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Abstract 

Probability concepts for rule-baaed expert systems are developed that 
are compatible with probability used in data fusion of imprecise infor- 
mation Procedures for treating probabilistic evidence are presented, 
which include the effects of statistical dependence. Confidence limits 
are defined as being proportional to root-mean-square errors in es- 
timates, and a method is outlined that allows the confidence limits in 
the probability estimate of the hypothesis to be expressed in terms of 
the confidence limits in the estimate of the evidence. Procedures are 
outlined for weighting and combining multiple reports that pertain to 
the same item of evidence. The illustrative examples apply to tacti- 
cal data fusion, but the same probability procedures can be applied to 
other expert systems 

KNOWLEDGE-BASED EXPERT SYSTEMS are a class of 
computer programs intended to serve as consultants for deci- 
sion making. These programs use a collection of facts, rules 
of thumb, and other knowledge about a limited field to help 
make inferences in the field. They differ substantially from 
conventional computer programs in that their goals may 
have no algorithmic solution, and they must make inferences 
based on incomplete or uncertain information. They are 
called expert systems because they address problems nor- 
mally thought to require human specialists for solution, and 
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knowledge-based because researchers have found that amass- 
ing a large amount of knowledge, rather than sophisticated 
reasoning techniques, is responsible for the success of the 
approach. 

Advantages of an expert system are that is can be de- 
signed to supply one or more hypotheses to the user, request 
additional information from the user, explain to the user the 
reasons for the hypotheses or for the requests for additional 
information, and allow the addition or deletion of knowledge 
and rules without extensive reprogramming. A recent survey 
article by Gevarter (1983) discusses expert system applica- 
tions in areas such as medical diagnosis, geology, and com- 
puter configuration analysis and evaluates the limitations of 
current systems. Limitations exist on the current use of ex- 
pert systems because formalizing the knowledge of experts 
is a difficult task; building the system is laborious and time- 
consuming; operation is effective only in a relatively limited 
field; and degradation is not always graceful when problems 
are outside of the limited field. Newer expert systems are be- 
ing developed that find ways around these limitations, and 
future use and growth of expert systems should increase. 
Duda and Shortliffe (1983) discuss current research in ex- 
pert systems, while the book edited by Barr and Feigenbaum 
(1982) presents more detailed material. 

This article is concerned with the data fusion aspect of 
expert systems. The correlation and fusion of information 
from sensor systems is becoming increasingly important for 
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military command and control and for technical intelligence 
analysis. High data rates from increasingly sophisticated 
sensors are overwhelming the existing methods of processing 
this data. The high volume of data makes timely interpreta- 
tion difficult and very demanding of human resources. It 
would be beneficial to have a system that processes routine 
information automatically so as to free the human analyst to 
concentrate on non-routine tasks. Rauch, Firschein, Perkins, 
and Pecora (1982), Brown and Goodman (1983), Pecora 
(1984), and Rauch (1984) outline how expert systems might 
be applied as automated decision aids for tactical data fu- 
sion. 

In traditional approaches to data fusion the quality of 
signal data is characterized by quantities such as root mean 
square error (which will be called standard deviation) and 
correlation. Data from various sources can be combined us- 
ing weightings based on the standard deviation and correla- 
tion in measurement errors. When information from human 
experts is used, the experts make estimates and indicate the 
quality of the estimates. 

For the purpose of data fusion, it is necessary that the 
signal information and the human estimates be expressed in 
similar forms. When a rule-based expert system is used to 
aid in this data fusion, it is necessary that the values and 
weighting of the signal information and the human estimates 
be expressed in a form that can be interpreted by rules. The 
rules must include a procedure for weighting conflicting or 
time-varying reports, for weighting correlated data, and for 
propagating confidence limits through a hierarchy of produc- 
tion rules. 

Methods for using expert systems to combine uncertain 
information from various sources have been developed in 
the literature. For example, Shortliffe and Buchanan (1975) 
use a probability model based on assumptions of indepen- 
dent evidence as discussed by Adams (1976). Duda, Hart, 
and Nilsson (1976) use a Bayesian approach; Ben-Bassat 
(1980) uses a classification method; and Garvey, Lowrance 
and Fischler (1981) and Dillard (1983) use the Dempster- 
Shafer theory. Martin-Clovaire and Prade (1983) discuss 
some of these ideas in more detail. However, many of these 
approaches do not treat correlated data, multiple reports, 
or propagation of confidence limits through a hierarchy of 
production rules. In this article, probability concepts for 
rule-based expert systems are developed which have these 
properties. The illustrative examples used throughout this 
paper are for tactical data fusion, but the probability con- 
cepts can be applied to any rule-based expert system required 
to combine uncertain data from multiple sources. 

Probabilistic Rules and Evidence 

A typical deterministic rule for an expert system is in 
the form IF EVIDENCE E IS TRUE, THEN HYPOTHESIS H 

IS TRUE. When a probabilistic indication of likelihood is in- 
troduced, the rule becomes IF EVIDENCE E IS TRUE, THEN 

HYPOTHESIS H IS TRUE WITH PROBABILITY PI, On the 
other hand, another version of the rule is IF EVIDENCE E IS 

Statistical AND operation: OR operation: 
Dependence PROB(A and B) PROB(A or B) 

Independence PAPB PA + PB - PAPB 

Maximum MINIMUM 
Dependence (PA> PB) 

MAXIMUM 
(PA, PB) 

Minimum MAXIMUM MINIMUM 
Dependence (PA+PB - 1,O) (PA + PB, 1) 

NOTE: PA and PB are the robabilities that A and B are 
true. 
Consequences of Logical AND operation and logical OR 
operation can be calculated with independence, maximum 
dependence, and minimum dependence for two items of 
evidence. 

Table 1. 

NOT TRUE, THEN HYPOTHESIS H IS TRUE WITH PROB- 
ABILITY PO. When a probabilistic indication of evidence is 
introduced, the information available becomes EVIDENCE E 
IS TRUE WITH PROBABILITY PE. The probability of the 
hypothesis being true PH can be calculated given the prob- 
ability of the evidence being true PE and the assumptions 
about probabilities PO and PI. 

PH = PlpE + pO(l- PE) 

= (pl - pO)pE + PO 

The relation between the evidence probability PE and 
the hypothesis probability PH is linear. Hence, if CE and 
dH are the standard deviations (root-mean-square) in the 
errors in the estimates of the probabilities of evidence PE 
and hypothesis PH, respectively, the two standard deviations 
will have the same linear relation. 

gH = (PI - h)cE 

For the examples here, the individual items of evidence 
are designated A and B, and the form of the rule is IF 

A IS TRUE, AND IF B IS TRUE, THEN H IS TRUE The 
hypothesis H might be that a SAM (surface-to-air missile) 
launcher is operational, and the evidence A might be ELINT 
(electronic intelligence) that a class of radar is transmitting, 
while the evidence B might be two-dimensional image data 
that show extensive preparation for installation of a missile 
launcher or artillery. Let E be the total evidence from A 
and B so that PE is the probability that both A AND B ARE 

TRUE Let the probability that A is true (PA) be equal to 0.5 
and the probability that B is true (PB) be equal to 0.5. In 
order to calculate the joint probability that A IS TRUE AND 

B IS TRUE, it is necessary to make an assumption about the 
statistical dependence between the item of evidence A and 
B. 
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PA = 0.5 
TRUE 

PLg = 0.5 1 - PB = 0.5 

TRUE NOT TRU’E 

PAP, pA(l-PB) 

1 - PA = 0.5 
NOT TRUE 

(1 -pA)pB (I- pA)(l- PB) 

Note: The sum of the four joint probabilities in matrix is 
equal to unity. Columns sum to probability at top. Rows 
sum to probability at left. 

Procedure of calculating matrix of joint probabilities in- 
volves probablility products when two items A and B are 
independent. 

Table 2. 

PA = 0.5 
TRUE 

P,=05 1-PB=05 

TRUE NOT TRUE 

MAX(PA,PB) PA - 

M.WPA,PB) 

1 - PA = 0.5 PB - MAX(l -PA, 1 - PB) 
NOT TRUE MAX(PA,PB) 

Note: 1 - MIN(PA, PB) is equal to MAX( 1 - PA, 1 - PB) 

Procedure for calculating matric of joint probabilities 
involves MAXimum and minimum operations when two 
items of evidence A and B have MAXimum dependence. 

Table 3. 

PB = 0.5 1-PB=05 
I 

TRUE NOT TRUE 

PA=0.5 PA - MAX (PA, 1 - PB) 
TRUE MAX (PA, 1 - PB) 

1 - PA = 0.5 MAX(l - PA, PB) l--PA- 
NOT TRUE MAX(1 - PA, PB) 

Procedure for calculating matrix of joint probabilities 
when two items of evidence A and B have minimum de- 
pendence is the same as when A has MAXimum depen- 
dence with NOT B. 

Table 4. 

Dependence of Evidence 

Three possibilities for the statistical dependence are: the 
two items of evidence are statistically independent; the two 
items of evidence have maximum dependence; and the two 
items of evidence have minimum dependence. In the ter- 
minology used here, when A has maximum dependence with 
NOT B, it is stated that A has minimum dependence with B. 
The consequences of the logical AND operation and the logi- 
cal OR operation are presented in Table 1 for the three pos- 

sibilities as a function of PA and Pp,. A fourth, more general, 
possibility is introduced here that includes the three previous 
possibilities as special cases. The fourth possibility requires 
the introduction of the dependence parameter D (with D 
taking on values between -1 and fl). When D equals zero, 
the two items of evidence are independent; when D equals 
one, the two items have maximum dependence, and when 
D equals minus one, the two items have minimum depen- 
dence. The same procedure holds for more than two items of 
evidence, as long as all operations have the same dependence 
parameter D. 

To return to the example, first consider the case where 
it is assumed that the two items of evidence are statistically 
independent. This means the occurrence of radar transmit- 
ting (item A) seems to be completely independent of the 
location of extensive preparation (item B). When two items 
of evidence are statistically independent, the joint probabil- 
ity is equal to the product of the two individual probabilities. 
For the example, this is (0.5) times (0.5,) which equals (0.25), 
as illustrated in Table 2. 

Second, consider the case where it is assumed that the 
two items of evidence have maximum dependence, so when- 
ever a radar of a certain class is transmitting, the preparation 
seems to be extensive and vice versa. This means that the 
joint probability that A is true and B is true (simultaneously) 
is maximized subject to the given probabilities PA and PB. 
For the example, with PA equal (0.5) and PB equal (0.5), 
maximum dependence gives the result that both A and B 
are true (simultaneously) with probability equal (0.5) as il- 
lustrated in Table 3. 

Third, consider the case where it is assumed that the 
two items of evidence have minimum dependence so when- 
ever a radar of a certain class is transmitting, the prepara- 
tion usually is not extensive, and vice versa. This means 
that the joint probability of A and NOT B have maximum 
dependence and the joint probability that A is true and B 
is true (simultaneously) is minimized subject to the given 
probabilities PA and Ps. For the example, with PA = 0.5 
and PB = 0.5, minimum dependence means that both A and 
B are simultaneously true with probability zero as illustrated 
in Table 4. 

Notice that for this example, varying the assumptions 
about statistical dependence has allowed the resulting prob- 
ability to vary between 0 and 0.5 even though the probabil- 
ities of the items of evidence are held constant. Introducing 
the dependence parameter D allows the resulting probability 
to vary continuously between the extreme assumptions. 

When there are three or more items of evidence, it is 
desirable that the truth table for the AND/OR relat’ions have 
the property that the order in which the variables are con- 
sidered (in multiple AND relations or in multiple OR rela- 
tions) does not change the resulting probability. To ensure 
this property, the procedure that will be followed is first cal- 
culate the probability under the assumption that the items 
of evidence are independent (the probability from these cal- 
culations will be designated Cl). When the dependence 
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Statistical AND operation: 

Dependence PROB (A AND B) 

OR operation: 

PROB (A OR B) 

Independence P2 2 AuB f P~u; + ffi6: (1 - PA)2Us + (1 - PB)2a$ + +“B 

Maximum or 
Minimum Dependence ;(~;+a:) +Q +(~;+a%) -Q 

Maximal Dependence: 
Q = i (ai - cr&) Minimum[ F, 11. 

sv = e-p.4 
(u: + &) 4 

Minimal Dependence: 
Q = ;(a; + aL)Minimum[F, l] if SW > 0, 

Q = :(u; + ai)Maximum[F, -11 if 6W< 0, 

&j, = pB+pA--1 

(0: + 0;) f 

Note: PA and PB are the probabilities that A and B are true (with PB>PA) and VA and 0~ are the standard 
deviations in these probabilities and L is an ad hoc constant (L = 2 is reasonable). 

Square of Standard Deviation (confidence limits) after Logical AND Operation and Logical OR Operation can be 
calculated with independence, maximum dependence, and minimum dependence with two items of evidence. 

Table 5. 

parameter D is positive, the second calculation is of max- 
imum dependence (designated C’s). When the dependence 
parameter D is negative, the two calculations are probabil- 
ities under the assumption of independence (Cl) and under 
the assumption of minimum dependence (Ca). The resulting 
probability is a linear combination of the two appropriate 
calculations. 

for 0 5 D 5 1; 
for -1 < D < 0. 

Propagation of Confidence Limits 

The standard deviation (root-mean-square error) in a 
probability estimate is a convenient way to express the 
confidence limits in the estimate. When each item of 
evidence that makes up a rule has an associated standard 
deviation as well as a probability, it is useful to be able to 
calculate both the probability the hypothesis is true and the 
standard deviation of hypothesis probability. In particular, 
rule-based expert systems have multiple levels of hypotheses 
so that hypotheses at lower levels can become evidence for 
hypotheses at higher levels. Hence, in addition to determin- 
ing the probability that hypotheses are true, it may be neces- 
sary to determine the standard deviation of the hypothesis 
probability estimate. 

The procedure to calculate the standard deviation is 
based on that used to calculate the probability of a hypoth- 
esis. It will be assumed that the errors in the probability es- 
timate are independent, but the resulting standard deviation 
will be calculated under three assumptions about statistical 
dependence: the items of evidence are statistically indepen- 
dent, the items of evidence have maximum dependence, and 

the items of evidence have minimum dependence. The de- 
pendence parameter D (with D taking on values between -1 
and 1) will be used to interpolate linearly between the square 
of the two appropriate standard deviations. Other methods 
of interpolation are possible, but linear interpolation will be 
used in this example. 

It is not difficult to calculate the standard deviation 
when the two items of evidence are statistically independent. 
Let PA, PB, and PE be the probabilities, let 6A, 6B and 6~ 
be the error in the probability estimate, and let U,J,~B and 
bE be the associated standard deviations. The procedure for 
determining the standard deviation 6~ for the logical AND 

operation starts with the original probability calculations 
PE = PAPB. 

The original probability calculations are modified by 
adding the errors in probability estimates. 

PE + 6PE = (PA + 6PA)(PB + 6PB) 

Subtracting the original from the modified gives the error 
equation. 

Squaring the error equation and taking the mean value gives 
the mean square error where it has been assumed the errors 
6~ and SPB are independent and the mean square errors are 
equal to Si and 6% respectively. 

The same procedure is used to determine the standard devia- 
tion for the logical OR operation when the two items of 
evidence are independent. 
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The calculations for the standard deviation are more 
difficult when the items of evidence have maximum depen- 
dence or minimum dependence because the operations MAX- 
IMUM and MINIMUM can be nonlinear. If the probabilities 
are such that the calculations occur in a region that is far 
from the boundary of the MAXIMUM or MINIMUM, the non- 
linear aspect of these operations can be ignored. In that case, 
the calculation of the standard deviation is straightforward 
for both maximum and minimum dependence. 

When the nonlinearities are important, it is necessary 
to develop some ad hoc procedure. The ad hoc procedure 
presented here is based on calculating the standard deviation 
when the probabilities PA and PB are exactly on the bound- 
ary of MAXIMUM or MINIMUM, and then linearly interpolat- 
ing to the case far from the boundary. On the boundary the 
square of the standard deviation is proportional to 6; + fig. 
Normalized variables 6V and SW are defined (for when the 
items of evidence have minimum and maximum statistical 
dependence, respectively) that determine how many CJ the 
calculations are from the boundary. 

minimum dependence: 6V = pB-pA 1 
(c:+02,)T 

maximum dependence: &I%’ = pB+pA-t 
(o;+02,)z 

If the normalized variables 6V and SW are more than 
ccLCT” from the boundary (with L = 2 reasonable for 
this example), then the nonlinearities of the boundary are 
neglected. The consequences of the logical AND operation 
and the logical OR operation on the square of the standard 
deviations are presented in Table 5 for the three possible as- 
sumptions about statistical dependence. The ad hoc quantity 
Q is intended to compensate for the nonlinearites. 

When PA and PB are equal and dependence is maxi- 
mum, the ad hoc quantity is zero, and the exact solution 
is obtained for the standard deviation. When the sum of 
PA and PB is equal to one and there is dependence is mini- 
mum, the ad hoc quantity Q is zero, and the exact solution 
is obtained for the standard deviation. The exact solution 
is also obtained when the quantities of interest are far from 
the nonlinearity. The particular ad hoc procedure presented 
here is not the only one possible, but it leads to a reasonable 
practical solution. 

Multiple Reports 

In the example thus far it has been assumed there is 
one report or message for each item of evidence. A more 
complicated situation arises when there are multiple reports 
about the same item. For this example, reports might relate 
to extensive preparation for installation of a missile launcher 
or artillery. The first report might be daytime photographs 
from an airplane, which show extensive preparation for in- 
stallation of a missile launcher or artillery. The second report 
might be from Synthetic Aperture Radar [SARI during a 

night overflight. The third report might be technical in- 
telligence from long-range visual observation. All three of 
these reports pertain to the same item-extensive prepara- 
tion for installation of a missile launcher or artillery-but 
the confidence in each of the reports might not be the same. 

The procedure proposed here for combining multiple 
reports concerning the same item of evidence gives the result- 
ing probability P as a linear combination of the probabilities 
P; of the individual reports where the weighting Wi is a func- 
tion of the standard deviation in the errors in the reports. 

p = (Ci wiw 
w ’ 

W=CWi. 

If the errors in the reports are independent, the weight- 
ing Wi equals the inverse of the square of the standard devia- 
tion 0i, 

wi = L 
uf. 

In general, the errors in the individual reports will not 
be independent, but will be correlated. Assume there are N 
reports, and the convariance of the error between the i and j 
reports is given by R;j. To obtain the desired weighting, first 
form the N x iV square matrix [R] with elements Rij. Next 
find the N x N square matrix [S] with elements Si, , which is 
the inverse of the matrix [RI. Using standard least-squares 
estimation, it can be shown that the estimate of the resulting 
probability P, which has the minimum standard deviation u, 
is given by the following weighting: 

W=CWi=$, 

Wi = CSij, 

[S] = [RI-‘. 

When the errors in the reports are uncorrelated, the 
matrix [R] is diagonal, and the weighting Wi is equal to 
the inverse of the variance Rii, which is the square of the 
standard deviation ci. Sometimes it is not convenient to keep 
all previous reports, so a sequential version of the weighting 
procedure is useful. Assume all reports up to now have 
been combined to form a probability PI with a standard 
deviation (~1. The new report has a probability Pz with a 
standard deviation ~72. The errors in the combination of the 
previous reports and the new report have a correlation of p. 
The weighting for the sequential version is the same as the 
weighting when two reports are combined. 
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p= (W1fi+W2P2) 

w ' 

w=w,+w2=5, 

w,= (1-gw-l 
2 

0; 

Once again, when the errors are uncorrelated so that p 
is zero, the weighting reduces to the inverse of the square 
of the standard deviation. Notice that the weighting proce- 
dure proposed for multiple reports is similar to the standard 
procedure for combining signal data when there are multiple 
measurements, so the signal information and the human es- 
timates can be expressed in similar forms and combined in 
similar ways. 

Conclusion 

The procedures developed here for rule-based expert sys- 
tems are compatible with probability used in data fusion 
of signals. Probabilities for evidence and hypotheses are 
treated, and a method is presented that allows propaga- 
tion of probability through production rules when items of 
evidence are not independent, but have some statistical de- 
pendence. Procedures are outlined for weighting conflicting 
or time-varying reports, for weighting correlated data, and 
for propagating confidence limits through a hierarchy of 
production rules. 
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