, and which days are work
days. This information explicitly fixes the domain of
an intended structure as well as its relations team,
day, and conflict (for instance, to the values they
have in figure 2). Any function mtng_day that com-
pletes this explicitly given fragment of a structure to
an intended one yields a good schedule for the set-
ting of interest to the manager. The converse is also
true. Good schedules give rise to intended structures
(when combined with the explicitly given compo-
nents).

The task to find the missing function, which we
just described, is an example of the model-expansion
problem. In model expansion we assume that the
vocabulary is partitioned into input and output sym-
bols. Given a theory (that is, a set of sentences) over
the entire vocabulary and a structure over the vocab-
ulary consisting of the input symbols, called an input
structure, the goal is to extend the input structure
with relations and functions for output symbols so
that the resulting structure (now over the entire
vocabulary) satisfies the theory.

This applies to our example scenario. Here, team,
day, and conflict are input symbols and mtng_day is an
output symbol. The input structure consists of the
domain {T1, …, T5, M, …, F} and of the relations
team, day, and conflict as in figure 2. The theory
specifying intended structures is given in figure 3.
Under these assumptions, the model-expansion
problem asks for a specific function mtng_day that
would expand the input structure to the one satisfy-
ing the three sentences (that is, to an intended struc-
ture). That function would offer a legal schedule of
lunch meetings for the five teams involved. The func-
tion shown in figure 2 is one of the possible solu-
tions. The function in figure 5 is another one.1

A more involved reasoning task is assigning meet-
ing days to teams interactively. The task involves
propagation inference that calculates the valid days
for every team. Each time the user assigns a meeting
day to a team, the propagation inference updates the
valid choices for the remaining teams. Still another
task is revision, assisting a user in assigning a differ-
ent meeting day to a particular team while preserving
as much as possible the meeting days assigned to the
other teams. All these reasoning tasks use the same
theory as a specification of valid structures.

To recapitulate, structures are important to us for
four key reasons. First, they provide natural abstrac-
tions of states of affairs of the problem domain, in
which sentences (properties) can be evaluated for sat-
isfaction. Second, they are useful to define computa-
tional tasks in the context of logic. Third, they can be
used to present input data, as in the query inference
(where the value of every symbol is known), or in
model expansion (where values of some symbols are
not known). Fourth, they can be used as representa-
tions of answers to model-expansion problems.

The IDP3 System
We will now present a software system, IDP3, that
implements the ideas presented above. In particular,
IDP3 allows us to define structures, input structures
and partial structures, as well as sentences to state
their properties.2 An overview of the IDP3 system is
presented in figure 6. We use a series of simple exam-
ples to illustrate and discuss all key features of IDP3.

The IDP3 system separates information from the
reasoning task to be performed. In this way, it facili-
tates the use of the same knowledge to solve diverse
reasoning problems. To represent information, IDP3
uses an enriched variant of first-order logic. The infor-
mation is split over three components. The first com-
ponent is the vocabulary. The IDP3 syntax for describ-
ing vocabularies is illustrated in figure 7, where we
again use our software team’s domain as an example.
The vocabulary goes beyond the basic first-order log-
ic as it introduces not only the alphabet but also the
types and the signatures of the relation and function
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Figure 5. Another Possible Schedule Function.Figi ug rer 5 Anotht er Possible Schedule Functit on

mtng_day =
{T1 → M,T2 → W,T3 → M,T4 → W,T5 → Tu,
M → M,Tu → M,W → M,Th → M,F → M }

Figure 6. High-Level Representation of 
IDP3 as a Knowledge Base System.

Fi 6 HiH h L l R t tit f

• Vocabulary

• Structure

• Theory

• Procedure

• Term

• Query

• Model checking 
   (query inference)

• Model expansion

• Propagation

• Revision

• Optimization

• Deduction

Lua code embedded in procedure components for calling
inference methods

Procedural interface: Lua

Inference MethodsLanguage Components



symbols. In IDP3, vocabularies are assigned identi-
fiers; the vocabulary in figure 7 is identified by V.

The second component is a structure. The IDP3 syn-
tax for a structure for our example domain is shown
in figure 8. The structure has an identifier (here S). It
refers to a vocabulary (here V) and introduces the
domains for the types declared in the vocabulary
(here by enumerating the elements of types day and
team). In addition it also enumerates the known
information about the declared relations and func-
tions. The interpretation of conflict is fully known,
and the relation is specified by the list of its tuples.
However, as nothing is known about the interpreta-
tion of mtng_day, nothing about this function is men-
tioned in the structure.

The last component used to express information is
a theory. An example theory appropriate for our
domain is shown in figure 10. The notation is essen-
tially first-order logic but in a keyboard-friendly syn-
tax. The IDP3 counterparts to standard mathematical
logic notation are given in figure 9.

The theory (as the other two components) has an
identifier (here T). The theory refers to a vocabulary
(in the example, through the identifier V), and
expresses the constraints that a structure must meet
to serve as a valid abstraction of the problem domain
(here, the function mtng_day is constrained so that
teams in conflict are not scheduled for their lunch
meetings on the same day). The types of the variables
are optional; if omitted, type inference will derive
them. In the case at hand, the type of the variables a
and b can be derived from the signature of conflict
and mtng_day.

For solving problems, the IDP3 system offers a pro-
cedural interface in Lua3 and executes the procedure
main(). In main(), the IDP3 user can overwrite default
values of solver options, can invoke Lua functions
provided by the IDP3 designers as well as standard
Lua functions, and can also invoke functions written
by the user in the procedural component. The infor-
mation components (vocabularies, structures, and
theories) are first-class citizens in the Lua code and
can be passed as parameters to various functions. The
procedural component in figure 11 illustrates some
common use patterns of the Lua interface. In this
code, modelexpand, printmodels, and allmodels are Lua
functions provided with the IDP3 system, while # is
the Lua operator that returns the length of a Lua
sequence and print is the standard Lua printing func-
tion.

The modelexpand function invokes model-expan-
sion inference on a theory T and a structure S (both
referring to the same vocabulary), and returns a (pos-
sibly empty) Lua sequence of models of T that extend
S; by default, modelexpand is bound to return a single
model. To obtain more models, another bound can
be set with an assignment to the stdoptions.nbmodels
option. The printmodels function prints the number
of models in a sequence of models as well as each of
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Figure 7. An IDP3 Vocabulary Introducing Two Types, Day
and Team, and a Predicate and a 

Function Together with Their Signatures.

Figi ug rer 7 An IDI P3 VoV cabularyr InI trt or ducingn TwTT o TyTT py es Day

vocabulary  V{
type day
type team
conflict(team,team)
mtng_day(team):day

}

Figure 8. An IDP3 Structure for the 
Vocabulary V from Figure 7.

Figi ug rer 8 An IDI P3 Strt uctut rer foff r tht e

structure S:V{
day={M;Tu;W;Th;F}
team={T1;T2;T3;T4;T5} 
conflict={(T1,T2);(T1,T5);(T2,T3);(T2,T5);(T3,T4)}

}

Figure 9. Translation Table. 

Note that implication translates into a double arrow, while the
translation of ≤ and ≥ is not an arrow.

Figi ug rer 9 TrTT ar nslatit on TaT ble

FO IDP3 FO IDP3 FO IDP3
∧ & ≡ <=> = =
∨ | ¬ ∼ = ~=
→ => ∀ ! ≤ =<
← <= ∃ ? ≥ >=

Figure 10. An IDP3 Theory over the Vocabulary of Figure 7
(Using Correspondences from Figure 9).

Figi ug rer 10 An IDI P3 ThhT eoryr over thht e VoV cabbullaryr off Figi ug rer 7

theory T:V{
! a[team] b[team]: conflict(a,b) =>

mtng_day(a) ~= mtng_day(b).
}



its models. To obtain the sequence of all models, one
can use the allmodels function. Indexing can be used
to select a particular element in a sequence; if the
sequence is empty (models do not exist), the special
Lua value nil is returned. Models are represented and
printed as structure components so that they can
serve as IDP3 input.

Definitions, Aggregates and Optimization
So far, we have seen two extensions of first-order log-
ic that are available in IDP3: types and partial func-
tions (a typed function is partial as it is only defined
for the values determined by the types in the signa-
ture). Other important extensions are aggregates and
definitions. To illustrate them, we elaborate on our
example; at the same time we also introduce anoth-
er reasoning task, optimization inference. The IDP3
code for the extended example is shown in figure 12.

In the extended scenario, we are concerned with
the workload of the company cafeteria where the
meetings take place. We introduce the concept of qui-
et_day, which we define as a day in which at most one
team holds its meeting. As stated before, definition
expressions in FO(ID) are modeled after the way defi-
nitions are expressed in text. They define one or
more predicate or function symbol in terms of a set
of parameter symbols; for example, the concept qui-
et_day is defined in terms of the function mtng_day,
which we call a parameter of the definition. To dis-
tinguish a definition expression from first-order log-
ic sentences, it is written as a set of rules placed
between “define {“ and “}.”4

Each rule expresses one (base or inductive) case.
The head and body of the rule are separated by “<–”,
called the definitional implication to distinguish it
from the material implication => (both given in the
IDP syntax). The head is an atomic formula of one of
the defined predicates and the body can be any for-
mula in first-order logic. In contrast with logic pro-
gramming, variables are explicitly quantified. To give
such formal rule sets the intuitive reading of defini-
tions in mathematics, the semantics chosen for them
is an extension of the well-founded semantics (Van
Gelder, Ross, and Schlipf 1991; Denecker and Ter-
novska 2008), because the well-founded semantics
correctly formalizes the most common forms of defi-
nitions found in text (Denecker and Vennekens
2014). The IDP3 definition given in figure 12 formal-
ly expresses the intended meaning for the concept
quiet_day: a day d is a quiet day if it is not the case
that two different teams (t1, t2) have their meeting
day on d.

Similarly, we include in the vocabulary a function
nmbr_mtngs that we want to define as the function
that maps a day to the number of teams meeting on
this day. The new symbol ranges over the new type
number, which we introduce in the vocabulary as a
subtype of the natural numbers (a built-in type nat)
and specify in the structure as the set of numbers

from 0 to 10. As the relation quiet_day, also this func-
tion is defined in terms of the parameter mtng_day. In
general, functions are defined by sets of rules of the
form f(t1, …, tn) = t <– body. In the case at hand, the
body degenerates to “true” and is omitted. Impor-
tantly, the function value here is given by the cardi-
nality aggregate #{tm : mtng day (tm) = d}. This aggre-
gate represents the cardinality of the set {(tm) |
mtng_day(tm) = d}, that is, the number of teams meet-
ing on day d. Besides cardinality, IDP3 also supports
minimum, maximum, sum, and product aggregates.
They have a slightly different syntax. An overview of
the supported aggregates is given in figure 13.

Assume that the manager of the cafeteria wishes to
minimize the maximal workload for the cafeteria. To
solve this problem, another form of inference is
needed called optimization inference. This is done by
the procedure call minimize(T, S, m) in the main() pro-
cedure of figure 12. The procedure call contains yet
another sort of component of IDP3: the term compo-
nent. Its role is to give a name to a term. Referred to
by its name, the term can then be used inside Lua
procedures. Here, the term of interest is the maxi-
mum n in the set of pairs (d, n) defined as {(d, n) | n =
nmbr_mtngs(d)}. This is a simple maximum aggregate
in which there are no extra conditions on d. Accord-
ing to the translation table of figure 13, its IDP3 syn-
tax is max{d [day] : true : nmbr _mtngs(d)}. The middle
part, true, is the trivially true extra condition on the
selected values for d. The optimization inference per-
forms a search for a model that minimizes the value
of the term referred to by m. The call not only returns
a model, but also whether optimality could be shown
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Figure 11. Solving The Model-Expansion Problem In IDP3.

This procedure applies model-expansion inference on our theo-
ry T and initial structure S in two different ways. The first line
sets the bound on the number of models to five. The second line
invokes model expansion and prints the sequence of five mod-
els. The third line also invokes model expansion but returns the
sequence of all models and assigns it to the Lua variable models.
The fourth line prints the number of models in the sequence,
the next line prints the fifth model, and the final line prints nil
as there are only 960 models.

procedure main(){
stdoptions.nbmodels=5

models=allmodels(T,S)
print(#models)
print(model[5])
print(model[980])

}

printmodels(modelexpand(T,S))



and the value of the term. So, minimization is on the
maximal number of meetings on the same day. In
other words, the call minimize(T, S, m) returns a
schedule that minimizes the maximum number of
lunch meetings scheduled for a single day (informal-
ly, it offers a “balanced” schedule). The grounder of
the IDP3 system is unable to derive a bound on the
value of the optimization term m. To avoid an infi-
nite grounding, the option cpsupport must be on.

Partial Information and 
Constructed Types
As an alternative elaboration of our example, assume
it is decided that team T1 meets on Monday (“is cer-
tainly true”) and team T2 does not meet on Tuesday
(“is certainly false”). This partial knowledge can be
expressed in the structure as shown in figure 14 (we
note the use of markers <ct> and <cf>).

Alternatively, we may want to express this infor-
mation in the theory. However, in the theory we can
only express information about domain elements if
we have symbols in the vocabulary to refer to them.
Hence, we need to extend the vocabulary with con-
stants mon, tue, …, t1, t2, … to denote days and
teams; furthermore, the structure needs to be extend-
ed to specify the interpretation for the new constants
by means of the statements mon = M, …, t1 = T1, … .
Only then we can express constraints such as
mtng_day (t1) = mon or mtng_day (t2)~=tue in the the-
ory. This verbose way is a consequence of the fact
that functions and constants are not limited to their
Herbrand interpretation as in ASP and Prolog. A
shortcut is to make use of constructed types to
enforce Herbrand interpretations over certain types.
Figure 15 shows how constructed types impose the
same constraints on the function mtng_day. As the
domain of these types is fixed in the vocabulary, they
are not part of any structure.

More about Definitions
The definitions we discussed above are simple and
can be expressed in first-order logic as equivalences.
For example, the equivalence !d : quiet day(d)⟺~(?t1
t2 : t1~=t2 & mtng_day (t1) = mtng_day (t1) = d) cor-
rectly expresses the definition of quiet_day. While this
works for all noninductive definitions, it is well
known that inductive definitions in general cannot
be expressed through first-order logic equivalences.

Definitions are the most substantial extension that
IDP3 offers with respect to first-order logic. Not only
do they offer the designer a facility to define con-
cepts, they also increase the expressiveness. The
archetypal example of a relation that cannot be
expressed in first-order logic is the transitive closure
of the edges in a graph. The inductive definition of
this relation, say T, for a graph (N, E) with nodes N
and edges E is often stated as follows:

If (a, b) ∈ E, then (a, b) ∈ T,
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Figure 12. The Running Example Extended to Illustrate 
Aggregates, Definitions, and Optimization.

The missing lines of code should be taken from Figures 7, 8, and 10.

Figi ugg rer 12 ThT e Runningn Exampm le Extet ndedd tot IlI lustrtt ar tet

vocabulary V{ 
…
type number isa nat
quiet_day(day)
nmbr_mtngs(day):number

}
structure S:V{

...
number={0..10} 

}
theory T:V{

...
define {
! d: quiet_day(d)<- ~(? t1t2: t1=+t2&

mtng_day(t1)=mtng_day(t2)=d).
}
define{
!d: nmbr_mtngs(d)=#{tm: mtng_day(tm)=d}

}
}
term m:V{

max{d[day] : true : nmbr_mtngs(d)}
}
procedure main() {

stdoptions.cpsupport=true
models, optimal, cost = minimize(T,S,m)
print(models[1])
print(optimal)
print(cost)

}

Figure 13. Translation Table for Aggregates.Figi ugg rer 13 TrTT ar nslatitt on TaT ble foff r Aggg rgg er ge ag tet s

FO IDP3

#{x : F }
sum{(x,t) : F }
prod{(x,t) : F }
max{(x,t) : F }
min{(x,t) : F }

#{x1 … xn : F }
sum{x1… xn: F:t }
prod{x1 … xn : F : t }
max{x1… xn: F:t }
min{x1… xn: F:t }



If for some c ∈ N, it holds that (a, c) ∈ T and (c, b) ∈ T,
then also (a, b) ∈ T. In IDP3, we can model it as in fig-
ure 16.

To further illustrate the power of definitions, we
present in figure 17 a representation of a simple
graph problem that requires selecting edges among
nodes so that in the resulting graph all vertices are
reachable from a (given) node root and none of the
(given) forbidden edges are selected. The main diffi-
culty is that the set of vertices reachable from the
root is not expressible in first-order logic. To over-
come this problem, we introduce the auxiliary unary
predicate symbol reachable and express it through the
inductive definition provided in figure 17. Addition-
al axioms express that the defined relation reachable
is the set of all nodes and no edges are forbidden. An
interesting aspect is that here, the defined relation
reachable is known initially while the parameter edge
in terms of which it is defined is unknown. Hence,
IDP3 searches for an interpretation of the parameter
edge such that the defined relation reachable has the
given value. This sort of input/output pattern is dif-
ferent from that of the Prolog and Datalog systems,
and it shows the declarative nature of definitions. It
is a powerful aspect of IDP3 as well as ASP systems.

In the example in figure 17, one can check that the
edges (A, D) and (D, C) must appear in every solution
for the relation edge. Also, at least one of (D, B) or (C,
B) must be present. Other allowed edges are not con-
strained. Thus, one possible value for edge is {(A, D),
(D, B), (D, C)} and another one is {(A, D), (C, B), (D,
C), (B, D)}.5

FO(ID), (IDP3), and ASP
On the conceptual level, FO(ID) and ASP are quite
different. Whereas ASP has its foundation in nonmo-
notonic and commonsense reasoning, FO(ID) is
based on a definition construct inspired by the struc-
ture of definitions used in mathematics. Negation in
ASP is viewed as a nonclassical epistemic or default
operator. In FO(ID), it is the definitional rule opera-
tor ← that is nonclassical, while negation in the bod-
ies of definition rules is classical. And yet, despite
these different foundations, there are strong struc-
tural relationships between ASP and FO(ID). On the
language level, FO(ID)’s rule-based definition con-
struct resembles ASP rules, and first-order logic
axioms resemble ASP constraints. We illustrate these
similarities with the problem of finding a Hamilton-
ian cycle in a directed graph. An answer set program
encoding the problem is shown in figure 18.

That program has a typical structure resulting from
following the generate-define-test (GDT) methodolo-
gy (Lifschitz 2002) (discussed in this issue by Faber,
Gebser, and Schaub [2016]). This methodology leads
to three sorts of modules. The first of them generates
the space of candidate solutions (in our example, the
space of all subsets of the set of edges of the input
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Figure 14. Partial Knowledge in a Structure.Figi ug rer 14 P rtit l Knowledgd eg in Strt uctut rer

structure S:V{
...
mtng day<ct> = {T1 –>M }
mtng day<cf> = {T2 –>Tu }

}

Figure 15. Constructed Types.

vocabulary  V{
type day constructed from {M,Tu,W,Th,F}
type team constructed from {T1,T2,T3,T4,T5} 
...

}
theory  T:V{

…
mtng_day(T1) = M.
mtng_day(T2) ~= Tu.

}

Figure 16. Transitive Closure of the Edges in a Graph.

vocabulary  V{
type node
edge(node,node)
trans(node,node)

}
structure  S:V{ 

edge={…}
}
theory T:V

define {
! x y: trans(x,y) <– edge(x,y).
! x y: trans(x,y) <– ? z: trans(x,z) & trans(z,y).

}
}



graph; they are possible instantiations of a relation
In). The generate module commonly relies on the
construct of choice rules (as in our example) or, alter-
natively, uses disjunctive rules. The second one
defines some additional concepts that are useful in
identifying solutions (here, the transitive closure of
the relation In). Finally, the third one specifies con-
straints of the problem. These constraints narrow
down the space of candidate solutions to those that
represent the valid ones (here, the constraints ensure
that exactly one edge comes into each node, exactly
one edge leaves each node, and finally, that all nodes

are connected to each other both ways; that last con-
dition requires an auxiliary concept of the transitive
closure). The horizontal lines in figure 18 make this
structure explicit.

The corresponding IDP3 solution to the problem
has a similar format. We present its theory compo-
nent in figure 19.

The similarity is striking. The first sentence plays
the role of the generate module in the program in fig-
ure 18. The definition of the transitive closure mir-
rors the define module. Finally, the last three sen-
tences are the three constraints of the test module
cast in the IDP3 syntax. As an aside, we note that a
direct translation from natural language to the IDP3
syntax of these constraints would more likely be as
in figure 20.

Almost all GDT programs can be translated into
IDP3 following the idea outlined above. The encod-
ing of the generate module does not require any spe-
cial syntax. In fact, in many cases the generate part of
a GDT program disappears entirely from the corre-
sponding IDP3 theory. The converse is also true. A
large class of IDP3 theories allows for automated
rewritings into the language of ASP. The key in such
translations is to properly construct the choice rules
to “open” some of the predicates.

Similarities between ASP and FO(ID) can be found
not only in the structure of programs (theories). On
the system level, the core of IDP3 is a model genera-
tor that is developed using similar technologies as
current ASP solvers, and offers similar functionalities.

Concluding Remarks
In this article, we focused on the model-generation
task because of its natural applications in solving
search and optimization problems. This is also the
focus of ASP and ASP implementations. We noted
that model generation can be implemented for other
logics. We mentioned some of them and then
described in detail the logic FO(ID) and the associat-
ed reasoning system IDP3.

However, it is important to point out that the
knowledge present in both FO(ID) theories as well as
in answer set programs can support many other rea-
soning tasks besides model generation. That observa-
tion has played a central role in the development of
the system IDP3 and is reflected in its functionality
(see figure 6). Similarly, it underlined some develop-
ments in ASP (see the article by Kaufmann et al.
[2016] in this issue). In particular, most implementa-
tions of ASP support skeptical and brave reasoning,
and add-ons facilitating abduction and planning
were developed for some systems, as well (Eiter et al.
2003, 1999).

The field of computational logic has an urgent
need for integrative frameworks that recognize that
many reasoning tasks are needed in knowledge-
intensive applications and that these tasks can all be

Articles

78 AI MAGAZINE

Figure 17. A Graph Problem.Fi 17 A G ph P bl

vocabulary V {  
type node
forbidden(node,node)
edge(node,node)
reachable(node)
root:node

}
structure S:V   { 

node = A..D // a shorthand for {A; B; C; D}
forbidden = {(A,A); (A,B); (A,C); (B,A);

(B,B); (B,C); (C,C); (C,D); (D,D)}
root = A

}
theory T:V {

// inductive definition of reachable
define { 
reachable(root).
!x:reachable(x) <- ?y:reachable(y)&edge(y,x)

}
// The graph is fully connected
! x: reachable(x).
// No forbidden edges
! x y: edge(x,y) => ~ forbidden(x,y).

}

Figure 18. A Generate-Define-Test ASP Program Encoding
the Existence of a Hamiltonian Cycle Problem.

Figi ugg rer 18 A Generar tet Define TeT st ASPS Pror go rgg ar m Encodingn

generate {In(x,y)}<–Edge(x,y)

define T (x, y)<–In(x, y).
T (x,y)<–T(x,z), T(z,y)

test <– In((x,y), In (x,z), y ≠ z.
<– In(x, z), In(y, z), x ≠ y
<–Node(x),Node(y), not T(x,y).



driven by a single well-designed underlying knowl-
edge base. Formalisms and systems discussed in this
special issue are on the intersection of several related
lines of research, building on the advances in classi-
cal logic, automated reasoning, logic programming,
databases, satisfiability, satisfiability modulo theories,
constraint programming, fix-point logics, and
description logics. As such, they are well suited to
play this integrative role. Their modeling capabilities,
which in important respects, such as the ability to
capture inductive definitions, go beyond SAT/CSP
formalisms, as well as the computational effective-
ness of their reasoning software demonstrate that.
We posit that developing FO(ID), ASP, and related
formalisms with this goal in mind is essential both
for the theory of logic-based computation and for
practical applications.

Notes
1. A more general version of the model-expansion problem
takes a partially instantiated structure (a fully specified
domain but possibly only partially instantiated relations
and functions for all vocabulary symbols) and asks if it can
be completed to a structure that satisfies the theory.

2. The IDP3 system has been developed by the Knowledge
Representation and Reasoning group at the University of
Leuven, dtai.cs.kuleuven.be/topics/kbs. The most recent
versions of the source code and documentation, as well as
other resources such as an online IDE, are available at the
IDP page, dtai.cs.kuleuven.be/software/idp.

3. Lua is a scripting language (Ierusalimschy, de Figueiredo,
and Celes 1996) available at www.lua. org.

4. The keyword define is optional.

5. This theory can be accessed and experimented with on
the IDP-IDE webpage at dtai.cs.kuleuven.be/krr/idpide/
?present=forbidden.
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served on the Executive Committee of the Association of
Logic Programming, was chair of the Steering Committee of
Nonmonotonic Reasoning Workshops, and was president of
Knowledge Representation Inc. He served as an editor and
associate editor on boards of the Journal of Artificial Intelli-
gence Research and Artificial Intelligence Journal. He is now
editor-in-chief of Theory and Practice of Logic Programming,
and an associate editor of AI Communications. In 2013,
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It’s Time to Plan Your
Trip to 

San Francisco 
for AAAI-17!

The Thirty-First AAAI Conference on Artificial Intelli-
gence (AAAI-17) and the Twenty-Ninth Conference
on Innovative Applications of Artificial Intelligence
(IAAI-17) will be held February 4-9 at the Hilton San
Francisco Union Square in San Francisco, California,
USA. San Francisco is a world-class city full of delights
for every visitor. From the iconic Golden Gate bridge
to its renowned art galleries, science museums, and
picturesque neighborhoods, the City takes pride in its
unrivaled attractions and treasures. The Hilton Hotel
is located near Union Square and very close to shops,
restaurants, and entertainment venues, as well as
public transportation. The conference location is a
great starting point to explore the City's tremendous
ethnic and cultural diversity and its wide variety of
offerings. San Francisco is also perfectly positioned to
explore the entire Bay Area, whether for recreation or
business. The Napa Valley, Pacific Coast, Silicon Val-
ley, and East Bay are all a short distance away. As an
unrivaled center for AI and tech professionals, San
Francisco promises to be a vibrant home for AAAI-17. 

For local information, please visit the San Francisco
travel site at www.sftravel.com.


