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gripper, and close gripper. For a robotic arm to
achieve a high-level action (for example, stack an
object on top of another), a discrete controller is
often first applied to find a sequence of primitive
operations. These primitive operations are then
passed to a continuous planner and translated into
trajectories of arm motors. Thus a critical question is
how to connect language commands (for example,
“stack the blue cylinder on the red block”) with the
corresponding sequence of primitive robotic opera-
tions. To address this question, our effort has focused
on the representation of grounded verb frames and
the acquisition and learning of grounded representa-
tions through collaborative step-by-step instructions. 

Learning Grounded Verb Semantics Through 
Collaborative Step-by-Step Instructions
Suppose a human operator asks a robotic arm (shown
in figure 6) to “stack the green block on the left to the
green block on the right,” and suppose the robot’s
language interpretation can perfectly identify the
verb frame stack with two arguments (origin and des-
tination) and successfully ground the arguments
(that is, “the green block on the left” and “the green
block on the right”) to the respective objects in
world. The arm may still not be able to perform the
action if it does not have knowledge of how to con-
nect the “stack” action with the low-level primitive
operations. However, the human operator can teach
the robot high-level actions (for example, stack) in a

Figure 6. An Example of a Robotic Arm Learning New Actions through Step-by-Step Natural Language Instructions.

Human: Stack the green block on the left to the  green block on the  right 
Robot:    I donÕt know how to perform this stack,  please give step-by- step instructions. 
Human:  Move the green block on the left to the  top of the green block  on the right. 
Robot:    Alright then (performing the move  action). 
Human:  Open gripper. 
Robot:    OK. 
Human:  Now you achieved the stack action. 
Robot:    Understood. 
Human:  Sort the blocks by color 
Robot:    What do you mean by this sort? 
Human:   Put the red blocks in the brown box.  
Robot:      É. 

Human View 

Robot



step-by-step manner as shown in figure 6.2 In this
case, a stack action involves two primitive opera-
tions: move to and open gripper.

Given this teaching and learning instance, how
should the robot internally represent knowledge or
grounded semantics for the verb frame stack? If it’s
only associated with “move to” followed by “open
gripper,” the acquired knowledge will not be very
useful in a new situation where it may involve sever-
al “move to” and “open gripper” operations to
accomplish the stack action. Thus, a more desirable
representation for grounded semantics of the verb
frame stack(A, B) should capture the desired goal state
of the physical world caused by this action. The goal
state, which is represented by a conjunction of logi-
cal predicates, for example, “on(A, B) ∧ G_open,” can
be acquired by the robot after performing the low
level operations. Representing verb semantic frames
with final state of the physical world allows the plan-
ner to automatically identify a sequence of low-level
primitive operations for any situation. For example,
in our experiment with a SCHUNK robotic arm (She
et al. 2014a), a teacher used 4 steps to teach the stack
action. When applying the acquired model for
“stack” in 20 novel situations, the robot was able to
complete the action with an average of approximate-
ly 7 steps. In one particular situation, the robot was
able to take 12 steps to successfully complete the
stack action. 

In our experiments, we have also examined the
role of collaboration in teaching new actions (She et
al. 2014b). We controlled two settings. In the collab-
orative step-by-step instruction setting, the human
teacher provides one step at a time and watches the
robot’s corresponding action. If the action is success-
fully performed, the teacher will move to the next
step; otherwise, the teacher will change its course of
instruction to cope with the incorrect response. In
the noncollaborative one-shot instruction setting,
the teacher provides the instructions all at the begin-
ning without watching and waiting for feedback
from the robot. Our experimental results have shown
that, although one-shot instructions take less time to
teach and learn, collaborative step-by-step instruc-
tions allow the robot to acquire better representa-
tions of verb frames and thus lead to more action
completion in novel situations. 

Learning Grounded Verb Hypothesis Space
While representing grounded verb semantics with
the intended goal state has shown promising in a
simplified block world (She et al. 2014b), the
acquired representation can be overfitting to the par-
ticular learning instances. To address this problem,
our recent work extends a single goal state represen-
tation to a hypothesis space of goal states for verb
representations (She and Chai 2016). For example,
suppose a human teaches the robot how to “fill the
cup with water.” After experiencing the change of

state of the physical world by performing the action
taught by the human, the robot is able to ground
verb frame fill(x, y) to the desired goal state “Has(x, y)∧ Grasping(x) ∧In(x, o1) ∧¬ In(x, o2).” Based on this
goal state, a hypothesis space using a specific-to-gen-
eral hierarchy can be built as shown in figure 7. In
this hypothesis space, any hypothesis of goal state
other than the shaded ones allows the planner to
come up with exactly the same sequence of primi-
tive operations as the original goal state (at the bot-
tom of the hierarchy). The hypotheses higher on the
hierarchy have fewer number of predicates and thus
have higher chances to be satisfied in novel situa-
tions. Therefore during learning, the robot automat-
ically acquires and updates a hypothesis space for
each verb frame. Given a new situation, when a verb
command is issued by the human, the robot will
identify the most relevant hypothesis from the
hypothesis space to calculate a sequence of primitive
operations. Using data made available by Misra et al.
(2015), our empirical results have shown that the
hypothesis space representation significantly out-
performs the representation with single hypothesis
of goal state. Details on this approach and empirical
evaluations are described by She and Chai (2016).

Conclusions
Enabling situated human-robot communication
faces many challenges and opportunities (Bohus and
Horvitz 2010). One of the significant challenges is
the capability of grounding human language to a
robot’s internal representations of perception and
action. This involves multiple aspects of complexi-
ties. Even the robot has existing knowledge about
how a word (for example, an adjective or a noun) is
connected with the underlying visual features; dur-
ing real-time communication, the robot may still not
be able to ground human language to its own repre-
sentation of the perceived world due to subtle
change of the environment. Computer vision algo-
rithms have improved tremendously in recent years,
especially given the advances in deep learning. How-
ever, in a new environment, when there is not suffi-
cient training data, machine perceptual systems are
still fragile. The perceptual differences between
humans and robots in situated communication
remain a practical problem. As shown in this article,
an effective solution to this problem is to incorpo-
rate collaborative behaviors into grounded language
processing and enable collaboration from the robot
to ground communication. 

It is often the case that during communication a
robot will encounter new words, new objects, and
new actions it does not have existing knowledge
about. As shown in this article and other recent work
(Cantrell et al. 2012; Mohan, Kirk, and Laird 2013;
Mohseni-Kabir et al. 2015; Thomason et al. 2016),
language and collaborative dialogue play an impor-
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tant role in enabling the robot to continuously learn
grounded meanings, the environment, and tasks
from its human partners. To further support interac-
tive robot learning through natural language dia-
logue, our current work is to develop approaches to
ground language to participants of actions in more
complex visual scenes (for example, a kitchen envi-
ronment) (Yang et al. 2016, Gao et al. 2016). In addi-
tion, we are exploring acquisition of rich task struc-
tures from human language instructions and visual
demonstrations (Liu et al. 2016a, 2016b). The ulti-
mate goal is to enable robots to continuously learn
from human partners through their life-long interac-
tions. 
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Notes
1.  A system demo can be found at www.youtube.com/
watch?v=vPA2AUJq6cI

2.  A system demo can be found at www.youtube.com/
watch?v=MGA6aqKGM0w
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