
If it is indeed true that we cannot fully understand our 
present without knowledge of our past, there is perhaps 
no better time than the present to attend to the history of 

artificial intelligence. Late 2017 saw Sundar Pichai, the CEO 
of Google, Inc., opine that “AI is one of the most important 
things that humanity is working on. It’s more profound than, 
I don’t know, electricity or fire” (Schleifer 2018). Pichai’s 
notable enthusiasm for, and optimism about, the power of 
multilayer neural networks coupled to large data stores is 
widely shared in technical communities and well beyond. 
Indeed, the general zeal for such artificial intelligence sys-
tems of the past decade across the academy, business, gov-
ernment, and the popular imagination was reflected in a 
recent New York Times Magazine article, “The Great AI Awak-
ening” (Lewis-Kraus 2016). Imaginings of our near-future 
promoted by the World Economic Forum under the banner 
of a Fourth Industrial Revolution place this “machine learn-
ing” at the center of profound changes in economic activity 
and social life, indeed in the very meaning of what it means 
to be human (Schwab 2016). 
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n Much of the contemporary moment’s 
enthusiasms for and commercial inter-
ests in artificial intelligence, specificial-
ly machine learning, are prefigured in 
the experience of the artificial intelli-
gence community concerned with expert 
systems in the 1970s and 1980s. This 
essay is based on an invited panel on 
the history of expert systems at the 
AAAI-17 conference, featuring Ed 
Feigenbaum, Bruce Buchanan, Randall 
Davis, and Eric Horvitz. It argues that 
artifical intelligence communities today 
have much to learn from the way that 
earlier communities grappled with the 
issues of intelligibility and instrumen-
tality in the study of intelligence. 

 



Far too often, these pronouncements and perspec-
tives fail to attend to artificial intelligence’s previous 
awakenings. Over 30 years ago, in 1985, Allen Newell 
— one of the key figures in the emergence of artificial 
intelligence as a field in the 1950s and the first pres-
ident of the Association for the Advancement of Arti-
ficial Intelligence (AAAI) — wrote: “There is no doubt 
as far as I am concerned that the development of 
expert systems is the major advance in the field dur-
ing the last decade … The emergence of expert sys-
tems has transformed the enterprise of AI” (Bobrow 
and Hayes 1985). This article frames and presents the 
discussion at an invited panel, “AI History: Expert 
Systems,” held at the AAAI-17 conference in San 
Francisco, February 6. The panel’s purpose was to 
open up this history of expert systems, its transfor-
mational aspects, and its connections to today’s “AI 
awakening” (Brock 2017).1 

The history panel featured four key figures in the 
story of expert systems and was moderated by the 
director of the Center for Software History at the 
Computer History Museum, David C. Brock. Edward 
Feigenbaum is the Kumagai Professor Emeritus at 
Stanford University. He was president of AAAI in 
1980–81, and he was awarded the ACM Turing Award 
for 1994 in part for his role in the emergence of 
expert systems. Bruce Buchanan is a university pro-
fessor emeritus at the University of Pittsburgh, and 
he was president of AAAI in 1999–2001. Randall 
Davis is a professor in the Electrical Engineering and 
Computer Science Department at the Massachusetts 
Institute of Technology. He was president of AAAI in 
1995–97. Eric Horvitz, MD, PhD, is a technical fellow 
of the Microsoft Corporation, where he also serves as 
the managing director of Microsoft Research. He was 
president of AAAI in 2007–09. 

Perspectives from two historians of science and 
technology provide a very useful framework for 
approaching the history of expert systems, and the 
discussion at the 2017 history panel. Michael 
Mahoney, a history professor at Princeton University, 
was a particularly influential figure in the study of 
the history of computing. In a 2005 article, “The His-
tories of Computing(s),” Mahoney presented a con-
cise statement of several of his most fundamental 
insights from his many years of study in the field. 
“[T]he history of computing,” he wrote, “is the his-
tory of what people wanted computers to do and 
how people designed computers to do it. It may not 
be one history, or at least it may not be useful to treat 
is as one. Different groups of people saw different 
possibilities in computing, and they had different 
experiences as they sought to realize these possibili-
ties. One may speak of them as ‘communities of com-
puting,’ or perhaps as communities of practitioners 
that took up the computer, adapting to it while they 
adapted it to their purposes” (Mahoney 2005).  

For Mahoney, a defining activity of these various 
communities of computing was creating software 

that, for him, constituted the modeling of certain 
features of the physical or social world. Making soft-
ware for Mahoney was putting the world into the 
computer: “[Software] Design is not primarily about 
computing as commonly understood, that is, about 
computers and programming,” he explained, “It is 
about modeling the world in the computer … about 
translating a portion of the world into terms a com-
puter can ‘understand’ … [P]utting a portion of the 
world into the computer means designing an opera-
tive representation of it that captures what we take to 
be its essential features. That had proved, as I say, no 
easy task … If we want critical understandings of how 
various communities of computing have put their 
portion of the world into software, we must uncover 
the operative representations they have designed and 
constructed” (Mahoney 2005). 

An historical expert on a very different subject — 
the Scientific Revolution of the 16th and 17th cen-
turies — and a history professor at Cornell Universi-
ty, Peter Dear provides an account of the two funda-
mental purposes toward which scientific and 
technical communities, including Mahoney’s com-
munities of computing, direct their activities: intelli-
gibility and instrumentality. Crudely summarized, 
Dear proposes that there are two distinct, separate, 
but intertwined purposes that have motivated these 
communities. One is a pursuit of the “intellectual 
understanding of the natural world,” including our-
selves. This is the striving to make sense of the world, 
to provide satisfying answers to basic questions about 
how things are, and why they are. Dear notes, “Evi-
dently … there are not timeless, ahistorical criteria 
for determining what will count as satisfactory to the 
understanding. Assertions of intelligibility can be 
understood only in the particular cultural settings 
that produce them.” The other purpose is the cre-
ation of effective techniques that afford, as Dear puts 
it, “… power over matter, and indirectly, power over 
people.” Here the goal is the creation and refinement 
of an “operational, or instrumental, set of techniques 
used to do things … Such accomplishments … in fact 
result from complex endeavors involving a huge 
array of mutually dependent theoretical and empiri-
cal techniques and competences” (Dear 2006, pp. 1–
14). 

Both goals of intelligibility and instrumentality 
can clearly be seen in the community of computing 
— perhaps, more properly, communities — involved 
in artificial intelligence. On the side of intelligibility 
lie questions about our understanding of human 
intelligence: how is it that we reason, learn, judge, 
perceive, and conduct other mental actions? On the 
side of instrumentality reside myriad activities to cre-
ate computer systems that match or exceed human 
performance in tasks associated with the broad con-
cept of “intelligence.” This instrumental dimension 
in the history of artificial intelligence is of a piece 
with a major through-line in the history of comput-
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ing more generally, in which scientists and engineers 
developed machines to, at first, aid human practices 
of mathematical calculation, but these machines 
quickly came to exceed human intelligence’s unaid-
ed capacity for calculation by many orders of magni-
tude. From one angle, the pursuit of instrumentality 
in artificial intelligence may be seen as an effort to 
extend this surpassing of the human capacity for 
mathematical calculation to additional capabilities 
and performances. 

It is nonetheless very clear that intelligibility was 
an enormously motivating goal for the emergence of 
artificial intelligence. In his reflections on the histo-
ry of artificial intelligence to 1985 cited above, Allen 
Newell also powerfully surfaced the importance of 
intelligibility to the artificial intelligence communi-
ty of which he was a part: “One of the world’s deep-
est mysteries — the nature of mind — is at the center 
of AI. It is our holy grail. Its discovery (which will no 
more be a single act than the discovery of the nature 
of life or the origins of the universe) will be a major 
chapter in the scientific advance of mankind. When 
it happens (that is, as substantial progress becomes 
evident), there will be plenty of recognition that we 
have finally penetrated this mystery and in what it 
consists. There will be a coherent account of the 
nature of intelligence, knowledge, intention, desire, 
etc., and how it is possible for the phenomena that 
cluster under these names to occur in our physical 
universe.” (Bobrow and Hayes 1985, 378) 

As Ed Feigenbaum explained in the AAAI-17 panel 
on the history of expert systems, and in terms that 
directly echo Mahoney’s view of software as model-
ing, the roots of expert systems begin in the first 
decade of the AI community’s pursuit of intelligibili-
ty: 

Let me go back to the first generation, 1956–1965. The 
AI field began with a set of ideas like a Big Bang about 
the nature of human thought and how to model it by 
computer. The ideas came from some truly remarkable 
individuals. Their ideas about problem-solving, recog-
nition, and learning were fundamental but few. There 
was a focus on deductive [emphasis added] reasoning 
processes — logic-based or based on heuristic search 
— and on the generality of these reasoning processes.  
In 1962, I wrote about the need to move beyond 
deductive tasks to the study of inductive [emphasis 
added] processes and tasks, which I viewed as domi-
nant in human thought. But it took me two years 
until 1964 to frame this pursuit in a way that I 
thought would be fruitful. Being an empirical scien-
tist, I was looking for some people to observe with the 
idea of modeling their behavior. Now why did I 
choose to model the thinking of scientists? Because I 
saw them as being skilled, professional, induction spe-
cialists constructing hypotheses from data, and I 
thought they would be reflectively curious and reduc-
tionist enough to enjoy allowing others like me to 
explore their thought processes. 

Allen Newell and Herbert Simon created perhaps 
the first artificial intelligence program, Logic Theo-

rist, in 1955–56 as a model of deductive reasoning, 
and also as a kind of self-modeling of their own 
familiarity with creating proofs in formal logic and 
mathematics. That this model reproduced a set of 
proofs created by Bertrand Russell and Alfred North 
Whitehead in their seminal Principia Mathematica, 
and even arguably improved upon one, was taken as 
strong confirmation of their model. 

In contrast, Feigenbaum’s interest was in modeling 
the inductive reasoning that he believed was vital in 
human intelligence generally. From his study of and 
with Newell and Simon, Feigenbaum drew the lesson 
that such modeling of human reasoning in the com-
puter needed specificity. He believed that a particular 
“test bed” was required to exercise and refine the 
model, and to draw conclusions from it. After 
extended deliberation, Feigenbaum decided that 
“professional inducers,” people who were paid to 
make inductions, would make for a productive test 
bed. He would model, therefore, the reasoning of 
empirical scientists. To his surprise, Feigenbaum 
found that a prominent empirical scientist, indeed 
one of the world’s leading geneticists, shared his 
interest in the possibilities for computational models 
of scientific reasoning: 

AAAI Archive File Photo. 
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In 1964, I was fortunate to find an enthusiastic col-
laborator, Joshua Lederberg, Professor of Genetics and 
Nobel Prize winner at Stanford. He too was interested 
in the question “Can AI model scientific thinking?” So 
our work together began in 1965, after I joined Stan-
ford. As an aside, Lederberg’s mind was one of great 
vision and insight, one of the top minds of the 20th 
century, in my view. But Lederberg was the gift that 
kept giving. In 1966, Lederberg recruited for us Pro-
fessor Carl Djerassi, one of the most influential 
chemists of all time, the father of the Pill [birth con-
trol pill] and the head of Stanford’s mass spectrometry 
laboratory. 
As I said, I’m an empirical scientist, not at theoretical 
one. I needed a test bed in which to do these AI exper-
iments. Lederberg suggested the problem that he was 
working on, inferring hypotheses about organic 
molecular structures from the data taken by an instru-
ment called a mass spectrometer. Lederberg was doing 
research for NASA on the design of a Mars probe, 
designing a mass spectrometer system for detecting 

life-precursor molecules such as amino acids.  

In this experimental setting, the test bed, we could 
measure, month by month, how well our program — 
which was called Heuristic DENDRAL, or later just 
DENDRAL for short — was performing compared with 
the performance of Djerassi’s PhD students and post-
docs on the same problem.  

Throughout the 1960s, Feigenbaum — in collabo-
ration with Bruce Buchanan and others — continued 
to evolve the model of the organic chemists in Carl 
Djerassi’s laboratory, and in particular their capabili-
ty to interpret the data about particular sorts of 
organic compounds from their mass spectrometry 
instrumentation. This modeling had two basic fea-
tures. For one, the artificial intelligence researchers 
developed the model of inductive reasoning process-
es in DENDRAL. In addition, they modeled the 
organic chemists’ knowledge as a store of rules, 
roughly in the form of “If, Then” statements. 
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The development of DENDRAL along these two 
lines served both intelligibility and instrumentality. 
On intelligibility, the motivating question was how 
to explain different abilities in human reasoning. 
How is it that experts render better judgments? Is it 
that some people possess a fundamentally superior 
way of reasoning than others? Or is it rather that 
accumulated, organized experience is the key, with 
people reasoning in more or less the same fashion?  

Research in the nascent field of expert systems 
sought to address the question of special reasoning 
versus accumulated knowledge as the basis for expert 
judgments. With this also lay the promise of instru-
mentality. If the key to expert performance could be 
unlocked by investigations of a computer system, 
might such a system come to match and then exceed 
the performance of any human expert, as was already 
the case with mathematical calculation? This co-
implication of intelligibility and instrumentality was 
not lost on the primary sponsor of artificial intelli-
gence research in the United States, at least until very 
recently: The US Department of Defense’s famous 
Defense Advanced Research Projects Agency 
(DARPA).  

As Feigenbaum recalled, by 1968 he and his col-
leagues were prepared to draw conclusions from 
work on DENDRAL, from what the performance of 
their model of this human expertise had shown 
them. The conclusions were, themselves, an induc-
tion from a model of chemists’ expertise in the inter-
pretation of mass spectra of particular families of 
organic molecules: 

So we proceeded experiment by experiment in this 
test bed … moving toward higher levels of perform-
ance in mass spectral analysis, that propelled the 
movement to higher levels of behavior. What allowed 
that was the knowledge that we were systematically 
extracting from the experts in Djerassi’s lab. Most of 
this knowledge was specific to mass spectrometry, 
including much heuristic knowledge, but some was 
general chemistry knowledge.  
In 1968, I was writing a paper with Bruce [Buchanan] 
and Josh Lederberg in which we chose to summarize 
the evidence from the many DENDRAL experiments 
from mid-1965 to mid-1968. It was evident that the 
improvement in DENDRAL’s performance as a mass 
spectrum analyst was almost totally a function of the 
amount and quality of the knowledge that we had 
obtained from Djerassi’s experts, and that it was only 
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weakly related to any improvements that the AI sci-
entists like me and Bruce had made to the reasoning 
processes used in DENDRAL’s hypothesis formation.  
So in 1968, I called this observation the “Knowledge is 
Power Hypothesis.” One data point. Later, as the evi-
dence accumulated from dozens of — or hundreds of 
— expert systems, I changed the word “hypothesis” to 
“principle.” The title of the 1968 paper was specifical-
ly worded to contrast what we called the DENDRAL 
case study with the main paradigm of the first gener-
ation of AI that focused on the generality of problem-
solving. Those of you who are old enough in the audi-
ence remember GPS [General Problem Solver]. This 
was a major paradigm shift for AI research, but it took 
more than five years for the new paradigm to take 
hold. 

Continued modeling of human experts, and in 
particular scientists and engineers, led to expert sys-
tems that, for very specific kinds of expertise, could 
meet and even exceed the performance of human 
experts. This achievement of instrumentality — a 
novel capability to do things, namely to exceed some 

performances of human experts — eventually led to 
a great enthusiasm for expert systems within the arti-
ficial intelligence community and its military 
patrons, then quickly drawing in corporations, 
investors, entrepreneurs, and the popular press.  

Yet the route to these enthusiasms was painstaking 
work along the same two developmental lines for 
modeling human expertise as computer systems: 
changes to the inductive reasoning processes and 
also to the representation of expert knowledge and 
the means of making that representation. Bruce 
Buchanan concentrated his efforts on the latter, 
which, he explained eventually became known as 
knowledge engineering: 

Well, we didn’t use the term “knowledge engineering” 
until the 1970s, but we did talk, in a 1969 paper that 
Ed and I were coauthors of with Georgia Sutherland, 
about knowledge elicitation in AI. It was at a machine 
intelligence workshop and people there were some-
what stunned that we were talking about organic 
chemistry. John McCarthy rescued me during a talk by 
saying to somebody who was giving me a hard time, 
“Sit down, be quiet, you might learn something.” I 
forever after loved that man. 
Well, there were other groups working on knowledge 
representation at the same time. Harry Pople and Jack 
Myers at [the University of Pittsburgh] were working 
with an emphasis on ontologies and mechanisms. 
Peter Szolovits was working with Dr. Bill Schwartz, and 
that led to a lot of work on the object-oriented frames 
paradigm. Cas Kulikowski was working on knowledge 
engineering with Dr. Aaron Safir at Rutgers. There was 
work in Europe … There was a lot of isolated work in 
France replicating some of the early expert systems 
work, and several projects in France from commercial 
firms, Schlumberger and Elf Aquitaine being two of 
the most important. The Japanese Institute for New 
Generation [Computer] Technology, ICOT, was work-
ing on fifth-generation computing largely from a 
point of view of logic. The French were using Prolog 
and so did the Japanese.  
So I think our lesson there, the important part, was in 
coding knowledge. The language you use — Prolog or 
LISP or something else — it didn’t matter nearly so 
much as the paradigm of starting with an expert’s 
knowledge. But we also saw in that time that knowl-
edge engineering could focus on the objects and their 
relationships in an ontology: a hierarchy. They could 
focus on the inferential mechanisms that were going 
on, and in DENDRAL we were very much interested in 
what we called the “situation-action rules” at the time. 
There was an action in the right-hand side of the rule, 
not just a Prolog kind of logical assertion. 

For Buchanan, as with Feigenbaum, the motiva-
tion of intelligibility was, at least initially, primary for 
the development of expert systems. Buchanan 
recalled: 

Well, I was fascinated with the reasoning process.... 
My dissertation [on the philosophy of science] was on 
the process of discovery and trying to orient it into a 
framework. In the middle of my dissertation, I got to 
know Ed Feigenbaum in 1963 and began reading the 

Articles

8    AI MAGAZINE

AAAI Archive File Photo. 

Bruce Buchanan.



early AI work, mostly by Newell and Simon, and the 
RAND Corporation publications. And it convinced me 
that we could make a logic of discovery out of the par-
adigm of search, a constrained search. So that was the 
focus within which I got to know Ed and came into 
this field.  
So when Ed offered the opportunity to work on DEN-
DRAL, it was just a godsend because here was an 
opportunity — one of the early experiments in com-
putational philosophy [emphasis added] — to try to do 
philosophy but with an empirical bent, namely writ-
ing programs that would actually produce something 
that was testable. Then started these discussions with 
Carl Djerassi’s postdoc Alan Duffield and his reasoning 
process about mass spectrometry and the interpreta-
tion of mass spectra was just exactly what I needed in 
order to instantiate some of those ideas about captur-
ing knowledge, about data interpretation, and then, 
subsequently, theory formation. 
You’ve got to, I think, want to contrast this work with 
other work that was going on at the same time in 
which people were acting as their own experts. I could 
not, by any means, claim to be an expert in chemistry 
or certainly not mass spectrometry. There were other 
people though: like Joel Moses [and his colleagues] at 
MIT, who was an expert in symbolic mathematics; and 
Tony Hearn in symbolic algebra; Ken Colby in psychi-
atry, Todd Wipke in chemistry. These people were also 
doing knowledge elicitation but it was from their own 
heads, so it was more like just introspection.  

As Buchanan showed, modeling the expertise of 
others as opposed to introspective self-modeling did 
not fully distinguish the subfield of expert systems 
from other areas of artificial intelligence work. 
Rather, the development of expert systems relied on 
mixtures of both kinds of modeling. 

Whether from self-modeling or modeling of oth-
ers, Buchanan and others created a particular kind of 
representation of the modeled knowledge known as 
production rules, a system of “If, Then” statements. 
Buchanan explained: 

There was a logician who published a paper, Emil Post 
in 1943, using “production rules” as a complete logi-
cal system. That certainly has to be one of the precur-
sors of our work on production systems. Although we 
weren’t following it directly, it was certainly there. 
Art Samuel’s work on the checker player: Art had inter-
viewed experts to understand … the feature vector and 
then he did a good deal of reading about checkers.… 
And the influential part about that was … his machine 
learning component — that once you had the expert-
ise in, in a first-order form, it could be improved … 
automatically. That impressed me a great deal and I 
always wanted to be able to do that. 
So we subsequently developed a learning program we 
called META-DENDRAL that did learn the rules of 
mass spectrometry from empirical data. A footnote on 
that. The data were very sparse. It took about one 
graduate student one year to obtain and interpret one 
mass spectrum, so we couldn’t ask for very much data. 
This was not a big data problem. And we substituted 
knowledge for data in that and we continued to 
believe, I continue to believe, that that’s a good trade-

off when you don’t have enough data for the big data 
kind of learning.  
So just three other things: 
John McCarthy’s paper “Programs with Common 
Sense” made a very strong case that whatever knowl-
edge a program was using, it had to be in a form that 
it could be changed from the outside … that was 
something Art Samuel was doing with the feature vec-
tor weights, but something also we were doing with 
the DENDRAL rules of mass spectrometry that made a 
very big difference.  
Now, Bob Floyd and Allen Newell developed a pro-
duction rule compiler at CMU [Carnegie Mellon Uni-
versity] and that led to [Feigenbaum’s PhD student] 
Don Waterman’s work on representing the knowledge 
about poker play in a production system. Don’s work 
was extremely influential in giving us the sense that 
that was the way to do it.  
And, finally, Georgia Sutherland had been working 
with Joshua Lederberg on knowledge elicitation and 
putting that knowledge into separate tables. They 
were not rules, they were constraints for the chemical 
structure generator, but they were referenced in a way 
that they could be changed as data. Those were in my 
mind the most important precursors. 

This is not to say that Buchanan and others 
believed that these production rules were the last 
word in modeling human expert knowledge in a 
computer. When asked if he believed that the repre-
sentation of knowledge as a rule had limitations, 
Buchanan replied, “We saw a lot.” He continued: 

And our friends at MIT and elsewhere were quick to 
point out others. We wanted to be testing the limits of 
a very simple production rule architecture and we 
knew it was limited, we just didn’t know quite where 
it would break and why. So that was the nature of 
many of the experiments that we subsequently pub-
lished in the MYCIN book [Rule-Based Expert Systems 
by Bruce Buchanan and Edward Shortliffe] and I 
would encourage people to take a look.  
But let me quote from that, “Our experience using 
EMYCIN to build several expert systems has suggested 
some negative aspects to using such a simple represen-
tation for all of the knowledge. The associations that 
are encoded in rules are elemental and cannot be fur-
ther examined except with,” some additional text that 
we put into some extra ad hoc slots. So, continuing the 
quote, “A reasoning program using only homogeneous 
rules with no internal distinctions among them thus 
fails to distinguish among several things, chance asso-
ciations, statistical correlations, heuristics based on 
experience, cause of associations, definitions, knowl-
edge about structure, taxonomic knowledge,” all of 
those were things that we were failing to capture in the 
very simple more or less flat organization. 

The modeling of human experts’ knowledge in 
expert systems as production rules was provisional, 
intended to reveal what kinds of performance they 
could produce and what they could not. 

From Buchanan’s involvement with knowledge 
engineering into the middle 1980s, he drew three 
fundamental lessons: 
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There are three different perspectives. From the point 
of view of computer science, I think the Knowledge is 
Power Principle is the most important lesson, and it’s 
one we certainly have said more than once. At the lev-
el of user acceptance, I think the main lesson is that a 
program needs to be able to explain its reasoning in 
any decision-making situation with high stakes. And 
third, at the implementation level, the main lesson is 
flexibility. In the final chapter of the MYCIN book, 
Chapter 36 … we wrote, “If we were to try to summa-
rize in one word why MYCIN works as well as it does, 
the word would be flexibility. By that, we mean that 
the designers’ choices about programming constructs 
and knowledge structures can be revised with relative 
ease and that the users’ interactions with the system 
are not limited to a narrow range in a rigid form.” So: 
knowledge, explanation, flexibility. 

These three issues — knowledge, explanation, and 
flexibility — have also become central to contempo-
rary discussions of multilayer neural networks and 
machine learning, with “knowledge” now taking the 
guise of the datasets used for training, and “flexibili-
ty” now largely couched in terms of the fragility or 
brittleness of machine learning systems. Explana-
tion, or the lack thereof, however remains a key chal-
lenge for today’s artificial intelligence efforts. 

Randall Davis, who has placed explanation at the 
center of his work in artificial intelligence, saw the 
development of expert systems from the middle 

1970s to the middle 1980s continue to evolve the 
two main strands of development that had been pres-
ent since the start: the reasoning processes and the 
representation of expert knowledge. Much of that 
continued development, in Davis’ view, was in the 
direction of generalization: 

One interesting lesson was the value in generalizing 
the work that had been done. Initially of course, this 
was the generalization from the individual applica-
tions to the so-called expert system “shells.” They 
were put into fairly wide use. Lots of applications got 
built using them. Not all of these things were 
acknowledged as expert systems, and some of them I 
think weren’t particularly true to the original inspira-
tion and architecture. 
But the real point is they adopted and spread the ideas 
— two good ideas, namely that to be good, a program 
needed a reasonably large collection of task-specific 
knowledge and, second, that there were at least semi-
principled ways to gather and represent that knowl-
edge. These tools were in some ways analogous to the 
open sourcing of deep learning tools that are being 
distributed now and, like those tools, they provide a 
substantial boost to people who are trying to build 
these systems. But, as always, it’s best if you are one of 
the anointed ones who know how to use the tools. 
That’s how you get the best use out of them. I think it 
was true then and I think it’s true now.  
Another interesting lesson was the way certain 
insights seemed to echo through the years. We kept 
seeing the value of explicit, readable representations 
of knowledge using familiar symbols in knowledge 
representation, expressing knowledge separately from 
its intended use.… The most immediate consequence 
of these ideas is to enable multiple uses of the same 
knowledge, so we had systems that were doing diag-
nosis with a body of knowledge, explaining the rea-
soning and the result using that same body of knowl-
edge, and then going ahead to teaching somebody 
with that same body of knowledge, all from a single 
representation. And just as when you’re building a 
program, the virtues of encoding something once 
saves you from version skew, it was the same thing 
here in version skew in the knowledge.  
One of the nice examples of this multiple uses of 
knowledge came out of the work of Bill Clancy where 
the basic inspiration was: if we can debrief experts and 
transfer their knowledge into the program, is it possi-
ble to get the program to transfer the same knowledge 
into the head of a student? That, in turn, led to lots of 
interesting work … in understanding what was insuf-
ficient about MYCIN’s very simple rule-based repre-
sentation. The systems got considerably more power 
when that knowledge which was implicit in the rules 
got explicitly captured and represented in some of the 
work that Bill Clancy did.  
Another outcome in that body of work and in other 
work on intelligent tutoring was the idea that explicit 
representations of knowledge permits a kind of mind 
reading, or at least mind inferring. If I have an explic-
it model of what someone needs to know to accom-
plish a task and they make a mistake in doing that 
task, say a diagnosis, I can plausibly ask myself given 
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my model of what they ought to know, what defect in 
that knowledge would have produced the error that 
they produced. It’s an interesting form of, if not mind 
reading, at least mind inferring.  
The final lesson was the ubiquity of knowledge, task-
specific knowledge. Of course, for example, medicine. 
Knowledge about debriefing: How do we get the knowl-
edge out of the head of the expert into the program? 
Knowledge about tutoring: How do we transfer that 
into the students and knowledge about the general 
task? Diagnosis as a particular variety of inference. 
Everywhere we looked there was more to know, more to 
understand, and more to write down in explicit forms. 

These matters of rendering implicit knowledge 
explicit, of mind inferring, and of knowledge trans-
fers are all of a kind with Davis’ concern for explana-
tion and transparency in artificial intelligence. He 
explained: 

I’ve been interested in these issues for several decades. 
The bad news, for me at least, is after all that time … 
the idea that AI programs ought to be explainable is 
now in wide circulation. Alas, where were you guys 40 
years ago? There’s a lot of interest, of course, in get-
ting understandable AI. There’s lots of experiments in 
getting deep learning systems to become more trans-
parent. As many of you know, Dave Gunning has a 
DARPA program on “explainable AI,” and the overall 
focus in looking at AI not as automation working 
alone but as having AI work together with people. All 
of these things are going to work better with systems 
that are explainable and transparent.  
So there’s lots of reasons to want this, the most obvi-
ous ones are trust and training. Trust is obvious. If 
we’ve got autonomous cars or medical diagnosis pro-
grams, we want to know we can trust the result. But I 
think training is another issue. If the system makes a 
mistake, what ought we to do about it? Should we give 
it more examples? What kind of examples? Is there 
something it clearly doesn’t know? What doesn’t it 
know? How do we explain it to the system? So trans-
parency helps with making the system smarter.  
One key issue I think is the representation and infer-
ence model. In what sense is the representation and 
inference model in our programs either similar to or a 
model of human reasoning? It seems to me that the 
closer the system’s representations and model of rea-
soning are to human representations and reasoning, 
the easier it’s going to be to bridge that gap and make 
them understandable.  
A kind of counterexample of this is currently the 
vision systems, the deep learning vision systems that 
are doing a marvelously impressive job of image label-
ing for example. They’re said to derive their own rep-
resentations and that’s great, but it’s also a problem 
because they’re deriving their own representations. If 
you want to ask them why they thought a particular 
picture was George Washington, what could they pos-
sibly say? 
Now the issue is made a little bit worse by the collec-
tion of papers these days that show that deep learning 
vision systems can be thrown off completely by some 
image perturbations that are virtually invisible to peo-
ple but cause these systems to get the wrong answer 

with very high probability. Now the problem is that 
we don’t know what they’re doing and why they’re 
doing it so when you show the system an image that 
looks to us like a flagpole and it says, “That’s a 
Labrador, I’m sure of it,” if we asked them why you 
thought so, it’s not clear what kind of answer they can 
give us.  
Now there’s been some work in this area of course, and 
to the extent that these systems use representations 
that are human derived, they’re better off. There’s 
some clever techniques being developed for examin-
ing local segments of the decision boundary, but even 
so, when you start to talk about local segments of a 
decision boundary in a multidimensional space and 
hyperplanes, I suspect most people’s eyes are going to 
glaze over. It’s not my idea of an intuitive explanation.  
Now this work is in its very early stages and I certain-
ly hope that we can come up with much better ways 
to make these extraordinarily powerful and successful 
systems a whole lot more transparent. But I’m still 
fundamentally skeptical that views of a complex sta-
tistical process are going to do that.  
Which brings me to a claim that I will make, and then 
probably get left hung out to dry on, but I will claim 
that systems ought to have representations that are 
familiar, simple, and hierarchical and inference meth-
ods that are intuitive to people. The best test, I think, 
is simple. Ask a doctor why they came up with a par-
ticular diagnosis and listen to the answer and then ask 
one of our machine learning data systems why they 
came up with that answer and see about the differ-
ence. So let me summarize. If AI’s going to be an effec-
tive assistant or partner, it’s going to have to be able to 
be trained in focused ways and it’s going to have to be 
able to divulge its expertise in a way that makes sense 
to the user, not just to the machine learning special-
ist. 

For Davis, greater fidelity in the modeling of 
human expertise into AI systems should serve both 
intelligibility and instrumentality. 

And yet, as Davis underscored, intelligibility — 
explainable AI — also comes with some instrumental 
cost. Asked if the requirement for explanation and 
transparency could limit other aspects of perform-
ance in an AI system, Davis answered: 

It will happen, and I actually know this from experi-
ence. I have a paper in Machine Learning from last 
spring [March 2016] that has to do with a medical 
diagnosis program of sorts where we built the best pos-
sible classifier we could in a system that had about a 
1,000-dimensional space. Its AUC [area under curve] 
was above 0.9 and the humans who were doing this 
task have an AUC of about 0.75. It was great except it 
was a black box. 
So then, working with Cynthia Rudin, who was then 
at MIT, we built machine learning models that were 
explicitly designed to be more transparent and sim-
pler, and we measured that performance and now it’s 
down to about 0.85. So not only do I know that expla-
nation and transparency will cost you something, 
we’re able to calibrate what it costs you in at least one 
circumstance. So I think there’s no free lunch, but we 
need both of those things. 
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Eric Horvitz, a key figure in the statistical and 
probabilistic turn in artificial intelligence research, 
shared this same vision of the importance of expla-
nation especially in contemporary work: 

Working to provide people with insights or explana-
tions about the rationale behind the inferences made 
by reasoning systems is a really fabulous area for 
research. I expect to see ongoing discussions and a 
stream of innovations in this realm. As an example, 
one approach being explored for making machine-
learned models and their inferences more inspectable 
is a representation developed years ago in the statistics 
community named generalized additive models.  
With this approach, models used for inferences are 
restricted to a sum of terms, where each term is a sim-
ple function of one or a few observables. The repre-
sentation allows people in some ways to “see” and bet-
ter understand how different observations contribute 
to a final inference. These models are more scrutable 
than trying to understand the contributions of thou-
sands of distributed weights and links in top-perform-
ing multilayered neural networks or forests of decision 
trees. 
There’s been a sense that the most accurate models 
must be less understandable than the simpler models. 
Recent work with inferences in healthcare show that 
it’s possible to squeeze out most of the accuracy 
shown by the more complex models with use of the 

more understandable, generalized, additive models. 
But even so, we are far from the types of rich explana-
tions provided by chains of logic developed during the 
expert systems era. Working with statistical classifiers 
is quite different than production systems, but I think 
we can still make progress. 

Feigenbaum too stressed the importance of expla-
nation — intelligibility — not just in the motivations 
behind artificial intelligence systems, but also, with 
Davis and Horvitz, as part of their instrumentality, 
their value in use: 

I’ve been engaged in giving extended tutorials to a 
group of lawyers at the very, very top of the food chain 
in law. And the message is: we (lawyers) need a story. 
That’s how we decide things. And we (lawyers) under-
stand about those networks and — we understand 
about, at the bottom, you pass up .825 and then it 
changes into .634 and then it changes into .345. 
That’s not a story. We (lawyers) need a story or we 
can’t assess liability, we can’t make judgments. We 
need that explanation in human terms. 

While Horvitz is most associated with the statisti-
cal turn in artificial intelligence that is seen as adding 
profound new challenges to explanation and trans-
parency, his route to this stance was through his 
engagement with and deep interest in expert sys-
tems. Horvitz explained: 

I came to Stanford University very excited about the 
principles and architectures of cognition, and I was 
excited about work being done on expert systems of 
the day. Folks were applying theorem-proving tech-
nologies to real-world tasks, helping people in areas 
like medicine. I was curious about deeper reasoning 
systems. I remember talking to John McCarthy early 
on. I was curious about his efforts in commonsense 
reasoning. In my first meeting with him, I happened 
to mention inferences in medicine and John very qui-
etly raised his hand and pointed to the left and said, 
“I think you should go see Bruce Buchanan.”  
And so [I] went to see Bruce and then met Ed [Feigen-
baum], Ted Shortliffe, and others. I shared their sense 
of excitement about moving beyond toy illustrations 
to build real systems that could augment people’s abil-
ities. Ted and team had wrestled with the complexity 
of the real world, working to deliver healthcare deci-
sion support with the primordial, inspiring MYCIN 
system. Ted had introduced a numerical representa-
tion of uncertainty, called “certainty factors,” on top 
of a logic-based production system used in MYCIN. 
I was collaborating with David Heckerman, a fellow 
student who had become a close friend around our 
shared pursuit of principles of intelligence. David and 
I were big fans of the possibilities of employing prob-
abilities in reasoning systems. We started wondering 
how certainty factors related to probabilities … David 
showed how certainty factors could be mapped into a 
probabilistic representation … We found that certain-
ty factors and their use in chains of reasoning were 
actually similar to ideas about belief updating in a the-
ory of scientific confirmation described by philoso-
pher Rudolf Carnap in the early 20th century. 
Relaxing the independence assumptions in proba-
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bilistic reasoning systems could yield the full power of 
probability but would also quickly hit a wall of 
intractability—both in terms of assessing probabilities 
from experts and in doing inferences for diagnosis, 
based on observations seen in cases. And this led us to 
start thinking more deeply about methods for backing 
off of the use of full joint-probability distributions and 
coming up with new models, representations, and lan-
guages.…  
Even Herb Simon, who had inspired me deeply, and 
who I took to be a spiritual guide and mentor, seemed 
to be skeptical at times. I remember talking with him 
on the phone and getting very excited about models 
of bounded rationality founded in probability and 
decision theory — and a concept I refer to as bounded 
optimality. “Wasn’t this an exciting and interesting 
approach to bounded rationality?” After a pause, Herb 
asked me, with what I took to be a bit of disappoint-
ment, “So, are you saying you’re a Bayesian?” And I 
answered, “Yes, I am.” My proclamation didn’t dimin-
ish our connection over the years, but I had the sense 
that Herb wasn’t excited by my answer.…  
I want to point out that it was the expert systems tra-
dition, and the aesthetics and goals of that rising field, 
that really framed the work on probabilistic expert sys-
tems or Bayesian systems. For example, we really 
thought about the acquisition of probabilistic knowl-
edge, how could you do that with tools that would 
ease the effort, via raising levels of abstraction. The 
whole tradition of knowledge engineering evolved 
into methods for acquiring features, relationships, and 
parameters.  
The expert systems zeitgeist framed the pursuit as one 
of working to harness AI to help people to make bet-
ter decisions. It would have been very surprising to 
hear, in 1985, that we’d be at meetings on AI in 2017 
and have folks saying, “We have a new idea: we’re 
going to augment rather than replace human reason-
ing.” In the world of expert systems, this was assumed 
as an obvious, shared goal — the fact that we would be 
helping people to work on tasks at hand, whether it be 
decisions about treating patients or with helping peo-
ple to understand spectra coming out of a mass spec-
trometer. And so these notions I think unfortunately 
have faded with time. We have powerful tools now, 
but in many ways, folks are only starting to get back 
to questions about how AI systems should be 
deployed in ways that help people to solve complex 
problems in real time. 

Despite these continuities with the interests, 
ethos, and some of the central issues of the tradition 
of expert systems, the “probabilistic revolution,” as 
Horvitz calls it, had real consequences for the subse-
quent development of expert, and other, artificial 
intelligence systems. Horvitz recalled: 

The first system we worked on with probabilistic rea-
soning, the Pathfinder system for histopathology 
diagnosis … had explanation of probabilistic and deci-
sion-theoretic reasoning as a distinct focus. This effort 
was inspired by the work on explanation pursued in 
studies of expert systems. We really tried to make 
explanation work….  
We realized that we had a challenge with the funda-

mental opacity of complex reasoning when the sys-
tem was computing recommendations for the next 
best observation. Experts would not get what the sys-
tem did, because it was doing something unnatural — 
but more optimal — than familiar human diagnostic 
strategies. 
We worked to come up with a simplifying, human-
centric abstraction, overlaying a hierarchical ontology 
of diseases, commonly used by pathologists, onto the 
reasoning. The modified system was constrained to 
navigate a tree of categories of disease, moving to 
more precise disease categories as classes were elimi-
nated. We found that inference was slowed down, 
with more steps being introduced, but was now more 
understandable by experts. The pathologists really 
liked that….  
But the real change I think in the field happened 
when it became feasible to store and capture large 
amounts of data. Back in those first days with the 
probabilistic systems, we didn’t have much data. We 
had to develop and employ methods that could be 
used to define and capture conditional probabilities 
from experts. This was effortful knowledge engineer-
ing, similar to the efforts required to capture rules and 
certain factors from experts. We had to work to assess 
the structure of Bayesian networks, to lay out the 
structure of networks and then to ask experts to assess 
hundreds of numbers, and had to come up with tools 
for doing that.  
With more and more data coming available and the 
rising relevance of machine learning procedures, 
methods were developed to first mix machine learn-
ing and human assessments, and then started to focus 
more on the data itself in the 1990s. Things have 
moved away from reasoning deeply about tasks and 
tracking problem-solving as it unfolds and more so to 
one-shot classification — myopic pattern recognition 
in a quick cycle, with applications in recommender 
engines that do one-shot inferences, search engines 
that use machine learning to do one-shot ranking of 
list of results, and so on.  
There’s a huge opportunity ahead, I want to just high-
light this, to consider the kinds of problems and the 
kinds of experiences and decision support that folks 
were working to provide people with in the expert sys-
tems days, but now with modern tools. And I think 
that that’s going to be a very promising area for us to 
innovate in. 

In reflecting on the importance of the history of 
expert systems for the communities of artificial intel-
ligence today, Ed Feigenbaum stressed the impor-
tance of instrumentality as a motivation: 

We were really after a DENDRAL that could exceed the 
capabilities of mass spectrometrists. And in fact, Carl 
Djerassi did a little experiment with mass spec-
trometrists around the country to show this. The 
MYCIN group did an experiment with experts in 
blood infections around the country, which showed 
the capability of MYCIN was very good compared to 
those specialists.  
I worked on a defense application for DARPA, spent a 
few years on it, then DARPA gave a contract to MITRE 
to assess the capability of that system versus the 
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humans who were doing the work in the Defense 
Department. Our system did significantly better than 
those humans.  
As early as 1957, Herb Simon (… young people may 
not even know who Herb Simon was, one of the great 
scientific minds of the 20th century) made the pre-
diction that a machine would be world chess champi-
on in 10 years. Well, he was wrong about the time, but 
he was right about an AI program becoming world 
chess champion. So I think we were significantly moti-
vated, at least I was significantly motivated, by doing 
programs that did that. 
[T]he “Knowledge is Power Principle” is observed in 
almost all AI applications. For example, in the large 
number of advisory apps, hundreds that range widely. 
For example, these are just a few from the last two 
weeks of the New York Times, the San Francisco Chroni-
cle, and Wired Magazine: divorce law, consumer health 
advice, planning of travel vacations, income tax advi-
sor and assistant. There was a time that the income tax 
advisor expert system was the biggest selling expert 
system of all time. Also, in every one of the justifiably 
popular AI assistant systems, such as Siri and Alexa 
specifically, people now use the word “skills” to count 
the specific expert knowledge bases, large or small, 
that each assistant has. Alexa is said to have many 
because it is an open system. Siri has far fewer skills.  
In machine learning R&D, correctly dimensionalizing 
… the feature space is important, and machine learn-
ing engineers use knowledge from experts in making 
their design choices. That is what we call now “feature 
engineering.” In some critical applications, for exam-
ple like car driving, machine learning recognition 
processes can handle most of the cognitive load but 
not all. Sometimes, for the so-called edge cases, high-
er-level knowledge of the world will need to be 
deployed. 

For Bruce Buchanan, the primary lesson from the 
history of expert systems is that the very reasoning 
strategies, the thought processes, used by human 
experts are themselves forms of knowledge that can 
be learned, acquired: 

From the point of view of philosophy of science, one 
of the strong lessons and it was confirmed by one of 
the great dissertations in AI, namely Randy Davis’ dis-
sertation on metalevel reasoning, namely the strate-
gies that scientists and other problem solvers use can 
be written as knowledge-based systems. The strategy 
itself is knowledge, but it’s one level above the domain 
knowledge. So I take that as one of the very strong les-
sons to come out of two decades of expert systems 
work.  

Randall Davis shared this very same perspective, 
even going so far as to suggest that “knowledge-based 
systems” would have been a preferable term to 
“expert systems.” He explained: 

I’ve always preferred the term “knowledge-based sys-
tem” as opposed to “expert system,” and I like it 
because it advertises the technical grounds on which 
the system works: large bodies of knowledge. And I 
think it’s interesting because it holds for people as well 
as programs. It gets an answer to the question, why are 

experts, experts? Do they think differently than the 
rest of us, do they think faster than the rest of us?  
The claim that people and programs can be experts 
because they know a lot — and there’s evidence of this 
in the early work of Chase and Simon who talk about, 
I think it was, 30,000 patterns to be a good chess play-
er — more recent work says, you need to spend 10,000 
hours of experience on something to learn to be good 
at it. There’s lots of evidence that knowing a lot is the 
basis for expertise.  
And I think that’s interesting — it has a not-frequent-
ly-commented-on sociological implication. I think it’s 
a profoundly optimistic and inclusive message to the 
extent that expertise is, in fact, knowledge based. It 
becomes accessible to anyone willing to accumulate 
the relevant knowledge. That’s a crucial enabling mes-
sage in my opinion, perhaps the most important one 
in education: yes, you can learn to do this. 

For Eric Horvitz, his entreaty for the contemporary 
artificial intelligence community is for it to look at 
the history of expert systems, their technical charac-
ter, and the conclusions they supported as a resource 
for addressing today’s concerns. He concluded: 

I would suggest that people today take time to look 
back at the history, to review the systems that were 
built, the fanfare of the mid ’80s about expert systems 
and the collapse of that excitement, and the rise of the 
probabilistic methods that have become central in 
today’s AI efforts.  
People can learn by understanding the aspirational 
goals of time and the kinds of systems that were being 
built in their pursuit. I believe AI researchers will find 
the architectures of interest, including, for example, 
the blackboard models — multilayer blackboard mod-
els that were developed that employed procedures 
similar to backpropagation, notions of explanation 
that were considered critical, approaches to metarea-
soning for controlling inference, and the idea of build-
ing systems that engage in a dialogue with users, that 
are embedded with people and situated in a task in the 
real world, and that augment human cognition. These 
are all key themes of expert systems research, and 
some were so fundamental and assumed that we did-
n’t even talk about them, and now they’re coming 
back as new, interesting, and important questions. 

To date, a pronounced pattern in the history of 
artificial intelligence is that of oscillation. The com-
munities of artificial intelligence have swung their 
attention to and from a core set of interests and 
approaches repeatedly: heuristic problem-solving, 
neural networks, logical reasoning, and perception. 
Each has fallen into and out of, then back into, favor 
for at least one cycle, some more. Yet many within 
the artificial intelligence community see steady 
advance. As one recent report put it: “While the rate 
of progress in AI has been patchy and unpredictable, 
there have been significant advances since the field’s 
inception 60 years ago. Once a mostly academic area 
of study, 21st-century AI enables a constellation of 
mainstream technologies that are having a substan-
tial impact on everyday lives.” Even so, outside the 
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artificial intelligence community, the broader aca-
demic, commercial, governmental, and cultural 
interest in artificial intelligence has oscillated from 
almost-exhilaration to near-despair several times.  

It would seem that this pattern of oscillation is, to 
some degree, due to the very subject of artificial intel-
ligence: the broad and, in many places, nebulous 
concept of intelligence. Intelligence encompasses the 
“fast thinking” of perception to the “slow thinking” 
of complex problem-solving. It ranges from “deep 
learning” to “deep thinking,” and combinations 
thereof. Given such range, it is unsurprising that a 
field would shift its attention from one area to anoth-
er, as certain lines of inquiry gain traction and others 
appear stuck. But the pattern of oscillation and the 
sweep of intelligence pose the question: Whither 
integration?  

Can models of problem-solving be integrated with 
models of perception? Can models of recognition be 
integrated with models of reasoning? What is the 
role of knowledge, especially in the guise of common 
sense? Is a more integrated model of human intelli-
gence necessary for both greater intelligibility and 
greater instrumentality in artificial intelligence? 
 

Notes 
1. A video recording of the panel has been archived by the 
Computer History Museum (Mountain View, CA) under the 
title “AAAI-17 Invited Panel on Artificial Intelligence histo-
ry: Expert systems.” Catalog Number 102738231. 
www.computerhistory.org/collections/catalog/102738236 

. 
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