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The purpose of this article is to draw attention to an 
aspect of intelligence that has not yet received signifi-
cant attention from the AI community, but that plays 

a crucial role in a technology’s (and a person’s) effectiveness 
in the world, namely teaming intelligence. Over the past 
decade, there have been many successful attempts to apply 
technology to increasingly complex domains — domains 
once reserved almost exclusively for human effort. It is rare 
that an evening goes by without a news report of some event 
in the field of autonomous drones or self-driving cars or even 
the dangers of AI. Newly refined techniques and improved 
computing power have propelled AI into the forefront of 
both the media and human imagination once again. Today’s 
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n The purpose of this article is to draw 
attention to an aspect of intelligence that 
has not yet received significant attention 
from the AI community, but that plays a 
crucial role in a technology’s effectiveness 
in the world, namely teaming intelligence. 
We propose that Al will reach its full 
potential only if, as part of its intelligence, 
it also has enough teaming intelligence to 
work well with people. Although seeming-
ly counterintuitive, the more intelligent 
the technological system, the greater the 
need for collaborative skills. This paper 
will argue why teaming intelligence is 
important to AI, provide a general struc-
ture for AI researchers to use in developing 
intelligent systems that team well, assess 
the current state of the art and, in doing 
so, suggest a path forward for future AI 
systems. This is not a call to develop a 
new capability, but rather, an approach to 
what AI capabilities should be built, and 
how, so as to imbue intelligent systems 
with teaming competence. 
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excitement about AI is largely driven by demonstra-
tions of AI making inroads into areas heretofore 
untouched by machine intelligence. Some examples 
include the Google (now Waymo) self-driving cars 
driving the streets of Mountain View, Watson defeat-
ing human opponents in the game show Jeopardy, 
DeepMind’s AlphaGo beating the world champion at 
the ancient game of Go, and digital assistants like Siri 
and Alexa becoming ubiquitous. Additionally, a host 
of less conspicuous examples of AI success are mak-
ing an impact in finance, commerce, marketing, and 
customer experience. On the heels of many success 
stories, it is important for researchers and developers 
to be identifying what gaps and hurdles remain to 
the successful development of intelligent technolo-
gies. These gaps and hurdles will characterize the 
nature of foundational and applied research that 
needs to evolve in order to develop advanced intelli-
gent technologies that deliver on the promises of 
reduced cost, enhanced performance, and improved 
safety. This article will argue that a lack of teaming 
intelligence is one of the most prominent gaps in 
intelligent systems.  

The gap in teaming intelligence is an important 
one to emphasize because it can impact system per-
formance, resilience, and even viability. Understand-
ing the challenges faced by AI, or any technology, is 
not just about making better AI, but it is also about 
enabling AI to achieve its full potential and deliver 
on its promised benefits. This seemingly counterin-
tuitive effect is well characterized in the autonomy 
paradox (Blackhurst, Gresham, and Stone 2011), 
which describes the experience of the Department of 
Defense in which investments in autonomy have 
resulted in increased rather than decreased opera-
tional costs. Without adequately addressing teaming 
intelligence, technologies can end up making the job 
more difficult — requiring more humans, more train-
ing, and more expertise. 

As we pursue more advanced intelligent technolo-
gies, it is important to remember that no AI is an 
island. Technology does not work in isolation from 
people. In fact, technology thrives most when suc-
cessfully woven into human work practice. Manag-
ing this integration requires teaming intelligence. 
What is common knowledge for most human-cen-
tered design specialists, but not always for those out-
side this discipline, is that the growth of sophistica-
tion in machine capabilities must go hand in hand 
with the growth of sophistication in human-
machine interaction capabilities. Machines do not 
automatically get simpler to use because they have 
gotten smarter. Indeed, just the opposite is usually 
true. This correlation can be seen in more advanced 
commercial airliners, which typically require longer 
training times for type ratings than their predecessors 
did. More intelligent capabilities inevitably require 
correlated teaming capability enhancements. As 
such, we propose that AI will reach its full potential 

only if, as part of its intelligence, it also has enough 
teaming intelligence to work well with people. This 
is not simply a call to develop a new capability. Team-
ing itself is not an isolatable, unitary capability that 
needs to be developed as an add-on to systems. 
Rather, it should be viewed as an approach to what AI 
capabilities should be built, and how, so as to imbue 
intelligent systems with teaming competence. 

What Is Teaming Intelligence? 

Modern theories of general intelligence provide var-
ious categories of intelligence, but none adequately 
capture the knowledge, skills, and strategies neces-
sary to team effectively. For example, one of Gard-
ner’s nine types of intelligence is interpersonal (Gard-
ner 1998) and Adam’s list of 89 general intelligence 
competency areas includes social interaction (Adams 
et.al. 2012). However, most general intelligence cate-
gories have an aspect related to teaming intelligence 
and can be assessed with respect to how the particu-
lar competency applies to oneself, the environment, 
and team members. Thus teaming intelligence per-
meates general intelligence.  

The literature on the study of human teams pro-
vides more sophisticated models of teamwork. These 
models tend to be lists of characteristics, properties, 
or behaviors. For example, one set of competencies 
from Baker, Day, and Salas (2006) includes team lead-
ership, backup behavior, mutual performance moni-
toring, communication, adaptability, shared mental 
models, mutual trust, and team orientation. Team-
work categories, characteristics, and properties vary 
from model to model, but the one concept that is 
consistent throughout is the importance of interde-
pendence. This truth is both invariant across all 
domains and fundamental to teaming. As such, we 
propose that “teaming intelligence” involves knowl-
edge, skills, and strategies with respect to managing 
interdependence. The knowledge is an understand-
ing of interdependencies within the work and among 
the team members. The skills are having the sup-
porting mechanisms to participate in interdependent 
activity, such as being capable of observing one 
another’s state, sharing information, or requesting 
assistance. The strategy is about using the knowledge 
to exploit the existing skills in order to intelligently 
manage the interdependencies with the purpose of 
producing effective teaming, such as knowing what 
information to share and when to request assistance. 

To better intuit the concept of interdependence, 
consider the example of playing the same sheet of 
music as a solo versus playing it as a duet. Although 
the music is the same, the processes involved are very 
different (Clark 1996). The difference is that the 
process of playing music as a duet requires ways to 
support the interdependence between the players. 
Understanding, supporting, and exploiting interde-
pendence is what teaming intelligence is all about. 
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Success in a duet requires not only execution of the 
musical score (that is, individual competency), but 
also the extra work of coordinating with someone else. 
Such work includes a knowledge of the coordination 
needs and possession of the mechanisms by which to 
achieve coordination, as well as the reasoning to per-
form the necessary coordination. Intelligently manag-
ing the interdependencies of this extra work is enabled 
by what is being called teaming intelligence. Many 
human activities (perhaps most) are more like a duet 
than a solo. AI must be competent with this type of 
activity because failure of either party in the duet will 
hinder or prevent success of the duet.  

How AI Is (Not) at  
Odds with Teaming 

One of the main drivers promoting AI and automa-
tion in general is reduction in cost either directly or 
through improvements in efficiency such as speed, 
reliability, or economy of scale. Many of the chal-
lenges Amazon is looking for AI to solve focus on cost 
and efficiency. Safety is another driver for AI. Tech-
nologies like antilock brakes, collision warnings, and 
lane-departure alerts help save lives every day. A 
main argument for the adoption of self-driving vehi-
cles is that, as with the earlier technology successes, 
AI will save lives. Besides cost and safety, there is 
another important driver: the potential to exceed 
human abilities and open new capabilities. Today’s 
computers have access to an enormous amount of 
data and they have the speed to pour over that data 
far faster than any human could. This is just one 
example of how AI can open, and is opening, doors 
that people will never be able to open themselves.  

At the heart of all of these arguments is the con-
cept that humans are the limiting component of 
many systems. Humans can be a big cost and limit 
efficiency, they can negatively impact safety, and 
their natural capabilities will limit what they can 
achieve in some areas. It is natural and appropriate to 
consider AI or technology in general as a means to 
compensate for human limitations, and indeed AI 
can play a crucial role. However, a key misconception 
is in how AI should be compensating for human lim-
itations. Very often, AI is seen as replacing the 
human, the argument being that if people are the 
source of problems, eliminating them is the solution. 
However, this is a very narrow perspective that can 
cause designers to miss or ignore the potential bene-
fits of teaming. 

One problem with the replacement perspective is 
that replacement frames the problem as AI versus 
human, the goal being to determine which is better. 
This perspective is fraught with pitfalls. Often human 
failure is compared against imagined AI perfection, 
for example, comparing the 35,000 driving deaths 
annually against the promise of flawless autonomous 
cars. Nothing ever measures up in comparison to per-

fection. Another common issue is extrapolation of 
performance to competence. Brooks warns against 
the difference, stating: “People hear that some robot 
or some AI system has performed some task. They 
then generalize from that performance to a compe-
tence that a person performing the same task could 
be expected to have” (Brooks 2017, under “Perfor-
mance versus competence”). An example is a state-
ment like “[Google’s] cars have driven in auton -
omous mode for more than one million miles since 
2009. In all that time, they’ve been involved in 16 
accidents through August — none of which were 
caused by the self-driving car.”1 This is truly amazing 
performance, but care must be taken not to project 
unwarranted competence. In this case, some of the 
important points that have been left out are the type 
of driving conditions in which the system was tested, 
that the self-driving cars always had a human safety 
driver ready to take control, and that those safety 
drivers actually took control relatively frequently. 
Partially in response to some of the earlier ambitious 
claims of perfection, autonomous car companies are 
now required to track disengagements, in other 
words, the number of times a human needed to take 
over. A recent report2 shows an average of 695 miles 
per disengagement, with the best company posting 
5,128 miles per disengagement. The vast majority of 
the time, there would not have been an accident 
when the safety driver took over — drivers are direct-
ed to be risk averse. However, companies are also 
asked by the state of California to report “critical dis-
engagements,” those cases where there would have 
been an accident if the safety driver had not taken 
control. As of 2017, the best performing company 
has about one critical disengagement every 50,000 
miles, a remarkable accomplishment for these new 
robotic technologies.  

What is the rate of serious accidents for human 
drivers, one might ask? The accident statistics can be 
a little hard to parse (for example, the number of peo-
ple injured or killed in an accident does not reflect 
the number of drivers or vehicles involved), but the 
number is roughly one injury accident every 1.5 mil-
lion miles driven.3 This means self-driving cars are 
still performing one to two orders of magnitude 
worse than humans on this metric. More troubling is 
the fact that the rate of disengagements per miles 
driven seems to have plateaued for self-driving vehi-
cles since 2015, averaging just under 20 disengage-
ments per 100,000 miles.4 This data is from the lead-
ing company in self-driving cars. This company is 
greatly outperforming all other companies in this 
area. They reported more autonomous miles than all 
other companies combined, seven times more than 
the next leading company, and they also have the 
lowest disengagement rate.  

These numbers do not tell the whole story, but 
they certainly temper the predictions about the per-
fect performance of self-driving cars. Autonomous 
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Figure 1. The 4S Interdependence Framework for Understanding Teamwork. 

vehicles undoubtedly have advantages over human 
drivers in aspects of performance such as reaction 
time and vigilance; however, they fall short in per-
ception, judgment, and dealing with novelty. Good 
driving requires the best of both skill sets, and both 
parties — the human and the autonomous vehicle — 
fall short in some areas. Each will be a “better driver” 
in different circumstances. 

Another problem with the replacement perspec-
tive is that replacement is rarely what is actually hap-
pening. When the problem is viewed as replacement, 
it fosters “the idea that new technology can be intro-
duced as a simple substitution of machines for peo-
ple — preserving the basic system while improving it 
on some output measure (lower workload, better 
economy, fewer errors, higher accuracy)” (Dekker 
and Woods 2002). This naive viewpoint is one of the 
myths of autonomous systems (Bradshaw et al. 2013) 
and it can lead to a host of well-known conse-
quences, including clumsy automation (Wiener 
1989) and automation surprises (Sarter, Woods, and 
Billings 1997).  

Additionally, humans are often the enabling com-
ponents of many technologies. For even the most 
sophisticated technology, people are usually setting 
the goals and parameters, monitoring for anomalous 
situations, and acting as the de facto backup in case 

of automation failure. Today’s commercial aircraft 
provide an excellent example. These are highly auto-
mated systems that can fly the majority of the flight 
without assistance — some are even capable of land-
ing themselves. However, it is the human pilots who 
dictate the flight plan, who decide whether automat-
ic landing is appropriate, and who handle the take-
off. Some small drones have demonstrated automat-
ic takeoff, but no aircraft automatically taxi to or 
from the runway. Not to mention, human pilots are 
essential for interacting with Air Traffic Control 
throughout the flight. It is often pointed out that 
human error is causal in over 80 percent of commer-
cial airline accidents.5 However, this statistic hides 
the Bayesian fact that air travel is incredibly safe at 
this point in history and that accidents often arise 
from those situations in which the pilots could not 
resolve a teaming problem with onboard automa-
tion. Perhaps most significantly, a 2013 study by the 
National Transportation Safety Board (Flight Deck 
Automation Working Group, 2013) found that com-
mercial pilots report addressing and resolving a safe-
ty critical situation one in every five flights. If even 
one in ten thousand of these had the potential of 
being an actual accident, there would be airplane 
accidents every day. Human pilots help enable avia-
tion’s remarkable safety record.  

The 4S Interdependence Framework for Understanding Teamwork

Design Time Premission Planning Run Time

State

Structure

Skills

The assumptions about what is 
known or needs to be known to 
accomplish the taskwork 
(default assumptions).

Current context that changes the 
default assumptions (establish- 
ing common ground).

Continuous or periodic updates 
required for sufficient situation 
awareness (maintaining 
common ground). 

Strategy

Team
Organization

The different ways to support roles, 
taskwork division, and distribution
(includes levels of automation).

Deciding on team composition, 
organization, and initial role
assignment.

Adjusting to team composition 
changes, organizational changes, 
and role changes (includes
 “adjustable autonomy”).

Individual
Competencies

How an individual does its
taskwork (engineering).

Based on anticipated competence
relative to expected circumstances. 

Competencies can vary with time,
circumstances, and context.

Team 
Competencies

The coordination mechanisms that
enable signaling and interpretation,
including algorithm hooks and 
interface elements.

Used to enable coordination and
establish common ground and the
initial plan. 

Used to enable coordination, 
maintain common ground, replan, 
and calibrate trust and can vary 
with circumstances.
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The different ways to meet an 
objective.

Includes choosing options, 
sequencing, prioritization, and 
contingency planning.

Continuous replanning to deal 
with the unknowable, uncertain, 
and unexpected.

Taskwork

Limits Guides

The reasoning algorithms and
evaluation criteria that determine
how to use the skills and exploit
the structure. 

Establishing things like standard 
operating procedures, agreements, 
norms, and polices.  

Coordination and negotiation
(directability) used to adapt to 
circumstances based on knowledge
of state, structure, and skills. 

Team

Individual
Strategy for an individual doing
taskwork (planning / AI).

Configuration or bootstrapping Perception and reasoning used to
adjust individual taskwork. 

Environment

Individual

Team
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By focusing on compensating for human limita-
tion by replacement, another important considera-
tion is often neglected — that replacement is not the 
only, or even the best, way to compensate for human 
limitations. Instead of replacing a human, AI could 
enhance the human’s ability. AI could support or 
improve the human’s ability like an orthotic or 
extend it like a prosthetic (Ford et al. 2015). People 
have an amazing set of abilities that should not be 
discarded simply because they also have some limi-
tations. In many ways, people and machines can 
complement one another to potentially yield better 
performance than either could achieve separately. 
This sentiment is echoed throughout Digital Apollo, 
David Mindell’s historical account of past technolog-
ical achievements surrounding the Apollo missions. 
Throughout the recounting, there is friction between 
the astronauts and engineers on the proper design 
philosophy with respect to getting to the moon. The 
astronauts, who were all pilots, took the viewpoint 
that NASA was designing a human-piloted flying 
machine. The engineering perspective was that NASA 
was designing an autonomous rocket that would 
happen to carry human passengers. The debate was 
sometimes characterized as “black boxes vs. gray 
matter.” Though the same arguments about whether 
people or machines were better suited for a given task 
existed back then, the real story with all of these sys-
tems is how humans and automated technology 
worked together to achieve these great accomplish-
ments — neither was likely to succeed alone.  

AI is often regarded as at odds with people, pro-
moting the misconception that the solution is either 
exclusively AI or exclusively people. People will con-
tinue to be a vital part of all but the least complex 
systems for the foreseeable future, and this reality 
must influence system design. The success of AI capa-
bilities will depend not only on technical compe-
tence, but also on how well an AI system functions 
with people. Achieving both competencies is a fun-
damental problem with which designers must wres-
tle as they improve the capabilities of the technolo-
gy, and although this has been true for most 
technological advances throughout human history, 
the challenge is particularly acute for the sophisti-
cated goals of today’s intelligent systems. At the heart 
of this problem is the issue that even with advances 
in capability, machines and people remain interde-
pendent. Without adequate support for the interde-
pendencies — which we call teaming — problems are 
inevitable. Most people have probably come across a 
very capable person who did not work well with oth-
ers, making it difficult to leverage that individual’s 
talents. Unfortunately, many technologies are built 
this way. They are designed to perform a function, 
and it is up to people to work around the technolo-
gy’s lack of social competence. For any intelligent 
agent, human or machine, to leverage their talents 
within a larger group outside themselves, having the 

knowledge, skills, and strategies to effectively team, 
which we are terming teaming intelligence, will be 
essential.  

Interdependence Framework for 
Understanding Teaming Intelligence 

This section is intended to provide a general struc-
ture for AI researchers to use in developing intelli-
gent systems that team well. It focuses on interde-
pendence as the central organizing principle for 
understanding teaming and designing team intelli-
gence. Interdependence is often simply equated to 
mutual dependence, where entities rely on one 
another usually because they lack some capacity. 
However, this definition of the concept is too sim-
plistic to capture the nuances observed in interde-
pendence relationships between humans and 
machines engaged in joint activity, as the duet 
example highlights. Interdependence is the set of 
relationships used to manage dependencies (John-
son et al. 2014). Interdependence relationships 
must be complementary among the parties 
involved. Simply stated, one can only give if the 
other can take and vice versa. These relationships 
can be required (that is, hard constraints) or oppor-
tunistic (that is, soft constraints). Required forms of 
interdependence include things like use of shared 
resources and producer or consumer relationships. 
Examples of opportunistic forms of interdepend-
ence include progress appraisals, warnings, helpful 
adjuncts, and observations about relevant unex-
pected events.  

Understanding the nature of the interdependen-
cies between groups of humans and machines pro-
vides insight into the kinds of coordination or team-
ing that will be required. Indeed, coordination 
mechanisms in skilled teams arise largely because of 
such interdependencies (Johnson et al. 2014). Since 
interdependence is the essence of joint activity, it 
should not be a surprise that different kinds of joint 
activity can be distinguished according to the types 
of interdependencies involved. As such, developing 
teaming intelligence will require developing support 
for managing interdependent relationships.  

A significant body of work exists on teaming. Some 
contribute important concepts like joint activity and 
common ground (Clark 1996; Klein et al. 2004) and 
situation awareness (Endsley and Kiris 1995). Others 
have pointed out the requirements and challenges of 
being an effective team player (Sarter, Woods, and 
Billings 1997; Klein et al. 2004). Taking a fresh look 
at this work through the lens of interdependence, fig-
ure 1 depicts a framework for organizing many of the 
important concepts associated with teaming. The 
focus on interdependence is key to making this 
framework more actionable than the high-level con-
cepts alone could. The framework is based on four 
facets: state, structure, skills, and strategy. State and 
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structure are both related to knowledge. Differentiat-
ing them provides a clearer understanding of inter-
dependencies. Skills, as the term is being used here, 
are the building blocks of team behavior. Strategy is 
the ability to reason over and leverage those building 
blocks to produce effective team behavior. These 
facets are explained across design time, pre-mission 
planning, and run time.  

State 

The need to understand state leads to informational 
interdependence, which in turn motivates the need 
for common ground. Clark and Brennan define com-
mon ground as “mutual knowledge, mutual beliefs, 
and mutual assumptions” (1991, 127). Teamwork is 
built on common ground. Design-time choices dic-
tate default assumptions about what is known or 
what needs to be known to accomplish the work. Pre-
mission planning can be used to alter the default 
assumptions based on current context and to estab-
lish common ground. Continuous or periodic 
updates are required to maintain common ground 
during the course of the activity. Common ground is 
also related to situation awareness (Endsley and Kiris 
1995). It includes aspects of state about the individ-
ual, the environment, and the team. Awareness of 
the team state is essential for team intelligence and 
often lacking in today’s technology. State captures 
the past and present situation within the relevant 
structure. 

Structure 

For any activity, there is structural interdependence. 
Structural interdependence can be a result of the 
taskwork (for example, the need for shared resources) 
or the team’s organizational structure (for example, 
role B depends on the output of role A). Whether the 
structure is inherent in the taskwork or designed in 
through organizational choices, it can create differ-
ent types of interdependencies. Teaming intelligence 
needs to understand where interdependencies exist 
and with whom. It also must understand the nature 
of those interdependencies. In addition to under-
standing structure, agents might need to be able to 
create or manipulate structure for different situa-
tions.  

Taskwork can create interdependencies that deter-
mine the different ways the individual contributions 
of members of a group can be combined. Design 
choices determine the options, pre-mission planning 
can sequence and prioritize the taskwork, and run 
time requires continuous replanning to deal with 
uncertainty and unexpected events, which might 
require changes to the structure. Steiner (1972) iden-
tified five task types that dictate different interde-
pendencies: additive, compensatory, disjunctive, 
conjunctive, and discretionary. Additive tasks allow 
members to each contribute individually, and those 
individual contributions then add together. An 

example of an additive task is picking up trash. Com-
pensatory tasks allow group members to average 
their individual contributions. An example would be 
when a contestant “asks the audience” on the game 
show Who Wants to Be a Millionaire, and they receive 
a summary of all of the audience members’ opinions. 
Disjunctive tasks require group members’ contribu-
tions to be combined into a single solution. An 
example is when the contestant on Who Wants to Be 
a Millionaire must take the audience input and make 
a single choice. Conjunctive tasks require contribu-
tions from all group members. An example would be 
a platoon needing all members to cross the bridge for 
the team to cross the bridge. Discretionary tasks 
allow flexibility on how group members combine 
contributions. Though there can be flexibility in how 
contributions between people and machines could 
be combined, this flexibility is often inhibited by 
design choices.  
 In addition to the taskwork structure, design 
choices about team structure can equally create inter-
dependencies. The importance of this point is mani-
fest by much of the work associated with organiza-
tion theory. Thompson’s work (1967) in particular 
identified three types of interdependencies: pooled, 
sequential, and reciprocal. Organizational structures 
that permit pooled interdependence allow all units 
to contribute independently, similar to Steiner’s addi-
tive task type. Sequential structures arise when the 
output from one organization unit is needed as the 
input to another unit, for example, as in an assembly 
line. Reciprocal structures are similar to sequential, 
except that they are cyclical. Team structure is not 
only about the human organizational choices, but 
the engineering design choices as well. It includes 
what are commonly referred to as levels of automation 
(Sheridan and Verplank 1978; Parasuraman, Sheri-
dan, and Wickens 2000; Kaber and Endsley 2004), 
which really describe team structure options. Team 
structure applies to design-time choices as well as to 
runtime operational decisions, which are sometimes 
referred to as adjustable autonomy. 

These examples of taskwork structure and team 
organizational structure are only the beginning of 
understanding how structure creates interdependen-
cies. In general, identifying teaming structure 
involves understanding the work, how it can be dis-
tributed and, most importantly, the interdependen-
cies created by such distribution. It also involves 
understanding how changes to the team composi-
tion, organization, roles, and environment impact 
the potential interdependencies.  

Though people usually develop some basic intu-
ition about structural interdependence, this intuition 
becomes insufficient as complexity increases, hence 
the need for fields of study such as organizational 
theory. Unfortunately, intelligent systems in general 
do not currently reason over structural interdepend-
ence. The “intelligence” about such things is hard-
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coded into behaviors and algorithms as design-time 
choices, making it rigid and brittle. Without an 
understanding of structural interdependence, intelli-
gent systems will remain poor team members 
because they will not be able to adjust their behavior 
to comply with and exploit the structural interde-
pendence, especially in dynamic domains with high 
uncertainty.  

Skills 

While knowing what structural interdependencies 
exist is important, teaming intelligence also requires 
having appropriate coordination mechanisms to deal 
with those interdependencies. As noted by Thomp-
son: “If there are different types of interdependence, 
we would expect to find different devices for achiev-
ing coordination” ([1967] 2017, 55–56). People nat-
urally develop capabilities to coordinate in different 
ways. In fact, many of our technologies — such as the 
telephone, email, texting, and Slack messaging — are 
based on the need to coordinate. While people can 
easily learn and adapt to new coordination mecha-
nisms, machines do not come equipped with this 
capability. They require the development of inter-
faces and supporting algorithms instrumented with 
appropriate hooks to enable interaction. Design 
choices can actually inhibit or prevent coordination, 
as demonstrated by the need for programs like the 
Defense Advanced Research Projects Agency (DARPA) 
Explainable Artificial Intelligence (XAI) program, 
which notes that “the effectiveness of these systems 
is limited by the machine’s current inability to 
explain their decisions and actions to human users.”6 
The solution DARPA envisions is not just an inter-
face, but new machine learning techniques that pro-
duce more explainable models. For intelligent sys-
tems to be successful in joint activity, they will need 
teaming skills. An accumulating body of theory and 
research points to the key elements that comprise an 
effective teaming skill set (Christoffersen and Woods 
2002; Klein et al. 2004; Johnson et al. 2011). Observ-
ability, predictability, and directability are properties 
commonly emphasized in the literature. We use 
these terms as a shorthand to refer both to instilling 
one’s own behavior with these properties and to 
interpreting the behavior of others with respect to 
these properties. 

Observability refers to how clearly pertinent 
aspects of one’s status — as well as one’s knowledge 
of the team, task, and environment — are observable 
to others. The importance of this capability, often 
referred to as transparency, can be found in many ref-
erences (for example, Gao and Lee 2006; Klein et al. 
2004; Wiener 1989). However, effective teaming 
often requires complementary relations, so observ-
ability also involves intelligent systems that are capa-
ble of observing the status of their human counter-
parts, something they are not particularly good at. 
Consider how much more capable our phones are 

with just a little human context, such as GPS posi-
tion, GPS heading, and IMU. All of these provide 
context about the person and enable new and more 
useful AI capabilities. Implied in observability are the 
communication skills, both verbal and nonverbal, 
necessary to observe and interpret pertinent signals 
about status. Observability is about mutually sharing 
knowledge about past and present state to establish 
and maintain common ground. 

Predictability, in contrast, involves the future. Pre-
dictability refers to whether one’s actions and inten-
tions are predictable enough that others can reason-
ably rely on them when considering their own 
actions, p. 195. Its importance is also made abun-
dantly clear throughout the literature on teamwork 
(for example, Billings 1997; Klein et al. 2004; Wiener 
1989). Mutual predictability involves the capability 
to receive information about the intentions of oth-
ers, to be able to predict future states, and to take 
those future states into account when making deci-
sions. One of the big challenges with technology as 
it takes on more sophisticated roles is supporting 
human situation awareness. Situation awareness, as 
defined by Endsley and Kiris (1995), is about percep-
tion (that is, observability) and projection (that is, 
predictability), in addition to awareness of the literal 
“situation” (for example, “We are now flying over 
Wyoming”). Situation awareness is often applied to 
the human’s awareness of the machine, but effective 
teaming might require the machine to have suffi-
cient awareness of the human as well.  

Directability refers to one’s ability to direct or 
influence the behavior of others and complementar-
ily to be directed and influenced by others. While the 
importance of observability and predictability are 
well supported throughout literature, directability 
has had much less attention (for example, Christof-
fersen and Woods 2002; Klein et al. 2004). Directabil-
ity includes explicit commands such as task alloca-
tion and role assignment, as well as subtler 
influences. Examples of subtler influences include 
providing guidance, suggestions, or even salient 
information that is anticipated to alter behavior, 
such as a warning.  

One of the topics that has gained prominence over 
the past few years with respect to technology is trust. 
People tend to live on the extremes of trust: blind 
trust of automation or open contempt and distrust of 
automation. This dwelling in the extremes, this lack 
of gradation, is largely because technology often 
lacks the mechanisms to help people calibrate their 
trust. Instead, “a majority of empirical research treats 
factors of trust as correlates rather than as processes, 
neglecting interdependent aspects of trust. Trust 
evolves over time, particularly between interdepend-
ent team members” (Chiou and Lee 2015, p. 195). 
People calibrate their trust through their teaming 
skills. Observability and predictability provide clues 
about the competence or lack thereof of teammates. 
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Unfortunately, technology often has invisible incom-
petence that prevents such calibration. Examples of 
this invisible incompetence are numerous, ranging 
from historic examples of pilots being unaware of the 
competency envelope of the onboard automation 
(Wiener 1989; Norman 1990) to more contemporary 
examples of people being unaware of system brittle-
ness, such as the fact that modern machine learning 
perceptual models can be fooled with very small data 
changes (Goodfellow, Shlens, and Szegedy 2014). 
Directability also plays a role by providing the affor-
dances of control that also contribute to trust. Being 
able to bound or quickly alter a teammate’s actions 
increases confidence in team behavior, while lack of 
such controls often leads to mistrust and overly con-
servative behavior.  

The properties of observability, predictability, and 
directability themselves express interdependence 
relationships, and the three of them together help 
define design requirements for both algorithms and 
interfaces. These relationships are used to navigate 
structural interdependencies, and as such, they are 
the mechanisms — skills, in fact — for establishing 
and maintaining common ground. People naturally 
acquire these skills throughout life, but such skills are 
all too often lacking in technology.  

Strategy 

Teaming strategy is about having the competency to 
discern how and when to exploit interdependence 
appropriately. As Peter Drucker noted long ago, 
“when it comes to the job itself, however, the prob-
lem is not to dissect it into parts or motions but to put 
together an integrated whole” ([1954] 2006, 295). This 
is the challenge for AI — integrating into human 
workflow. It involves things like understanding infor-
mational relevance, discerning appropriate commu-
nication frequency and modality, managing atten-
tion, and estimating the value of information. These 
elements change with task context, environment/sit-
uation context, and team context. People generally 
develop some skill at competently sharing informa-
tion at appropriate moments, though most people 
also know examples of those who coordinate too 
often or not often enough. Again, machines lack this 
social competency. They provide only the informa-
tion decided on a priori by the engineer. This infor-
mation is often streamed regardless of relevance, 
alerts annoyingly interrupt without normal social 
timing or prioritization, and “communication” regu-
larly occurs without regard to or understanding of 
the recipient’s attention or comprehension. Much of 
human factors research is about identifying and cat-
egorizing the ways machines fail to have adequate 
teaming strategies and skills. 

In summary, strategy is composed of design-time 
choices and preactivity agreements, as well as real-
time negotiation and replanning (directability). It is 
based on reasoning over knowledge (common 

ground) that can be known a priori (initial state and 
structure) and updated in real time via skills (observ-
ability, predictability, and directability) to maintain 
common ground in support of teamwork. As figure 1 
indicates, strategy is based on an understanding of 
skills, structure, and state. It is common today for 
individual task competencies, that is, the automa-
tion, to dictate the interaction, but the 4S interde-
pendence framework suggests that this approach 
should be inverted and that interdependencies (from 
state and structure) should dictate the design of the 
automation (skills), as argued by Johnson (2011). 
Support for the various forms of interdependence 
must be built in at design time, because design-time 
choices will limit runtime options.  

How Team Intelligent  
Are Today’s AI Systems? 

While today’s systems demonstrate strides in many 
dimensions of intelligence, AI in general has only 
rudimentary teaming intelligence. Team awareness 
remains impoverished. Many systems are opaque to 
their human teammates, and few systems have any 
knowledge or awareness of the people they work 
with. Dogs, who lack the natural language skills 
found in today’s technologies like Alexa, are much 
more capable teammates than the most sophisticat-
ed technologies fielded to date. Even a child of two, 
who has not fully mastered body control, who has 
only limited knowledge and immature reasoning and 
decision-making skills, possesses amazing teaming 
abilities. One could argue that the way children reach 
mature competency in the other intelligence areas is 
through the early development of a teaming compe-
tency that allows them to ask questions, to take 
instruction, and to give and receive explanations — 
skills uncommon in the AI world. 

We can further understand the limitations of cur-
rent teaming intelligence by considering the compe-
tencies with respect to the 4S interdependence 
framework, that is, by considering the teaming state, 
structure, skills, and strategy. Today’s technology 
collects a massive amount of data about state. This 
data has improved the self-awareness and environ-
mental awareness of technology, but often team-
member awareness is overlooked. Most systems also 
have limited or no knowledge of structural interde-
pendence, with the exception of rigidly defined task 
sequencing and authorization requests. Task inter-
dependence is determined at design time, often 
based solely on technological capability. Team 
organization is rarely designed, but is instead often 
the result of requiring people to fill the gaps left by 
the technology. When the interdependence arises, it 
is up to the people in the system to recognize the 
need and to compensate. Systems also have narrow 
teaming skills, usually confined to diagnostics 
focused on current state (basic observability). Few 
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provide predictive information and most have 
extremely limited directability. By and large, there is 
no team strategy support. Humans again are the 
default enabler of strategy and must manage both 
sides of the interaction, using whatever constrained 
and potentially poorly designed teaming skills are 
provided by the technology. 

Technologies Targeting Full Automation 

The goal of many technology development efforts is 
to eliminate the need for people. Some popular 
examples are the Roomba vacuum, self-driving cars, 
and many of the current deep learning efforts. 

While teaming is often ignored, especially in the 
early stages of a particular technology, the need for 
teaming always arises as the technology matures. 
This connection between mature technology and 
the need for teaming can be seen by noting the dif-
ference between the original Roomba and the newer 
980 model. The original model relied on a simple 
random bump-and-go exploration strategy. The 980 
is indeed more intelligent, using sensors and algo-
rithms to build a map of the room to generate a 
more effective and shorter cleaning route. This 
enhanced intelligence also allows the robot to pause 
whenever it is low on battery, go back to the charg-
ing station, and then resume where it left off. Besides 
these individual competences, the company also 
added better teaming intelligence to enable the “ful-
ly auton omous vacuum” to better work with its 
owner (the teammate). The owner can receive 
detailed cleaning maps of their Roomba through an 
app. The maps show exact areas of clean and dirty 
spots in the home (observability). The Roomba can 
also notify the owner when it is finished cleaning 
(observability).The owner can see how long a task 
will take (predictability) and can schedule the oper-
ational time of the Roomba (directability). This pat-
tern of aiming at full automation and ending up 
with human collaboration is the true story of AI. 
Even when the task is so simple that it can be done 
independently, like vacuuming, there remain inter-
dependencies with people.  

Addressing these interdependencies often requires 
completely redesigning the underlying AI algorithm. 
In the case of the Roomba, the cleaning algorithm 
changed from a random bump-and-go approach to a 
more sophisticated path-planning approach. This 
more advanced capability made the AI more efficient 
at its work, but also enabled better human interac-
tion through support for observability, predictability, 
and directability. Today’s machine learning advances 
are facing a similar circumstance. Machine learning 
has demonstrated more sophisticated capabilities 
that have raised interest in the technology, while at 
the same time the DARPA XAI project is examining 
how to redesign these types of technologies to be 
more explainable so they can be more useful to the 
humans with whom they will need to work.   

Another interesting comparison is the Google / 
Waymo self-driving car and the Tesla S, which adver-
tises an autopilot. Both technologies have demon-
strated astounding abilities over the last few years. 
Early on, Google made the ambitious choice to elim-
inate the role of the human driver. Thus, the Waymo 
car has little teaming intelligence since people are 
seen as inert passengers instead of involved drivers. 
Tesla began as a normally driven car and has been 
offering increasingly more advanced driver-assist 
options. This design stance forced consideration of 
the driver from the beginning. Despite discussions of 
its future as a fully autonomous vehicle, as of the ver-
sion 8 autopilot, the Tesla is not a self-driving car, but 
a semiautonomous car meant for highway driving.7 
This approach has actually made Tesla more attuned 
to teaming intelligence and more capable of teaming 
with a driver. As one reviewer put it, “The Tesla felt 
more like a giant iPhone than a car,”8 presumably 
complementing Tesla’s attention to the user. In the 
Tesla, drivers have profiles, they can adjust how far 
behind other cars the autopilot will follow, they can 
influence when lane changes occur, and they get 
warned if they remove their hands from the steering 
wheel. The biggest statement about team intelligence 
learned from the comparison of the Google/Waymo 
self-driving cars and Tesla’s semiautonomous cars is 
that Tesla’s cars have been commercial products for 
years and, as of the writing of this article, the 
Google/Waymo cars still are not.  

Technologies Targeting Teaming 

The commercialization of digital assistants, as they 
are often referred to, provides another interesting 
look into the state of teaming intelligence. These sys-
tems, like Siri and Alexa, have seemingly broken 
through the teaming barrier and work with millions 
of people every day. Yet Ward notes, “Given Siri’s 
broad deployment and popular salience, one might 
imagine that it solved the problems of interacting in 
dialogue: we often meet people who are unaware 
how cleverly Siri and her sisters avoid dialogue. 
While they do use speech, their preferred interaction 
style is to map one user input to one system output, 
avoiding any of that messy interaction stuff” (Ward 
and DeVault 2016, 8). AI in general has been avoid-
ing the messy stuff involved with teaming — address-
ing it will play a vital role in AI’s usefulness. 

There are certainly examples of systems that have 
focused on partnering people with machines and 
demonstrated the efficacy of this mindset. One such 
example comes from Freestyle chess, which allows 
players to use other resources (for example, books, 
people, or machines) to help during the game. An 
approach called centaur chess (Cassidy 2014) marries 
human and machine capabilities to produce a better 
player than either alone. Centaur teams have been 
able to occasionally punch above their weight, allow-
ing average players to beat grand masters. The cen-
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taur model is also an illustration of how AI will best 
work in complex domains such as healthcare. This 
perspective of leveraging the abilities of both AI and 
people to accomplish something beyond the reach of 
either is the story of teaming intelligence.  

The Risks of Ignoring Teaming 

Failure to develop the teaming intelligence necessary 
to support the human-machine interdependence in 
the work can result in systems that make the job 
more difficult, requiring more humans, more train-
ing, and more expertise (Blackhurst, Gresham, and 
Stone 2011). A current example of this principle is 
the navy’s experience with the littoral combat ship 
(LCS). The LCS was designed to be a smart ship, with 
a great deal of embedded automation, the idea being 
that the ships could basically “sail themselves,” leav-
ing the small crew to perform mission-related tasks 
rather than ship-related tasks. At the time of this 
writing, the ships require about 55 sailors to operat-
ed them — close to the original target of 45 and 
about one-third the crew of a frigate, which is slight-
ly larger. So the program was successful in reducing 
crew size. However, LCS crews require three times the 
training time of other crews — 18 months instead of 
six. The average age of the crew on navy ships is 21, 
whereas on the LCS it is 30. The seniority of enlisted 
sailors is designated from E-1, the lowest, to E-9. Typ-
ical navy ships have a lot of E-1s and E-2s and only a 
handful of E-5s and above, while the LCS can be 
sailed only by E-5s and higher. Most significantly, an 
LCS can achieve about one-third of operational/mis-
sion goals as compared to a frigate, directly propor-
tional to crew size. 

The fundamental difficulty with the LCS is not just 
that the designers of the shipboard intelligent sys-
tems failed to understand how crew roles would be 
changed on the ship, but, additionally, that the 
nature of today’s intelligent technologies often 
requires human participation for the technologies as 
a whole to perform safely and effectively. The human 
crew was the adaptive problem-solving component 
of the LCS. This is an important lesson for designers 
of future complex technologies. While not having 
data on the amount of effort focused on teaming 
issues, it is safe to say that it was probably relatively 
small. In contrast, consider the amount of effort 
Apple has focused on how their iPhone technology 
works with people. A phone is a much simpler piece 
of technology that works with a single user. Why 
would one expect that less effort would be needed to 
address the teaming requirements of something as 
complex as the LCS, with a crew of 55 sailors? The 
challenges with the LCS were not because the 
automation failed to perform as promised, but rather 
because the requirements for automated technolo-
gies were not based on a system-level view — one 
that includes people as part of the system. In the end, 
the littoral combat ship works because the crews 

have enabled it through great effort and hard-earned 
human expertise. 

From Surface to Deep Teaming 

One last example comes from NASA’s work on an AI-
based activity planner. It demonstrates both getting 
teaming wrong and eventually getting it right. In 
2002, the NASA Ames Research Center fielded an AI-
based activity planning and scheduling system for 
the Mars Exploration Rovers mission. The system 
added an optimizing scheduling engine to JPL’s exist-
ing activity planning system. The mission engineer 
simply needed to input all the planned activities, 
along with their associated constraints (typically 500 
to 700 of each), and then press a “Plan All” button. 
This process would produce an optimal plan for the 
day’s activities, meaning as much science as possible 
given the resources available. But the system was 
almost thrown off the mission before the rovers even 
landed on Mars. The optimizing engine had basical-
ly scrambled everything, from a human perspective, 
making the plan extremely difficult to modify, 
manipulate, and validate. More significantly, since it 
was not possible to represent every constraint in just 
the way that the science teams envisioned them, the 
system was often too rigid. The engineering team at 
JPL called the system the blender. 
 A human-computer interaction (HCI) team was 
brought in to help. The first request from the mission 
engineers was that the system allow users to pin 
activities (that is, directability). The change was 
made, but the HCI team quickly realized that this was 
not the right solution — or, more correctly, that they 
were not solving the right problem. Users were ask-
ing for this feature, because they just wanted to stop 
the system from moving everything around, but, 
from observation of the mission planning process, it 
was clear that the better solution would be to have 
the system flexibly respect users’ positioning of activ-
ities as much as possible (that is, mutual directabili-
ty). The HCI team worked with the AI team to see 
whether an algorithm could be developed that would 
minimally perturb users’ placement of activities 
while still optimizing the overall plan.  
 The minimal perturbation algorithm plan was 
implemented and that change dramatically increased 
the effectiveness of the rover activity planning tool, 
allowing the JPL engineering teams to generate plans 
much faster than anticipated. This planning system 
was then used for the 2007 Phoenix Mars Lander mis-
sion, the 2013 Mars Science Laboratory Mission, and 
crew activity planning for the International Space 
Station. In 2017, it was used on a mobile device by an 
astronaut on the space station to test, for the first 
time, crew self-scheduling. It will also be used for the 
upcoming Mars 2020 rover mission. This track record 
of success has been due to an AI team working close-
ly with an HCI team to shape, not just the interfaces 
of the tool, but core functionality of the AI capabili-
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ty in order to make it effectively support the mission 
engineering processes involved. The initial solution 
was a nonteaming AI system. The first attempt to fix 
it, by allowing pinning, was a surface, interface-level 
solution. The eventual system required deeper team-
ing in both the AI algorithms and the interfaces, 
yielding a highly functional tool that actually 
enhanced activity planning productivity. 

Conclusion 

While AI continues to demonstrate remarkable 
achievements, the future lies in its ability to work 
well with people. Highly publicized AI examples such 
as Watson showcase individual competence, but the 
future of such systems lies in their teaming compe-
tence. Jonas Nwuke, an IBM Watson ecosystem man-
ager, emphasizes, “Our perspective is that you can’t 
take the humanity out of it. There are a ton of oppor-
tunities that can be met by [technology]. There are a 
ton of challenges that can be overcome by it. But, at 
the end of the day it is that partnership between man 
and machine that matters most.”9 This sentiment is 
consistent with our case for teaming intelligence. 
Our recommended pathway forward is for AI to pur-
sue areas that emphasize teaming competencies. 
Such an approach would not require a complete redi-
rection of current AI work, but an adjustment and 
broadening of that work to include how the new AI 
capability will team with people. If done well, the 
result should be that the combination of AI and peo-
ple exceeds the performance of either alone. 

Current intelligent systems technologies are fun-
damentally different from human intelligence, and, 
more importantly, there is no reason to believe they 
are on a convergent path with human intelligence in 
the longer term either. This diversity has the poten-
tial to provide strength and resilience — but only if 
machine and human can work together effectively. 
Designing for such mutual cooperation suggests a 
radical shift from the traditional divide-and-conquer 
approach based on the allocation of function to a 
more sophisticated strategy based on supplementa-
tion or enhancement, instead of replacement — in 
other words, teaming. Interdependence is the essence 
of teamwork. AI will only become an effective team 
player if it has an understanding of interdependence 
and is designed to support management of interde-
pendencies with people. 

One of the key challenges AI faces with respect to 
teaming is that AI and teaming are often seen as 
opposites. This is not the case and in fact develop-
ment of increasingly sophisticated AI capabilities 
must go hand-in-hand with increasingly sophisticat-
ed human-machine interaction. Intelligent systems 
must be designed from the outset to team with 
human capabilities, providing assistance where 
human intelligence has limits and leveraging that 
intelligence where it is uniquely powerful. Instead of 

viewing AI and teaming as opposites, we should view 
them as complements, always remembering that no 
AI is an island.  
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