
EXPRS 
A Prototype Expert System 

Using Prolog for Data Fusion 

Vincent J. Pecora, Jr. 

Lockheed 5%56/205 
Palo Alto Research Laboratory 

3251 Hanover St. 
Palo Alto, CA 9.43’04 

Abstract 

During the past year, a prototype expert system for tactical data fusion 
has been under development This compute1 program combines various 
messages concerning electronic intelligence (ELINT) to aid in decision 
making concerning enemy actions and intentions The prototype system 
is written in Prolog, a language that has proved to be very powerful 
and easy to use for problem/rule development The resulting prototype 
system (called EXPRS - Expert PRolog System) uses English-like rule 
constructs of Prolog code This approach enables the system to generate 
answers automatically to “why” a rule fired, and “how” that rule fired 
In addition, a rule clause construct is provided which allows direct 
access to Prolog code routines This paper describes the structure of 
the rules used and provides typical useI interactions 

IN THE MODERN MILITARY ENVIRONMENT, fusion of 
intelligence data from different sources is becoming increas- 
ingly important. Multiple sensor inputs need to be inter- 
preted in a timely manner to assess developing battlefield 
conditions. The high volume of data from such sensor sys- 
tems, as well as their high rate of data transfer, make this 
timely interpretation difficult and very demanding of human 
resources. A system that could process routine messages 
automatically would free the human intelligence analyst to 
concentrate on more difficult data interpretation tasks 

As part of an effort to implement a computer expert sys- 

tern to aid in tactical data fusion, a project was initiated at 
the Palo Alto Research Laboratory to study potential lan- 
guages and architecture that could contribute to the devel- 
opment of this system. This effort, which is still in its initial 
stages, led to the development of a small prototype expert 
system program written in PROLOG Most existing expert 
systems have been written in LISP The language PROLOG is 
described in Clocksin and Mellish (1981), and its use for writ- 
ing expert systems is described in Clark and McCabe (1980) 
and in Mizoguchi (1983). The prototype system, called EX- 
PRS (Expert PRolog System), has a number of interesting 
and powerful features. This system was implemented using 
the DEC-10 version of PROLOG (Pereira et al 1979), and is 
being translated to the TJniversity of Sussex POPLOG version 
of PROLOG on the VAX 1 l/780 (Hardy 1983). This POPLOG 

implementation will allow calls to external routines written 
in other languages, such as FORTRAN, which can be used for 
tasks such as “number crunching.” 

Problem Characteristics 

I wish to thank Herbert E Rauch and Oscar Firschein of Lockheed 
Palo Alto Research Laboratory who helped in the formulation of this 

Automating the process of tactical data fusion is in- 
herently a difficult problem. The system must integrate a 
large amount of input data from multinle sources. includine 
sensor data as well as direct observation data. In addition, 
input messages can be received out of time order, or infor- 
mation can contradict earlier information. Thus the process 

THE AI MAGAZINE Summer 1984 37 

AI Magazine Volume 5 Number 2 (1984) (© AAAI)



is inherently probabilistic as well as time varying and non- 
monotonic. 

The fusion process can also require numerical analysis to 
be done on the raw sensor data. This “number crunching” 
analysis is best done (and is currently being done) with 
languages such as FORTRAN. For this reason, it is desirable 
for the final system to make use of existing FORTRAN analysis 
software. A more detailed description of the tactical data 
fusion problem is given in Rauch et al. (1982), which also 
references other work on expert systems relevant to tactical 
data fusion. 

translation step. For example, the create-new clause in the 
then part of the rule basically corresponds to the PROLOG 
term: 

asserta(attribute(object,value)) 

However, in making this translation, the system automati- 
cally keeps a list of valid attributes for each new object that is 
created. This allows the “describe” mechanism to provide a 
description of any object as detailed below. This translation 
step between the English-like clause format and the actual 
PROLOG representation will make it relatively simple to add 
a more complete inheritance mechanism to the create-new 
clause in the future. 

From the beginning of this project, it was recognized 
that the prototype system was a first step, and most of 
the difficult aspects of tactical data fusion would be solved 
later during construction of the operational system. The 
prototype effort therefore centered on providing a flexible 
architecture for that future effort. 

Knowledge Representation Scheme 

EXPRS uses a general Attribute-Object-Value know- 
ledge representation scheme coupled with an English-like rule 
format. This form of representation is very general, offering 
good future growth potential for the system. The English- 
like rule format makes it easy to add complex rules and 
simplifies the task of automatically generating answers to 
“why” a rule was fired, and “how” that rule came to be 
satisfied. 

The basic format of a rule is as follows: 

rule123 : 

The print- clause in the then part of the rule above 
is a convenient way of printing a list of any combination of 
PROLOG goals, strings, and rule variables. Any PROLOG goal 
may be performed in this list by using the format 

do (goal-name) 

as a list element A print- clause typically looks something 
like this: 

print- [do(nl), v(batteryl), ’ is associated with ‘, 
v(communication-node21, ’ (rule24)‘, do(nl>l 

In the above example the nl is the built-in PROLOG goal 
that generates a new print line; however any goal could be 
used with the do construct. 

PROLOG code can also be accessed using a rule clause 
form. This provides an additional degree of flexibility to the 
system architecture. The rule clause format for this function 

(attributel) of-the (objecti) has-value (valuel) and 
(attribute2) of-the (object2) has-value (value21 and 

then 

is 

the-relation (relation-name) is-true-for 
(list-of -arguments) 

create-new (attribute) of-the (object) 
with-value (value) and 
print- (print-list) 

The (attribute), (object), and (value) fields in 
the rule clause are replaced with either a token name or 
a variable. Variables are represented using the notation 
v(variable name) . A sample clause might be: 

An example might be 

the-relation append is-true-for 
[v(old-battery-members) , 
v(current-emitter), 
v(new-battery-members)] 

This would translate into the PROLOG clause: 

append(Old-battery-members, 

emitter-members of-the battery1 has-value v(e-member11 Current-emitter. 
New-battery-members) 

This form is equivalent to the PROLOG term 

emitter-members(batteryi,E-member11 
Automatic Description of Objects 

where E-member1 is a variable. This dual representation has Whenever an object receives a new attribute as a result 
the advantage that internal bookkeeping is easily done in the of a rule running, the system automatically adds that new 

38 THE AI MAGAZINE Summer 1984 



attribute to the list of valid attributes for that object. This is 
done as part of the definition of the clause form create-new 
(attribute) of -the (object) with-value (value). Then, 
when the user enters 

describe battery1 

EXPRS looks through the list of valid attributes for 
batteryl, and for each attribute that it finds, a PROLOG term 
of the form 

attribute(batteryl,Value) 

is generated and matched. If this particular attribute is a 
result of a rule’s being run (instead of an attribute that is in 
place because of an input message) then a term of the form 

how-true(attribute(batteryi,Value),Rule-number) 

will also be in the data base. This term is put into the data 
base every time a new attribute is added by the (‘create- 
new . . .” rule clause. The “describe” mechanism uses this 
term to pick up the rule number that was responsible for the 
attribute-object-value term. The “describe” function thus 
also provides pointers to the rules that are responsible for 
each value of each attribute for any object. A simple output 
would look like: 

describe emitter5. (user command) 
emitter5 description: 
belongs-to-battery: battery5 (rulei2) 
detection-time: 13:52 
emitter-designation: landroll 
radio-communication-node: node3 (rule211 

This scheme is very general; it will be replaced with a 
more efficient inheritance network in future systems. 

Automatic Generation of “Why” and “HOW” 

One of the objectives of the EXPRS system was the 
automatic generation of answers to questions from the user 
as to “why” a particular message or result was obtained (that 
is, which rule was responsible for the result) and “how” the 
conditions for a particular rule were satisfied. The use of 
an English-like rule format simplifies this task. As described 
above, whenever any rule fires, the appropriate how-true 
PROLOG term is generated. In addition, most rules, as a part 
of their firing, print out a message that includes the rule 
number that was responsible for the message. For example 
Rule 12 might state that, if the location of the emitter in 
the current message is within 10 kilometers of the location 
of an emitter in a previous message, then the current emit- 
ter should be assigned to the same battery as the previous 
emitter. Then, when a user enters: 

why rulel2. 

the system responds with the text of rule 12 which could 
look like: 

rule12 : 

if 

designation of-the current-emitter has-value 
C-emitter *(I)* and 

position of-the C-emitter has-value 
Position1 * (2)* and 

position of-the Previous-emitter has-value 
Position2 * (3)* and 

the-relation distance is-true-for 
[Positionl,Position2,Distance] *(4)* and 

Distance < 10 0 *(5)* and 
belongs-to-battery of-the Previous-emitter 

has-value Battery1 *(6)* 

then 

create-new belongs-to-battery of-the C-emitter 
with-value Battery1 *(7)* and 

print- [do(nl>, C-emitter, belongs-to-battery, 
Batteryl, (121, do(nl)l *(8)* 

Note that the variable notation of vcvariable-name) 
has been converted to the standard PROLOG variable notation 
of starting variables with a capital letter. The first rule clause 
thus corresponds to a rule text of the form: 

designation of-the current-emitter 
has-value v(c-emitter) 

and which corresponds to the PROLOG term: 

designationccurrent-emitter,c-emitter), 

The “why” mechanism thus provides the user with the 
rule text that is responsible for the output of the system. 
Note that each clause in the rule is numbered when that rule 
is printed. These numbers are used to reference each clause 
separately for the “how” mechanism as described below. 

In order to understand how the conditions of a particular 
rule were satisfied, the “how” mechanism is used to show 
the user the actual instantiations of the rule variables when 
the rule fired. EXPRS attempts to model the data driven 
environment of a tactical data fusion system, and therefore 
can process more than one input message before interacting 
with the user. Each time a single input message is processed 
by the system, the rules are run in a predetermined order to 
process that message. If any of the rules fire for an input 
message, then the entire sequence of rules is retried, until no 
more rules fire, and the system is in a stable state. Then, if 
there are one or more messages in the input queue waiting 
to be processed, the rule running sequence is repeated for 

THE AI MAGAZINE Summer 1984 39 



each of these messages one at a time Thus, any given rule 
can run any number of times as it processes different input 
messages. The “how” mechanism which shows the user the 
instantiations of the variables in a rule, needs to know which 
instance of the rule’s running that the user wants to know 
about. 

EXPRS has an automatic bookkeeping system which 
allows it to handle this situation in a simple way for the user 
Whenever a rule runs and creates or updates an attribute 
for an object, a PROLOG term is formed that links the rule 
name, a counter, and a list of objects together (one object 
per attribute changed by the rule). The counter referred 
to is simply incremented every time a rule is run, so as to 
make each rule firing a unique event. For example, if the 
sample rule (rule12) referred to above fired, the PROLOG rule 
instantiation term that would be created might look like: 

If Rule 12 later fired again for emitter6, another term 
of this form would also be created, i.e. 

rule-instan-objects(rulel2,153,[emitter6I) 

When the “why” procedure is run, a PROLOG term is 
asserted that keeps track of the current rule that is being 
examined Subsequently when the “how” procedure is next 
run for one of the numbered clauses printed by the “why” 
procedure, the current rule name is used to examine the 
relevant rule-instan-objects terms. If there is only one 
rule-instan-objects term for the rule that is being ex- 
amined, then the value of the instantiation counter to use for 
variable value retrieval is obvious. If there is more than one 
rule-instan-ob.jects term, then the user is asked the question: 

For which (object class)? 

In the above example this would be: 

For which emitter? 

This question is repeated for each object in the object 
list of the first of the rule-instan-obj ects terms that cor- 
respond to the rule that is being examined. Note that any 
of the rule-instan-objects terms would do, as the ob- 
ject classes that are asserted by a rule are constant, but the 
values of the objects are unique. As keeping track of the 
valid answers could get confusing to the user, EXPRS can 
provide a list of all of the valid responses to this question. 
For example: 

40 THE AI MAGAZINE Summer 1984 

(user responses in capitals) 

For which emitter? 
HELP 

potential emitter 
names are: 

For which emitter? 
EMITTER5 

[emitter51 
[emitter61 

Once the proper instantiation counter value is dcter- 
mined, no further questions are asked for subsequent user 
“how” requests, until another “why” request is processed, 
which resets the value of the current rule. An example of 
using “how” on Rule 12 above might look like: 

HOW 7 (the user asks how clause 7 ran) 
For which emitter? (EXPRS attempts to determine which 
HELP. instance of the rule running the 

user wants to know about) 

potential emitter 
names are: [emitter51 

[emitter61 

For which emitter? EMITTER5 

create-new belongs-to-battery of-the C-emitter:emitter5 
with-value Batteryi:batteryS *(7)* 

HOW 5 

Distance : 
7 5 < 10 0 *(5)* 

(the user also wants to know 
the exact value of the 
distance involved) 

(EXPRS now knows to which 
instance of the rule 
running the user is referring)) 

Conclusion 

The Expert PRolog System [EXPRS] described in this 
article uses the ability of PROLOG to declare arbitrary word 
strings as operators to implement an English-like rule for- 
mat. This makes the generation of rules more natural, aud 
has the added advantage that the rule text itself can bc 
used to generate text for the “why” and “how” mechanisms 
automatically This first implementation of EXPRS is data 
driven by messages that are input to the system, each mes- 
sage input triggering a runuiug of the rules in a predeter- 
mined order. The implementation of EXPRS thus demon- 
strates the ability of PROLOG to build control structures that 
are not backward chaining in nature. EXPRS also provides 
a rule clause format that allows access to arbitrary Prolog 
procedures. Because the DEC- 10 PROLOG irnplemeutation 
does not contain the capability to access other executable 



modules, such as FORTRAN subroutines, EXPRS is being 
converted to the PWLOG system contaiuiug a version of 
PROLOG which provides this feature 

References 

Clark, K L and McCabe, F.G (1980) PROLOG; A language for 
implementing expert systems In J E Hayes & D Michie 
(Eds ), Machzne Intellzgence, Volnme 10. New York: Halsted 
Press 

Clocksin, W.F. and Mellish, C S (1981) Programming m Prolog 
New York: Springer-Verlag. 

Hardy, S (1983) A new software environment for list-processing 
and Prolog programming In M Eisenstadt & O’Shea (Eds ), 
Artzficial Intelligence: Tools, Techniques, and Applicatzons New 
York: Harper & Row 

Mizoguchi, F (1983) PROLOG based expert system New 
Generatzon Computzng, Volume 1, Number 1, 99-104 

Pereira, L M., Pereira, F., and Warren, D. H D (1979) LJser’s 
guide to DECsystem-10 PROLOG Ocrasional Paper 15, 
Department of Artificial Intelligence, University of Edinburgh 

l?anch, H E , Firschein, 0 , Perkins, W A , and Pecora, V J 
(1982) An expert system for tactical data fusion Proceedzngs 
of the Szxteenth Asilomar Conference on Carcuzts, System.s d 
Computers, 235-238 

Now in our second year 
supplying knowledge-based 
e)cpert systems to the financial 
services community. 

Dr. Fred L. Luconi 
President 

Dr. Norton R. Greenfeld 
Vice President-Software Engineering 

Richard I. Karash 
Vice President-Product Development 

Kenneth I? Morse 
Vice President-Market Development 

Dr. William A. Woods 
Chief Scientist 

Applied Expert 5)&tems, Inc. 
Five Cambridge Center 
Cambridge MA 02142 
(617) 492- 7322 

THE AI MAGAZINE Summer 1984 41 




