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M any of the ideas behind object-oriented programming 
have roots going back to SIMULA (Dahl & Nygaard, 

1966). The first substantial interactive, display-based im- 
plementation was the SMALLTALK language (Goldberg 
& Robson, 1983). The object-oriented style has of- 
ten been advocated for simulation programs, systems pro- 
gramming, graphics, and AI programming. The history 
of ideas has some additional threads including work on 
message passing as in ACTORS (Lieberman, 1981), and 
multiple inheritance as in FLAVORS (Weinreb & Moon, 
1981). It is also related to a line of work in AI on the the- 
ory of frames (Minsky, 1975) and their implementation in 
knowledge representation languages such as KRL (Bobrow 
& Winograd, 1977), KEE (Fikes & Kehler, 1985), FRL 
(Goldstein & Roberts, 1977) and UNITS (Stefik, 1979). 

One might expect from this long history that by now 
there would be agreement on the fundamental principles 
of object-oriented programming. As it turns out, the 
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programming language community is still actively exper- 
imenting. Extreme languages can be found which share 
the description “object-oriented” but very little else. For 
example, there are object-oriented operating systems that 
use a much more general notion of message sending than 
in most of the languages described here. 

This article is an introduction to the basic ideas of 
programming with objects. A map of the field is naturally 
drawn from where one stands. Most of the examples will 
be from the authors’ own system, Loops (Bobrow & Ste- 
fik, 1981), and we will describe other object languages from 
that vantage point. We have not tried to be complete in 
our survey; there are probably fifty or more object-oriented 
programming languages now in use, mostly with very lim- 
ited distribution. We have selected ones we know that 
are widely used for applications in artificial intelligence or 
have a particularly interesting variation of an issue un- 
der discussion. For pedagogical purposes we begin with a 
white lie. We introduce message sending and specializa- 
tion as the most fundamental concepts of object-oriented 
programming. Then, we will return to fundamentals and 
see why some object languages don’t have message send- 
ing, and others don’t have specialization. 

Abstract 
Over the past few years object-oriented programming lan- 

guages have become popular in the artificial intelligence com- 
munity, often as add-ons to Lisp. This is an introduction to the 
concepts of object-oriented programming based on our experi- 
ence of them in Loops, and secondarily a survey of some of the 
important variations and open issues that are being explored 
and debated among users of different dialects. 
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Basic Concepts of Object-Oriented Programming 
The term object-oriented programming has been used to 
mean different things, but one thing these languages have 
in common is objects. Objects are entities that combine 
the properties of procedures and data since they perform 
computations and save local state. Uniform use of objects 
contrasts with the use of separate procedures and data in 
conventional programming. 

All of the action in object-oriented programming 
comes from sending messages between objects. Message 
sending is a form of indirect procedure call. Instead of 
naming a procedure to perform an operation on an object, 
one sends the object a message. A selector in the message 
specifies the kind of operation. Objects respond to mes- 
sages using their own procedures (called “methods”) for 
performing operations. 

Message sending supports an important principle in 
programming: data abstraction. The principle is that call- 
ing programs should not make assumptions about the im- 
plementation and internal representations of data types 
that they use. Its purpose is to make it possible to change 
underlying implementations without changing the calling 
programs. A data type is implemented by choosing a rep- 
resentation for values and writing a procedure for each op- 
eration. A language supports data abstractzon when it has 
a mechanism for bundling together all of the procedures 
for a data type. In object-oriented programming the class 
represents the data type and the values are its instance 
variables; the operations are methods the class responds 
to. 

Messages are usually designed in sets to define a uni- 
form interface to objects that provide a facility. Such a 
set of related messages is called a protocol. For exam- 
ple, a protocol for manipulating icons on a display screen 
could include messages for creating images of icons, mov- 
ing them, expanding them, shrinking them, and deleting 
them. When a message protocol is designed for a class, it 
should be made general enough to allow alternative imple- 
mentations. 

There is additional leverage for building systems when 
the protocols are standardized. This leverage comes from 
polymorphism. In general the term polymorphism means 
“having or assuming different forms,” but in the context of 
object-oriented programming, it refers to the capability for 
different classes of objects to respond to exactly the same 
protocols. Protocols enable a program to treat uniformly 
objects that arise from different classes. Protocols extend 
the notion of modularity (reusable and modifiable pieces as 
enabled by data-abstracted subroutines) to polymorphism 
(interchangeable pieces as enabled by message sending). 

After message sending, the second major idea in 
object-oriented programming is specialization. Specializa- 
tion is a technique that uses class inheritance to elide in- 
formation. Inheritance enables the easy creation of objects 
that are almost like other objects with a few incremental 

changes. Inheritance reduces the need to specify redun- 
dant information and simplifies updating and modifica- 
tion, since information can be entered and changed in one 
place. 

We have observed in our applications of Loops that 
changes to the inheritance network are very common in 
program reorganization. Programmers often create new 
classes and reorganize their classes as they understand the 
opportunities for factoring parts of their programs. The 
Loops programming environment facilitates such changes 
with an interactive graphics browser for adding and delet- 
ing classes, renaming classes, splitting classes, and re- 
routing inheritance paths in the lattice. 

Specialization and message sending synergize to sup- 
port program extensions that preserve important invari- 
ants. Polymorphism extends downwards in the inheri- 
tance network because subclasses inherit protocols. In- 
stances of a new subclass follow exactly the same proto- 
cols as the parent class, until local specialized methods are 
defined. Splitting a class, renaming a class, or adding a 
new class along an inheritance path does not affect simple 
message sending unless a new method is introduced. Simi- 
larly, deleting a class does not affect message sending if the 
deleted class does not have a local method involved in the 
protocol. Together, messsage sending and specialization 
provide a robust framework for extending and modifying 
programs. 

Fundamentals Revisited 
Object languages differ, even in the fundamentals. We 
next consider object languages that do not have message 
sending, and one that does not have specialization. 

Variations on Message Sending. When object lan- 
guages are embedded in Lisp, the simplest approach to 
providing message sending is to define a form for message 
sending such as: 

(send object selector argl arg2 . . .) 

However, some language designers find the use of two 
distinct forms of procedure call to be unaesthetic and a 
violation of data abstraction: a programmer is forced to be 
aware of whether the subsystem is implemented in terms 
of objects: that is, whether one should invoke methods or 
functions. 

An alternative is to unify procedure call with message 
sending. Various approaches to this have been proposed. 
The T (Rees & Meehan, 1984) programming language uni- 
fies message sending and procedure calling by using the 
standard Lisp syntax for invoking either methods or func- 
tions. For example, (display obj x y) could be used either 
to invoke the display method associated with obj, or to 
invoke the display lisp function. A name conflict resulting 
in ambiguity is an error. 

CommonLoops (Bobrow, Kan, Kiezales, Masinter, 
Stefik, & Zdybel, 1985) takes this unification another step. 
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Lisp function call syntax is the only procedure calling 
mechanism, but ordinary Lisp functions can be extended 
by methods to be applied when the arguments satisfy cer- 
tain restrictions. In Lisp, functions are applied to argu- 
ments. The code that is run is determined by the name of 
the function. The Lisp form (foo a b) can be viewed as: 

(funcall (function-specified-by ‘foo) a b) 

Sending a message (send a foo b) in object-oriented 
programing can be viewed as equivalent to the invocation 
of: 

(funcall (method-specified-by ‘foo (type-of a) ) a b) 

The code that is run is determined by both the name of 
the message, foe, and the type of the object, a A method 
is invoked only if its arguments match the specifications. 
In this scheme a method with no type specifications in its 
arguments is applied if no other method matches. These 
methods are equivalent to ordinary functions, when there 
are no other methods for that selector. From the point of 
view of the caller, there is no difference between calling a 
function and invoking a method. 

CommonLoops extends the notion of method by intro- 
ducing the notion of “multi-methods” t,o Common Lisp. It 
interprets the form (foo a b . . .) as: 

(funcall (method-specified-by ‘foo (type-of a) 

(type-of b). . .) a b . . .) 

The familiar methods of “classical” object-oriented 
programming are a special case where the type (class) of 
only the first argument is used. Thus there is a contin- 
uum of definition from simple functions to those whose 
arguments are fully specified, and the user need not be 
aware of whether there are multiple implementations that 
depend on the types of the arguments. For any set of ar- 
guments to a selector, there can be several methods whose 
type specifications match. The most specific applicable 
method is invoked. 

A variation among object oriented languages is 
whether the method lookup procedure is “built-in.” In 
the languages we have described here, there is a standard 
mechanism for interpreting messages-with the selector 
always used as a key to the method. In Actors, the mes- 
sage is itself an object that the receiver processes however 
it wishes. This allows other possibilities such as pattern 
matching on the message form. It also allows “message 
plumbing” where the receiver forwards the entire message 
to one or more other objects. Splitting streams to allow 
one output to go to two sources is a simple example of the 
use of this feature. 

Variations on Specialization. Specialization as we 
have introduced it so far is a way to arrange classes so 
that they can inherit methods and protocols from other 
classes. This is a special case of a more general concept: 
the concept is that objects need to handle some messages 

themselves, and to pass along to other objects those mes- 
sages that t’hey don’t handle. 

In actor languages (Lieberman, 1981) this notion is 
called “delegation” and it is used for those programming 
situations where inheritance would be used in most other 
object languages. Delegation is more general than spe- 
cialization, because an actor can delegate a message to an 
arbitrary other object rather than being confined to the 
paths of a hierarchy or class lattice. 

If delegation was used in its full generality for most 
situations in actor programming, the specifications of del- 
egation could become quite verbose and the advantages 
of abstraction hierarchies would be lost. Actor programs 
would be quite difficult to debug. In practice, there are 
programming cliches in these languages that emulate the 
usual forms of inheritance from more conventional object 
languages, and macros for language support. However, 
since there is no standardization on the type of inheri- 
tance, it makes it more difficult for a reader of the code to 
understand what will happen. 

Classes and Instances 

In most object languages objects are divided into two ma- 
jor categories: classes and instances. A class is a descrip- 
tion of one or more similar objects. In comparison with 
procedural programming languages, classes correspond to 
types. For example, if “number” is a type (class), then 
“4” is an instance. In an object language, Apple would 
be a class, and apple-l and apple-2 would be instances 
of that class. Classes participate in the inheritance lat- 
tice directly; instances participate indirectly through their 
classes. Classes and instances have a declarative structure 
that is defined in terms of object variables for storing state, 
and methods for responding to messages. 

Even in these fundamentals, object languages differ. 
Some object languages do not distinguish between classes 
and instances. At least one object language does not pro- 
vide a declarative structure for objects at all. Some lan- 
guages do not distinguish methods from variable structure. 
Languages also differ in the extent to which variables can 
be annotated. 

Themes 

We begin be describing classes and instances as they are 
conceived in Loops. We will then consider some variations. 

What’s in a Class? A class in Loops is a description 
of one or more similar objects. For example, the class 
Apple provides a description for making instances, such 
as apple-l and apple-2. Although we usually reserve the 
term instance to refer to objects that are not classes, even 
classes are instances of a class (usually the one named 
Class). Every object in Loops is an instance of exactly 
one class. 
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GLOSSARY FOR OBJECT-ORIENTED PROGRAMMING 

class. A class is a tlesrript.hl of oiw or IIi01v xiiiiifw objrcts. 
For cxainplc, tflc class Apple, is ii dcscritItiol1 of ific struc- 

t.llro qiitf ItcfIavior of illst,allccs, SIICII as npple-I and cipplc-2. 
Loops ~rrtl Snufftalk classw dcacriflr ttlcl irlstancc varidJfos~ 

class vnriables, lultf llJct.tJods of their installcc~s 39 well as tfjc 

fJositioJ1 of UJC class iri tfic? irrtrcritaiicc f;ilticc. 

class Inheritance. WflrJ~ a Class is pfarctf ill t flc CfilSS lat- 

tice! it inherits variafdcs HJKI lll~tflc~ds floni its sutmcfasscs. 

Ttiis 111~a11s that any vnridAr that is dcfiiwd tiigtior iii ttlc 

Class tatticc will dso nppcar iii iJJstaJJccs of this class. If a 

variablr~ is dcfinccf iii iliole (tlall oiic ptncc, tflc ovcrritfillg 

vafllr is cfctcr~niwtf by tlic intwritnncr orctcr. ‘I’trc infwi i- 
tallw ordw is dcpttl-first lip to joins, 2lllcf I&-lo-rigflt irj the 

fist of s~ipcrcfassrs. 

clnas variable. A chss vntiablc is ii variafh slorut iJI ttJc 

CfMS WtJoW vatllC iS SflIlrCtf t,j’ ;ltf iljst RJlC?S Of ltJC CfasS 

Corripxrc with in.slr~?j~~ ctarrffhlc 

composite object,, A group of intcIu~Ilrlc~ctccI of$ds tllxt 

<zrc illstalltt;~trtf togctfwr. a rcclllsivc cXtcnsioIl of tflc JIO- 

tin?? Of OtJjCCt. .4 Colnpositj? is d~!fillCtf fJy a tClllfJfAtC ttlat 

dcscribrs tfle sjJtmtJjCcts ajld tllcir coliIICctiolls. 

data abstraction. TtJc! princif~tc tfmt progralxi stroijfd no1 

Illakc ;lSSlJJlJt,tiOnS dlOllt iJJljlf~~lllWtILt.iOJls jjlld illtWJJd r?t,- 

rcscJItatimJs. A dntcc fyp~ is cll;uactcrizccl by oprmt.ioJJs OJI 

its vaf11w In ofljcet-oriclltctt progr~lllljlliflg t tic 0tIcralioJJs 

arc nietliods of a class. ‘1‘t:c Class rcprcscnts tfic data typr 

41~1 the vnlws zijc its inslanws. 

default value. A vailw for a11 iJJstaJIc:c vnriabtc Iht tIas Irot 

ttrcJ1 srt explicitly ill ttjc iJIstmlcc~. Tlw ctcfarift v;11w is follllcf 

ill the clnss, ~ntf tracks ttjnt vah lllltit it is cflatlgcd in 1h 

i11sta11cc. This COJJtl~sts with irjitial val11c?x. 

delegation. A tcChIIictIJe tbor foiwartli~rp, 21 ~ncss;igc off to tw 

fla~ltllctl by aIlotflcr objrct. 

initial vnluc. A valllr for nil iIlstaJIcr: variable ttrnt is colll- 

t”ltCtf mtl illst;ItfcYl ill t hP iJJstnJlcc~ at objwt clx?IltioIl. Km- 

fwml systnns provitlc inithf vnfws awl/or dcfhilt witurs. 

instance. The tclilr “iIIstaIlCd’ is IJSC~I ~JI two ways. ‘I’tJr! 

ptjrasc “iJJsfaIICr of” tlcscrifws the rcfntioil tJctwcrJJ all fh- 

jwt arrtt and its class. TtIc lllct.tlotfs aid stIwtcJrc~ of ail 

iJJslaIICr nrc cfrtc~rIlliIIetf by its class. Aft ohjccts in i.oops 

(iJIcflldiJJg chsscs) iilx? il~stallcc~ of s0111~ PfaSS. ‘J’tlc 1101111 

“installce” Icfws to ot)jMs tflzlt arc‘ ilot Chscs 

instantiate. TO lllilkf ;L n(‘\V il~St&llCC of Zl glass. 

instance variable. Illst;l1lcc~ virriabh (,soJJICtilll~~s c;jftctt 

sfols) arc variabfcs for wtricfl focal storage is avnilnfdc ill 

illstallrcs. ‘J’tjis contrasts with ~filss vaj iabfr5. which fiavc 

:itoragc? (JJJfy ill the class III so~jic f;rr~g~mgw installc’c~ vni i- 

abfcs cilll fJil\‘C OtdkJJld propcrtics. 

lattice. Iii ttlis tfwltJjJcnt wc arc llsill~; “fattiw’! ;li ii tfiiwtctf 

grath wilhoiit cycfcs. III hops, t flc inhi t illlw llrt work is 

aIlwJJged ill a Iatticc, A fattier is 11101c gcncrat than a trw 

tJf!~YulSc it :ltflnits niow ffmll OIW parcd. f,ikc :L trw, :i fattier 

rufcs ollt tflr fJossitJitity tfj:lt ;l class call (rw:Ji intlircctfy) 

hnvc ilsdf as ;I sutwrclass. 

metaclase. This tcrril is used ill two ways: as ii rctntiuJIstIitJ 

;l[JtJfiCtt to 1111 ilrslnnw, it rrfws to tt1c cf:ws (Jf rfw illstallc~c’s 

CfazS; aS A J1~JlJJl it rCff!rs to il cf:lS? aft Of WflOW iJls~aJlCCS arc! 

clnssw 

message. ‘1’Iic spcrificntioJ1 of 5x1 opwatiorl to be twrforlurtl 

Oil 311 ot?jcCt. SiJJIifar IO ;I p~JWtfllrc Gaff, (bXcefd tflzd tflC 

ojlrrIlti011 to fx pcrfornicd is lla~llcd intlircctty ttlrougti il se- 

lector wflosc ii~tcynWatioJ1 is ctctcrillincd by the class of tfw 

uf~jjrct, ratfwr tfIaI1 ~1 proccdllrc JJ~jJJJC witll ii single intwprc- 
t;rtion. 

method. ‘h! fjIJl~tiOl1 ttmt illltJfCJJlCJltS tfl<’ WStJUJISC WfWll iL 

111rwjgc js sciil to iul object. III I,oops: n class assoriatcs 

lHiXil1. A class tfcsip,JJccl lo allgnlcllt tfic dCsCri~JtioI1 of its 

hllfJffI\SsCs ill ;I IJJIJttiplc iIIlic~ritallCc~ lattice. t+Jr csainfdc. 

t.tK! JfIiXiJl Nrcrrlc!~O6~ect atfocatcs a11 iIlstallcc VWhtJtr: fo1 

twltling RIJ object’s ilaulc: iilltf COllIWCtS ttJr Vafllc’ Of (tI:lt 

VHI inf,fP t(J the OtJj<!Ct Sylrlbof tilfJt(’ 

object. The prirrlitivc rlr~lwllt of ulIjr~t-oricntctl progriun- 

JJJiIJg. ~>bjNtS COlnfliiK! ttlC i\ttribUtcS CJf f~r~cCthlJ’W :AIid 

data. <)tJjCCts StorC cf;Ita ill Vwiabfes, i llltf IWfJ~Jlltt t0 tl1PS- 

sages by carrying out proccc\urcs (nwtf~ocfs). 

perspective. A ibriu ol conqxxitr: ot)jcct intc?rjndc~d as tfif- 
fcrerlt views on tllc SajJW coIjccptuaf c,JJtity. For cxi~in- 

plc, OIK? rrrigtit rc])rCsCJit tflr coJICcpt for “Jw” in tcw11s of 

.I~JcAsAM~LJ~~ Joeti.s.~tGoljer, JocAs~i ii’eldcr. J~~~isAE’dhcr. 

OM’ caik ;I(‘C~‘ss ;111y Of tlwsc tJy view 13alJIc froln cad1 of ttw 

othcr;i. 

polymorphism. ‘l’flC ~a]mtIifity for tfitf~~l~~ll~ TfwSCS Of OtJ- 
jwts to 1CStJ”Jl’t t0 eX;lCt fy t flC WJJIC tJlTJtWOtS. f’lYJt>OCOtS 

PlldIf~? ?l t’lYJ~J*;llll (0 tlJ?:lt IlllifoJlllfy OfJ.jCCtS tfJ:it NiW f10111 

tliikrcllt cf~sses A critirat fC:l~llrC is Itlilt CWIl wtrcn ttIe 

S~JJIC 1nrss;igc is sent froln tflc? SilIlIC pfaw iii cotlr, it C~II 

ijlvokc diff<!JYJlt nncthorfs. 

t>rotoCol. /\ St~iJJd:ll<fiL~‘~f Wt Of lllKWl~~‘S for illl]~fUll~‘JJt ill{{ 

soJJJcttIillg. ‘J’wo cfasscs wfjictl illIt~lclllcjjt tllr S~IIW set of 

inessngrs arc said to follow tlics s:lljl~ p~tc~col. 

slot. SW instauw variable 

specialiaation. ‘l‘flr plocrss of lllotlifyillg a gwwic thing ffJJ* 

a spwific list 

aubcfa88. h class that is towcv ill tflr iIJfIwit;IIIcc IiJttiCC LfIall 

a giw11 &lss. 

super Ch88. A class tfliit is tligflu ill 1ttC iJJtIc:I4t~lllfc~ IiJttiCC! 

tliaii a ~ivcit class. 
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Figure 1 shows an example of a class in Loops. A 
class definition is organized in several parts-a class name, 
a metaclass, super classes, variables, and methods. The 
metaclass part names the metaclass (Class in this case) 
and uses a property list for storing documention. A meta- 
class describes operations on this class viewed as a Loops 
object. The super class part (supers) locates a class in 
the inheritance network. The other parts of a class defi- 
nition describe the places for specifying data storage and 
procedures. 

.________________________ 

Truck 

MetaCIass Class 

Supers (Vchiclc CargoCarricr) 

CIa8EVariabh 

tankCapacit,y 79 doc(*gnllons of diesel) 

Instancevariables 
rwncr PIF duc( *owner oj truck) 

highway GG doc(*Route wumber of the highway.) 

milcT’ost 0 doc(*location on the highway) 

direction East rloc(“Onc: o/North, hid, South, or West.) 

cargoList NJ, doc(*l,ist oj cargo descriptions.) 

totalWeight 0 doc(‘Current weight oj cargo in tom.) 

Methods 

Park ‘hck.l%rk doc(*I’arks the truck in a double space.) 

Display lhck.Dbplay doc(*Drazlls the truck in the display.) 

Example of a Class Definition in Loops. 

Figure I. 

Variables in objects are used for storing state. Loops For example, to create a new instance of the class Mac- 
supports two kinds of variables: class variables and in- Truck a New message is sent to MaeTruck. This creates 
stance variables. Class variables are used to hold infor- a data structure representing the truck with space for all 
mation shared by all instances of the class. Instance vari- of the instance variables. The method for creating the 

ables contain the information specific to a particular in- 
stance. Both kinds of variables have names: values, and 
other properties. We call the instance variable part of a 
class definition the instance variable description, because 
it specifies the names and default values of variables to 
be created in instances of the class. It acts as a template 
to guide~the creation of instances. For example: the class 
Point might specify two instance variables, x and y with 
default values of 0, and a class variable associated with all 
points, 1astSelectedPoint. Each instance of Poant would 
have its own x and y instance variables, but all of the 
instances would use the same 1astSelectedPoint class vari- 
able; any changes made to the value of 1astSelectedPoint 
would be seen by all of the instances. Default values are 
the values that would be fetched from the instance vari- 
ables if the variables have not been assigned values par- 
ticular to the instance. As motivated by Smalltalk, Loops 
also has indexed instance variables, thus allowing some 
instances to behave like dynamically allocable arrays. 

A class specifies the behavior of its instances in terms 
of their response to messages. A message is made of argu- 
ments and a selector. The class associates a selector (e.g., 
the selector “Drive” in Figure 1.) with a method, a proce- 
dure to respond to the message. When a message is sent to 
an instance: its response is determined by using the selec- 
tor to find the method in a symbol table in the class. The 
method is located in the symbol table and then executed. 
Since all instances of a class share the same methods, any 
difference in response by two instances is determined by a 
difference in the values of their instance variables. 

What’s in an Instance? Most objects in a Loops 
program are instances (that is, not classes). For example, 
in a traffic simulation program there may be one class 
named Truck and hundreds of instances of it representing 
trucks on the highways of a simulation world. All of these 
truck instances respond to the same messages, and share 
the class variables defined in the class Truck. What each 
instance holds privately are the values and properties of 
its instance variables, and perhaps an object name. The 
variables of an instance are initialized with a special token 
indicating to the Loops access functions that the variables 
have not been locally set yet. Figure 2 shows an example 
of an instance object. 

Instantiation and Metaclasses. The term metaclass 
is used in two ways: as a relationship applied to an in- 
stance, it refers to the class of the instance’s class; as a 
noun it refers to a class all of whose instances are classes. 
The internal implementation of an instance is determined 
by its metaclass. 
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Automobile-1 
Class Automobih? 
InstanceVariables 

. * . 

Instaim% have local stolagc for Ihcii hstance varialdrs. If no tow 
vnlw has bccr1 set yet, default vnh1es for instawc sariaMeS arc ob 

taiJJctl from the class. Iu this csaJJJptc, the ‘*?” in the value ptncc 
for the ins&ancc vwinblc fuel indicates that the actual value is to IX 
obtained by lookup from the cla.ss Auto~~~obilc. Methods end clas: 
vnriablcs are not shov~n SiJlCC tlwy arc acccssetl tlnough the class. 

Instance of an Automobile 
in a Traffic Simulation Model. 
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data structure is found in MacTruck’s metaclass- Class. 
To create a new class (e.g., the class PickUpTruck, an in- 
stance of the class Class), a New message is sent to Class. 
The method for creating and installing the data structure 
is found in the metaclass of Class called MetaClass. The 
New method creates a data structure for the new class, 
with space for class variables, instance variable descrip- 
tion, and a method lookup table. The new class is also 
installed in the inheritance network. Figure 3 illustrates 
this process of instantiation. 

AbstractClass is an example of a useful metaclass in 
Loops. It is used for classes that are placeholders in the 
inheritance network that it would not make sense to in- 
stantiate. For example, its response to a New message is 
to cause an error. Other metaclasses can be created for 
representing some classes of objects as specialized LISP 
records and data structures. 

Classes and Instances, Revisited. 

The distinction between classes and instances is usual in 
object languages. In applications where instances greatly 
outnumber classes, a different internal representation al- 
lows economies of storage in representation. It also pro- 
vides a natural boundary for display of inheritance, and 
hence helps to limit the visual clutter in presentations of 
the inheritance network. 

The object language of KEE (Fikes & Kehler, 1985) 
does not provide distinct representations for classes and in- 
stances. All objects, or “units,” as they are called in KEE, 
have the same status. Any object can be given “member” 

-ti 
Class 

Super Class 

Instance of 

(some links edited) 

Instantiation is the t,Jocms of making a new object. tn ~doot%, 
this process begins when a New nwssngc is .?cJJt to a ctassx. ~JJ this 

ligure, the instance Mac’lhrcl; 1 is created by sending a New nws 
sage to ,,!hJC’lhtCk The line bc~wccn b,~Jdi%JCk- I SJJd MJcl[hJck indi- 
cates tlic instancc.of relationship bct~wccn the instance and its class. 
Similarly, a class like P~ddip’l~tcck is crcatd by sending n New IJKS- 

sage to Cha. Vie line bctwcc~J I’ickUtGhtck and Clnas indicates the 
iJJStWICC-Of rclatioidGp bctwccn the cla.s.3 I’~cWp’l%wck SJJtt its JJJCtJl- 
ctas9 ~:lnss. Kvcry object has an instaucc-of rclationehip wit,h exactly 
OJIC da23 c%w and .~~fct4dhss arc called nwtactnsscs, since all of tlieir 
“instances” ale classes. Another importaut nlctacIn% ts Ah.dmcKXz5.9 
(not ShO\SJJ). A6sfmctals3 is the mctnCl.aSs for ctnsScS not Jncant to 

be instantiated (e g., tikc Vehicle) 

Instantiation. 

Figure 3. 

slots which will be inherited by instances of this object. 
Proponents of this more uniform approach have argued 
that for many applications, the distinction does little work 
and that it just adds unnecessary complications. Similarly 
there is no such distinction in actor languages (Lieberman, 
1981). Inheritance of variables in these languges is gener- 
ally replaced by a copying operation. ThingLab (Borning, 
1979), a constraint driven object language used prototypes 
rather than classes to drive object creation, and special- 
ization was simply instantiation followed by editing. 

In Object Lisp (Drescher, 1985), the declarative struc- 
tures conventionally associated with classes are dispensed 
with. Objects are simply binding environments, that is, 
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“closures.” An operation is provided for creating and nest- 
ing these environments. Object variables are Lisp variables 
bound within an object environment; methods are function 
names bound within such an environment. To get the ef- 
fect of message sending, one “ASKS” for a given form to be 
evaluated in the dynamic scope of a given object. Nested 
environments are used to achieve the layered “inheritance” 
effect of specialization. Use of an “ASKS” form, however, 
precludes the unification of message-sending and proce- 
dure call that is now appearing in other object languages. 

Not all object languages have metaclasses. Since Fla- 
vors are not objects, instances of Flavors have no meta- 
classes. All Flavor instances are implemented the same 
way: as vectors. Loops uses metaclasses to allow variations 
in implementation for different classes. For example, some 
objects provide a level of indirection to their variable stor- 
age, allowing updating of the object if there are changes in 
its class definition. Smalltalk- has metaclasses, and uses 
them primarily to allow differential initialization at ob- 
ject creation time. CommonLoops (Bobrow, et al., 1985) 
makes more extensive use of metaclasses than Loops, us- 
ing them as a sort of “escape mechanism” for bringing 
flexibility to representation and notations of objects. 

Another difference in systems is whether instance vari- 
ables of an object can be accessed from other than a 
method of the object. Proponents of this strict encap- 
szllation, as in Smalltalk, base their argument on limiting 
knowledge of the internal representation of an object, mak- 
ing the locus of responsibility for any problems with the 
object state well-bounded. A counter argument is that 
encapsulation can be done by convention. Loops allows 
direct access to object variables to support a knowledge 
representation style of programming. This is particularly 
useful, for example, in writing programs that compare two 
objects. 

Not all object languages provide property annotations 
for variables. In Smalltalk, Flavors, and Object Lisp, 
variables have values and nothing more. However, lan- 
guages intended primarily for knowledge engineering appli- 
cations tend to support annotations. For example, KEE, 
STROBE (Smith, 1983), and Loops, which are all direct 
descendants of the Units Package, have this. Annotations 
are useful for storing auxiliary information such as de- 
pendency records, documentation, histories of past values, 
constraints, and certainty information. 

In Loops, the approach to annotating variables has 
evolved over time. In its most recent incarnation, property 
annotations have been unified with a means for triggering 
procedure call on variable access (active values) (Stefik, 
Bobrow, & Kahn, 1986). These annotations are contained 
in objects and it is possible to annotate annotations recur- 
sively. 

The distinction between class variables and instance 
variables varies across object languages. Smalltalk makes 
the same distinction as Loops (and was the source of the 

idea for the Loops developers). Flavors does not have class 
variables. KEE provides own and member declarations for 
slots, serving essentially the same purposes as the distinc- 
tion between class and instance variables. CommonLoops 
provides primitives for describing when, how, and where 
storage is allocated for variables. From these primitives, 
the important notions of class variables can be defined, ex- 
cept that they share the same name space as other object 
variables. 

Most object languages treat variables and methods 
as distinct kinds of things: Variables are for storage and 
methods are for procedures. This distinction is blurred 
somewhat by active values in Loops, which make it possi- 
ble to annotate the value of a variable in any object so that 
access will trigger a procedure. The distinction is blurred 
also in languages like KEE, STROBE, and the Units Pack- 
age in which methods are procedure names stored in in- 
stance variables (which they call slots). In these languages 
there is an additional kind of message sending: sending a 
message to a slot. For specified kinds of messages, the 
value returned can be just the value of the slot. 

Another important extension in the Units Pack- 
age, KEE, and STROBE is that slots are annotated by 
datatypes. The datatype distinguishes the kind of data 
being kept in the slot, be it an integer, a list, a procedure, 
or something defined for an application. An object’ repre- 
senting the datatype provides specialized methods for such 
operations as printing, editing, displaying, and matching. 
These datatype methods are activated when a slot mes- 
sage is not handled by a procedure attached to the slot 
itself. The form of message forwarding and representation 
of datatypes as objects provides another opportunity for 
factoring and sharing information. Thus, what all slots of 
a given type share, independent of where they occur, is 
characterized by methods in the corresponding datatype 
object. 

Inheritance 

Inheritance is the concept in object languages that is used 
to define objects that are almost like other objects. Mecha- 
nisms like this are important because they make it possible 
to declare that cert,ain specifications are shared by multi- 
ple parts of a program. Inheritance helps to keep programs 
shorter and more tightly organized. The concepts of in- 
heritance arise in all object languages, whether they are 
based on specialization or delegation and copying. 

We begin with the simplest model of inheritance, hi- 
erarchical inheritance. We will then consider multiple in- 
heritance, as it is done in Loops and other languages. 

Hierarchical Inheritance. 

In a hierarchy, a class is defined in terms of a single super- 
class. A specialized class modifies its superclass with 
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additions and substitution. Addztion allows the introduc- 
tion of new variables, properties, or methods in a class, 
which do not appear in one of its superclasses in the hier- 
archy Substitution (or overriding) is the specification of a 
new value of a variable or property, or a new method for 
a selector that already appears in some superclass. Both 
kinds of changes are covered by the following rule. All 
descriptions in a class (variables, properties, and meth- 
ods) are inherited by a subclass unless overridden in the 
subclass. (See Figure 4.) 

The values to be inherited can be characterized in 
terms of a class precedence list of superclasses of the class 
determinined by going up the hierarchy one step at a time. 
Default values of instances are determined by the closest 
class in the superclass hierarchy, that is from the first one 
in the class precedence list. Figure 5 illustrates essentially 
the same lookup process for methods. 

There is always an issue about the granularity of inher- 
itance. By this we mean the division of a description into 
independent parts, that can be changed without affecting 
other parts. In Loops, any named structural element can 
be changed independently-methods, variables, and their 
properties. For example, substituting a new default value 
for one instance variable does not affect the inheritance of 
the properties of that variable, or the inheritance of other 
instance variables. Figure 4 shows this for the indepen- 
dent inheritance of documentation when a default value is 
changed. 

Several approaches for implementing inheritance are 
possible offering different tradeoffs in required storage, 
lookup time, work during updating, and work for com- 
pilers. For example, the lookup of default values need not 
involve a run-tome search of the hierarchy. In Loops, the 
default values are cached in the class, and updated any 
time there is a change in the class hierarchy. 

The position of a variable is determined by lookup in 
the class, but the position of t,his variable is cached at 
first lookup. Changes in the hierarchy affecting position 
of instance variables simply require clearing the cache. 

In Flavors, the position of an instance variable is 
stored in a table associated with a method, and is ac- 
cessed directly by the code. This gives faster access, but 
requires updating many method tables for some changes 
in the hierarchy. 

Multiple Inheritance in a Lattice. 

Inheritance is a mechanism for elision. The power of inher- 
itance is in the economy of expression that results when a 
class shares description with its superclass. Multiple inher- 
itance increases sharing by making it possible to combine 
descriptions from several classes. 

Using multiple inheritance we can factor informa- 
tion in a way that is not possible in hierarchical inheri- 
tance. Figure 6 illustrates this in a lattice of commodities. 
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The class StereoSystem inherits descriptions from Luxu- 
ryGoods, Appliances, and FragileCommodity. The meth- 
ods and variables describing Fragilecommodity are also 
used for Egg, StereoSystem, and other classes. It would 
be necessary to duplicate the information about fragility 
in several classes such as FragileAppliances, FragileGro- 
ceries, FragileFruit, and FragileLuxuryGoodsAppliances in 
a strictly hierarachical system. In contrast, multiple inher- 
itance lets us package together the methods and variables 
for FragileCommodity for use at any class in the network. 

A class inherits the union of variables and methods 

from all its super classes. If there is a conflict, then we 
use a class precedence list to determine precedence for the 
variable description or method. The class precedence list 
is computed by starting with the first (leftmost) superclass 
in the supers specification and proceeding depth-first UP to 
joins. For example, the precedence order for DzgiMeter in 
Figure 7 first visits the classes in the left branch (DigiMe- 
ter, Meter, Instrument), and then the right branch (LCD), 
and then the join (Gauge), and up from there. 

The left-to-right provision of the precedence ordering 
makes it possible to indicate which classes take precedence 
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in the name space. The “up to joins” provision can be un- 
derstood by looking at examples of mixins. Mixins often 
stand for classes that it would not make sense to instanti- 
ate by themselves. Mixins are special classes that bundle 
up descriptions and are “mixed in” to the supers lists of 
other classes in order to systematically modify their behav- 
ior. For example, Perishablecommodzty and FragaleCom- 
modity are mixins in Figure 6 that add to other classes 
the protocols for being perishable or fragile. Another ex- 
ample of a mixin is the class NamedInstance, which adds 
the instance variable name to its subclasses, and overrides 
methods from Object so that appropriate actions in the 
Loops symbol tables take place whenever the value of a 
name instance variable is changed. DatedObject is another 
mixin which adds instance variables that reflect the date 
and creator of an object. Mixins usually precede other 
classes in the list of supers, and are often used to add 
independent kinds of behavior. 

When mixins are independent, the order of their in- 
clusion in a supers list should not matter. Like all classes 
in Loops, mixins are subclasses of Object. If the “up to 
joins” provision was eliminated from the precedence or- 
dering, then the depth-first search starting from the first 
mixin would cause all the ot’her default behaviors for Ob- 
ject to be inherited-interfering with other mixins later in 
the supers list that may need to override some other part of 
Object. Changing the order of mixins would not eliminate 
such interference, since most mixins need to override the 
behavior of Object in some way. The “up-to-joins” provi- 
sion fixes this problem by insuring that ObJect will be the 
last place from which things are inherited. Although this 
effect could also be achieved by treating Object specially, 
we have found that analogous requirements arise whenever 
several subclasses of a common class are used as mixins. 
The up-to-joins provision is a general approach for meeting 
this requirement. 

Multiple Inheritance, Revisited. 

A major source of variation in object languages that pro- 
vide multiple inheritance is their stand towards precedence 
relations. In Smalltalk, multiple inheritance is provided, 
but not used much or institutionalized. Smalltalk- takes 
the position that no simple precedence relationship for 
multiple inheritance will work for all the cases, so none 
should be assumed at all. Whenever a method is provided 
by more than one superclass, the user must explicitly indi- 
cate which one dominates. This approach diminishes the 
value of mixins to override default behavior. 

Flavors and Loops both use a fixed precedence rela- 
tionship, but differ in the details. The two approaches 
can be seen as variations on an algorithm that first lin- 
earizes the list of superclasses (using depth-first traversal) 
and then eliminates duplicates to create a class precedence 
list. In Flavors, all but the first appearance of a duplicate 

are eliminated. In Loops, all but the last appearance of a 
duplicate are eliminated. 

CommonLoops takes the position that experimenta- 
tion with precedence relationships is an open issue in 
object-oriented programming. In CommonLoops, the 
precedence relation for any given class is determined by 
its metaclass, which provides message protocols for com- 
puting the- class precedence list. 

Method Specialization and Combination 

One way to specialize a class is to define a local method. 
This is useful for adding a method or for substituting for an 
inherited one. In either case a message sent to an instance 
of the class will invoke the local method. The grain size of 
change in this approach is the entire method. 

A powerful extension to this is the incremental spe- 
caaluakon of methods, that is, the ability to make incre- 
mental additions to inherited methods. This is important 
in object-oriented programming because it enables fine 
grained modification of message protocols. In the follow- 
ing we consider two mechanisms for mixing of inherited be- 
havior. The first mechanism c Super (pronounced “send 
super”) allows procedural combination of new and inher- 
ited behavior. It derives initially from Smalltalk and is 
used heavily in the Loops language. Then we will consider 
an interesting and complementary approach pioneered by 
the Flavors system in which there is a declarative language 
for combining methods. 

Procedural Specialization of Methods. 
Incremental modification requires language features be- 
yond method definition and message sending. In Loops, 
+ Super in a method for selector Ml invokes the method 
for Ml that would have been inherited. Regular mes- 
sage sending (c) in a local method can not work for this, 
because the message would just invoke the local method 
again, recursively. 

An example of its use is shown in Figure 8. In this 
example, Gauge is a subclass of Window. The method 
for updating a Gauge needs to do whatever the method 
for Wzndow does, plus some initial setting of parameters 
and some other calculations after the update. The idiom 
for doing this is to create an Update method in Gauge 
that includes a + Super construct to invoke Window’s 
method. This is better than duplicating the code from 
Window (which might need to be changed), or invoking 
Window’s method by procedure name (since other classes 
might later be inserted between Window and Gauge). 

+- Super provides a way of specializing a method with- 
out knowing exactly what is done in the higher method, or 
how it is implemented. +- Super uses the class precedence 
list to choose when a method appears in more than one 
superclass. The precedence ordering is the same as that 
used for object variables. 
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+ Super uses the class precedence list in order to pre- 
serve the correctness of protocols under changes to the in- 
heritance lattice. The most obvious definition of +- Super 
would be to search for the super-method from the begin- 
ning of the class precedence list. This fails for nested ver- 
sions of + Super, and even for a + Super in a method 
which is not defined locally, but is inherited. A second in- 
correct implementation would use the class precedence list 
of the class in which the method was found. This gives in- 
correct results for classes with multiple super classes. To 
insure that protocols work the right way in subclasses, 
t Super starts the search in the object’s class precedence 
list at the class from which the current method is inherited. 
Because + Super is defined this way, inherited methods 
using + Super consistently locate their “super methods” 
and common changes to the lattice yield invariant opera- 
tion of the message protocols. 

Combination of several inherited methods is also im- 
portant. A simple version combines all of the most-local 
methods for a given selector, that is, all of the methods 
that have not themselves been specialized. These meth- 
ods are called the frznge methods, and the construct for 
invoking them all is called + SuperFringe. For example, 
in Figure 9 the class DigzMeter combines the updating 
processes for LCD and Meter by using + SuperFringe to 
invoke the ShowReadzng methods of its superclasses. 

by message sending. It also steps outside the paradigm 
of object-oriented programming and opens the door to a 
wide variety of programming errors. When programs are 
written using standard message invocations, then proto- 
cols keep working even when common changes are made 
to the inheritance lattice. This happy situation is not the 
case when programs use DoMethod. Since DoMethod al- 
lows specification of the class in which the message will 
be found, it encourages the writing of methods that make 
strong assumptions about the names of other classes and 
the current configuration of the inheritance lattice. Pro- 
grams that use DoMethod are likely to stop working under 
changes to the inheritance lattice. 

Declarative Method Combination 
For selective combination of methods from different Flavors supports a declarative language for combining 

classes Loops provides a construction called DoMethod. methods at compile time. An important new distinction 
DoMethod allows the invocation of any method from any made in Flavors is that there can be three named parts to a 
class on any object. It can be viewed as an escape mecha- method-a before part, an after part, and a main method, 
nism, allowing one to get around the constraints imposed each of which is optional. By default, the main method 

Window 

Place window 

Write title 

Update reading 

[GaugeUpdate (self) 

I’ FiGI updaro I!!@ guap? parmmcrs , 

(6 self SetPatameters) 

50 THE AI MAGAZINE 



Window 

i 

Place window 

TitledWindow 

Update reading 

ument 

‘x 
Meter 

DigiMeter 

I 
[DigiMeterShowHeading (self) 

(*SuperFringe self ShowReading reading) 

overrides any inherited main method, but the before and 
after parts are all done in a nested order determined by 
the class precedence list. Thus a supplier of a method in 
a mixin can ensure that whatever the main method, its 
before method will be executed. 

A declarative language used in a newly defined method 
can specify other than the default behavior for combina- 
tion of inherited met’hod parts. For example, and combi- 
nation of before methods allows the execution of the entire 
method to stop if one of the before methods returns nzl. 
The defwhopper combinator allows a compile time con- 

struction of the equivalent of + Super. 
The concept of organizing methods and variables into 

classes that can be mixed together for use in combination 
admits at least two distinct philosophies for assigning re- 
sponsibility for the viability of the combination. In Flavors 
responsibility is assigned, at least in part, to the suppliers, 
that is, to the classes that are being combined. Com- 
binator specifications include things like do this method 
before the main method, or do it after the main method, 
or do parts of it at both times. The intention is to get the 
specification right once in the supplier so that consumers 
need not know about it. When this kind of specification 
is successful, it reduces the total amount of code in the 
system since consumers need only specify the order of su- 
perclasses. 

In Loops, responsibility for method combination is as- 
signed to the consumer; that is, the local method uses 
the procedural language and the special form + Super to 
combine the new behavior with behavior inherited. 

It is important to consider the effects on program 
change when evaluating alternatives like this. How often 
are suppliers changed? consumers? To what extent are 
suppliers independent? Do mixins need notations for in- 
dicating what kinds of classes they are compatible with? 
What kinds of changes in the suppliers require changes in 
the consumer classes? 

CommonLoops takes the position that both philoso- 
phies are worth exploring, and that continued experimen- 
tation in the refinement of method combinators is called 
for. It provides a primitive RunSuper (analogous to the 
Loops + Super) in the kernel. Methods are represented 
as objects in CommonLoops; this means that a system can 
have different kinds of methods with different techniques 
for installing them or displaying their sources. Flavor-style 
methods would be a special kind of object with extra spec- 
ifications for combinators. These specifications would be 
interpreted at appropriate installation and reading times 
by Flavors-style discriminator objects for those methods. 

Composite Objects. 

A composite object is a group of interconnected objects 
that are instantiated together, a recursive extension of the 
notion of object. A composite is defined by a template 
that describes the subobjects and their connections. Fa- 
cilities for creating composite objects are not common in 
the object languages we know, although they are common 
in application languages such as those for describing cir- 
cuits and layout of computer hardware. The current Loops 
facility is based on ideas in Trillium (Henderson, 1986), 
which is a language for describing how user interfaces for 
copiers are put together. 

Principles for Composite Objects. 
Composite objects in Loops have been designed with the 
following features: 
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l Composite objects are specified by a class con- 
taining a description indicating the classes of the 
parts and the interconnections among the parts. 

The use of a class makes instantiation uniform so that 
composite objects are “first class” objects. 

l Instantiation creates instances corresponding to 
all of the parts in the description. 

The instantiation process keeps track of the correspon- 
dence between the parts of the description and the parts in 
the instantiated object. It fills in all of the connections be- 
tween objects. It permits multiple distinct uses of identical 
parts. 

l The instantiation process is recursive, -so that 
composite objects can be used as parts. 

For programming convenience, the instantiation pro- 
cess detects as an error the situation where a description 
specifies using another new instance of itself as a part,, even 
indirectly. Instantiation of such a description would result 
in trying to build an object of unbounded size. An alter- 
native is to instantiate subparts only on demand. This 
allows the use of a potentially unbounded object as far as 
needed. 

l It is possible to specialize a description by 
adding new parts or substituting for existing 
parts. 

This reflects the central role of specialization as a 
mechanism for elision in object-oriented programming. 
The language of description allows specialization of com- 
posite objects with a granularity of changes at the level of 
parts. 

An Example of a Composite Object. 
Composite objects are objects that contain other objects 
as parts. For example, a car may be described structurally 
as consisting of a body, a power system, and an electrical 
system. The body has two doors, a hood, a chassis, and 
other things. Parts can themselves contain other parts: a 
door has various panels, a window, and a locking system. 
Objects can also be parts of more than one container: the 
fan belt can be viewed as a component of the cooling sys- 
tem or of the electrical charging system. 

The boxed figure in the next column shows the Loops 
class definition of Mercedes24OD defined as a composite 
object. 

Mercedes24OD is a subclass of the mixin CompositeOb- 
ject that supports protocols for instantiation that will in- 
terpret descriptions of parts. The value of the instance 
variable enginesystem will be filled by an instance of the 
class DieselEngine. In that instance of DieselEngzne, the 
value of the instance variable numcylinders is initialized 
to 4 and transmission to 4Speed. 

The body instance variable of the Mercedes24OD will 
be initialized to and instance of BodySOO. Its instance 
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variable style is set to the value of the style from the Mer- 
cedes24OD, that is, tradational. In addition, the color prop- 
erty of the style instance variable will be set to ivory. These 
exemplify the propagation of values from the containing 
instance to those parts contained in it. 

The class variable StandardCarStuff indicates a num- 
ber of variables for the body part that will inherit values 
from the car. For example, the color of the body is the 
color of the car. Finally, the instance variable parts will be 
set to a list of all the immediate parts of the Mercedes24OD. 
If any of the parts are themselves ComposzteObjects, their 
parts will be instantiated too. 

Perspectives. 

Perspectives are a form of composite object interpreted as 
different views on the same conceptual entity. For exam- 
ple, one might represent the concept for ‘LJoe” in terms 
of views for JoeAsAMan, JoeAsAGolfer, JoeAsA Welder, 
JoeAsAFather. We will first describe perspectives as they 
are used in Loops, and then contrast this with other lan- 
guages. 

Perspectives in Loops. 
Perspectives in Loops are implemented by independent 
linked objects representing each of the views. One can 
access any of these by view name from each of the others. 
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Because the linked objects are independent, the same in- 
stance variable name in more than one of the objects can 
mean different things, and can be changed independently. 
For example, Figure 10 illustrates an object Inverter-1 
which has the perspective DisplayObject as well as the per- 
spective LayoutDescrzption. Both perspectives may have 
instance variables named xcoordinate and ycoordinate, 
but with different interpretations. For a DisplayObject, 
the variables could refer to the coordinates in pixels on a 
workstation display. For a LayoutDescription perspective, 
the variables could refer to coordinates in the silicon chip 
on which the inverter is fabricated. 

Although the terminology of perspectives is not 
widespread, some other object languages (e.g., Snyder, 
1985) have a similar capability to combine the structure of 
multiple classes in this way. Snyder suggests that name co- 
incidence in multiple inheritance ought not imply identity. 
He believes that this violates an important encapsulation 
principle of object oriented programming-that users of 
objects ought not to have privileged access to the internals 
of those objects. He extends that notion to classes which 
inherit from previously defined classes. For his language, 
inheritance from a super class means the embedding of an 
instance of the super class in the subclass. Messages of the 
super class are to be inherited explicitly, and implemented 
by passing the message on to the embedded instance. 

Examples of Object-Oriented Programming 

Perspectives were designed in Loops to have the fol- 
lowing properties: 

l Perspectives are accessed by perspective names. 

Examples of programming can be presented at several 
levels. This section considers three examples of object- 
oriented programming that illustrate important idioms of 
programming practice. The first illustrates the use of mes- 
sage sending and specialization. The second example il- 
lustrates choices among techniques of object combination. 
The third example illustrates common techniques for redis- 
tributing information among classes as programs evolve. 

Given an object, one can ask for its Traveler perspec- Programming the Box and the BorderedBox. 
tive using the name “Traveler.” A given perspective name Object-oriented programming has been used for many pro- 
has at most one perspective of an object. Perspectives grams in interactive graphics. The following example was 

form a kind of equivalence class. 
l Perspectives are instantiated on demand. 

This contrasts with usual composite objects in which 
all the parts are created at instantiation time. Additional 
views can be added as needed to any object. 

Perspectives can be compared with class inheritance. 
In inheritance only one variable is created when there is 
a “coincidence” in the names of variables inherited from 
different superclasses. Thus inheritance assumes that the 
same name is always intended to refer to the same variable. 
For perspectives, variables of the same name from different 
classes are used for different views and are distinct. When 
classes are combined by inheritance, all of the instances of 
the combined class have the same structure (that is, vari- 
ables and methods) and all of the structure is created at 
once. For perspectives: the situation is different. Instances 
have varying substructure. 

Variations on Perspectives. 
The term perspective was first used for different views 
of the same conceptual object in KRL, and later in PIE 
(Goldstein & Bobrow, 1980). Each view had an indepen- 
dent name space for its slots. However, in neither PIE 
nor KRL was a perspective a full-fledged object; access to 
the view could only be obtained through the containing 
object. 
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motivated by these applications. We will consider vari- 
ations on a program for displaying rectangular boxes on 
a display screen. This example explores the use of mes- 
sage sending and specialization in a program that is being 
extended and debugged. 

Figure 11 gives our initial class definition for the class 
Box. Instances of this class represent vertically aligned 
rectangular regions on a display screen. The four instance 
variables store the coordinate and size information of a 
box. The origin of a box in the coordinate system is de- 
termined by the variables xOrigzn and yOrzgin and the 
default origin is at (100, 200). The size of a box is deter- 
mined by variables xLength and yLength and the default 
size is 10 x 30. Operations on a box include moving it to 
a new origin, changing its size? and changing the shading 
inside the box. In the following we will specialize the Box 
class and also uncover a bug in it. 

Message protocols define an interface for interacting 
with boxes. Instances of Box are created by sending it 
a New message. Size and position of an instance are es- 
tablished by sending it a Reshape message. Shade is es- 
tablished by sending it a Shade message. These messages 
provide a structured discipline for interaction with boxes, 

that is, a data abstraction. Outside agents need only know 
the relevant messages. They need not know the implemen- 
tation of a box in terms of its instance variables. 

Suppose that we wanted to create another kind of box 
with a visible border that frames it in the display. This 
BorderedBox would be essentially a Box with a border. 
This suggests that we employ inheritance and specialize 
the class definition of Box. 

In programming BorderedBox several choices about 
the interpretation and representation of the border need 
to be made. The foremost question is about the treat- 
ment of coordinates of the border, that is, whether the 
border frames the outside of the box or is included as part 
of the box. For example, is the border included in the 
length measurements? If the border is on the outside, is 
the origin on the inside or the outside of the border? The 
answers to these questions do not come from principles of 
object-oriented programming, but rather from our inten- 
tions about the meaning of the BorderedBox program. The 
answer affects the meaning of the instance variables x0- 
rigin, yorigin, xLength, and yLength inherited from Box. 
For this example, we will assume that the borders are in- 
tended only to make the boxes easier to visualize in the 



display and that for this purpose they will be treated as 
part of the box. 

The next step is to decide whether any of the methods 
of Box need to be specialized in BorderedBox. Since a 
border needs to be redrawn when a box is increased in size, 
it is clear that at least the Reshape method needs some 
revision. Figure 13 shows a specialized Reshape method 
that uses t Super to invoke the Reshape method from 
Box. The specialized Reshape also invokes local methods 
to Draw and Erase the boundary. These methods plus 
one for setting the size of the boundary must be added 
to BorderedBox. The Draw and Erase methods are for 
internal use, but the SetBorder method will become part 
of the external protocol. Figure 12 shows these methods 
together with a new instance variable for recording the size 
of the border. 

The use of a variable for bordersize brings up a ques- 
tion of how the methods of the original Box class work for 
shading. In fact, they cannot work if the shade is not saved 
as part of the state of an instance (or is otherwise com- 
putable). Box’s Reshape method should use the current 
shade in order to fill new areas when a box is expanded. 
To fix this deficiency, we can now go back to the definition 
of Box to add a shade instance variable that will be saved 
by the Shade method. We can also modify Box’s Reshape 
method to use this new variable. 

After the shade bug is fixed, we should ask whether the 
specialized class BorderedBox must also be changed. Bor- 
deredBox will inherit the shade instance variable and the 
revised Shade method. Furthermore, the specialized Re- 
shape method in BorderedBox, which uses + Super, will 
effectively “inherit” the shade changes from Box’s Reshape 
method. In this example, the inheritance mechanisms of 
the language work for us in just the right way. This il- 
lustrates how language features can provide leverage for 
accommodating change. 

Programming the DigiMeter. 
Gauges are favorite pedagogical examples in Loops be- 
cause they use features of both object-oriented and access- 
oriented programming. They are defined as Loops classes 
and are driven by active values. 

Figure 14 illustrates a collection of gauges in Loops. 
Gauges are displayed in a wzndow, an active rectangular 
region in the bitmap display. They have a black title bar 
for labels and a rectangular center region in which they 
display values. Instances of LCD (for “little character dis- 
play”) show their values digitally, but most gauges simu- 
late analog motion to attract visual attention when they 
change. For example, subclasses of VertzcalScale and Hor- 
izontalScale simulate the movement of “mercury” as in a 
thermometer. Instances of subclasses of RoundScale move 
a “needle” in a round face. 

For some purposes it is convenient to combine digital 
and analog output in a single gauge. The digital output 

makes it easy to read an exact value from the gauge. The 
analog output makes it easy to notice when the gauge is 
changing and to estimate the position of the current value 
in a fixed range. With gauges like this it is easy to tell at 
a glance that something is “half full.” 

The programming of combination gauges gives rise to 
a choice of programming techniques for combining classes. 
Figure 14 shows the DigiMeter as an inheritance combi- 
nation of a Meter and an LCD. Such a gauge needs to 
combine the programmed features of the two classes. In 
the following we will consider the arguments for choosing 
an appropriate technique of object combination. 

Here are some goals bearing on the design of a DigiMe- 
ter: 

a The DigiMeter should respond in the standard 
way to gauge protocols. 

For example, a single request to Set the DigiMeter 
should suffice, without having to send separate messages 
for the meter and the LCD. Both gauges should display 
the same correct value. 

a The DigiMeter should use a single window to 
display both gauges. 

The combination gauge should not have two separate 
windows and bars. The component gauges should ap- 
pear in a single window on the display screen that is large 
enough for both of them. 

l The combined description should make direct 
use of the classes for LCD and Meter. 

DigzMeter should use some method for combining Me- 
ter and LCD. This does not preclude making changes to 
the classes for Meter and LCD in order to make them com- 
patible for combination, but we do not want to duplicate 
code or descriptions in DigiMeter. The class descriptions 
should continue to work whether the classes are used alone 
or in combination. 

The three techniques of object combination supported 
in Loops are perspectives, composite objects, and multiple 
inheritance. 

Using perspectzves for combination, we would create 
a DigiMeter with one perspective for the meter and one 
for the LCD. Unfortunately, the direct approach to this 
would result in the creation of separate windows for each 
gauge. We could fix this for all of the gauges in the lat- 
tice, for example, by making a window be a perspective 
of a gauge. The main utility of perspectives is that they 
support switching among multiple views and instantiat- 
ing these views on demand. In this application, we always 
need to create all of the views and the views are very close- 
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ly associated. Hence, the main features of perspectives 
don’t do much work for us. Using composite 0bJect.s as the 
method combination, we would create a DzgiMeter with a 
meter as one part and an LCD as another part. Again, 
the straightforward combination would yield a separate 
window for each gauge. As before, we could revise all of 
the gauges in the lattice, perhaps treating a window as a 
part of a gauge. In addition, the DigaMeter description 
would need to identify the window parts of the meter and 
LCD as referring to the same window. The main benefit of 
composite objects is to describe for instantiation a richly 
connected set of objects and to differentiate between ob- 
jects and their parts. In this application, the connections 
between the parts are relatively sparse and the part/whole 
distinction doesn’t do much work for us. 

Using multiple inheritance for combination, we would 
create a DigiMeter as a class combining an LCD and a 
meter. Since the LCD and Meter classes inherit their win- 
dow descriptions from the same place, multiple inheritance 
yields exactly one window. As in the other cases, we may 
need to tune parts of the window description to make 
sure that it is large enough for both gauges, but this is 
a straightforward use of the inheritance notion. In multi- 
ple inheritance it is important to ask whether same-named 
variables in the combined class refer to the same thing. For 
this application, we need to be on the alert for the use of 
variables in Meter and LCD that have the same name but 
different meanings, but there are no such conflicts in this 
case. 

The preceding arguments suggest that multiple inher- 
itance is the most appropriate technique of object com- 
bination for this application. The next step in designing 
a DigiMeter is to understand and design the interactions 
between the constituents. The main interactions are: 

l The window should be large enough to accom- 
modate both gauges. 

l The methods for displaying both gauges should 
be invoked together. 

The first interaction can be handled by specializing the 
method (UpdateParameters) that establishes the window 
parameters. The major window sizing constraints come 
from the Meter, which must provide room for the cali- 
brated circle and its interior needle. In the Loops imple- 
mentation the DigiMeter method uses + Super to invoke 
the parameter-setting code for the Meter and then revises 
them to allow extra room at the top of the window for the 
LCD. 

The second interaction can be handled by specializ- 
ing the ShowReading method for showing a reading. As 
shown earlier in Figure 9, this method consists of a simple 
application of +- SuperFrznge which invokes the original 
ShowReading methods of both Meter and LCD. In Flavors 
this would have involved the application of a progn method 
combinator. 

The Evolution of Classes-Gauge Examples. 
Most of our applications of Loops take place in a research 
environment in which new goals and ideas are always sur- 
facing. In such an environment frequent revisions and ex- 
tensions are a constant part of programming. To cover 
the kinds of reorganizations that we carry out in our work 
we have developed some idioms for systematic program 
change. This section considers three cycles of revision in 
the design of Loops gauges. Each cycle of revision has the 
following steps: 

l A new goal or requirement is introduced for the 
design. 

l A conflict in the current organization is recog- 
nized between sharing of code and flexibility. 

b A new factoring of information is chosen to ease 
the conflict. 

Cycle 1. In our first example we will consider the ad- 
dition of a DigzScale to the class inheritance lattice. A 
DigiScale will be a combination of a Horizontal&ale and 
an LCD as in Figure 15. A major design constraint for 
this example is that the DzgiScale must be visually com- 
pact. To make it small we want to omit the tick marks 
and labels from the horizontal scale portion. Such a gauge 
would present both an exact digital value and an analog 
indication of the value within its range. 

However, the plan of omitting the tick marks also in- 
teracts with the inheritance of existing code from it Hor- 
izontalScale and Instrument. In particular, the display of 
instrumentas is governed by the ShowInstrument method 
of Instrument, which carries out the following sequence of 
steps: 

l Draw the instrument struct’ure (circular dials, 
an so forth) 

l Draw and label the tick marks. 
l Print the scale factor. 
For the DigaScale this organization is too coarse. This 

illustrates a common situation where inheritance in a sub- 
class requires finer granularity of description than was pro- 
vided in the super class. The situation arises often enough 
in our programming that we have a name for it-a grain- 
size conflict. In Loops, pieces of description which are 
intended to be independently inherited must be indepen- 
dently named-e.g., methods have their own selectors and 
instance variables have their own variable names. A spe- 
cific fix in this case is to decompose the ShowInstrument 
method into several smaller methods that we can indepen- 
dently specialize, reorder, or omit. 

Cycle 2. Sometimes a grainsize conflict is the first 
stage in recognizing new possibilities in a design. In the 
previous example, we considered the creation of a spe- 
cial kind of horizontal scale that has no tick marks. We 
could generalize that idea to have vertical scales or even 
round scales without tick marks. Another observation in 
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the same vein is that the round scale gauges differ from the gauges use space filling-like the sliding of a column of 
others in the way that they indicate their values. Round mercury. Several other kinds of gauges are possible-such 
scale gauges use a needle. Vertical and horizontal scale as a PieScale gauge-a round scale gauge that uses an 
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expanding “slice of pie” to indicate its value. 

This suggests that there are some independent prop- 
erties of gauges that we could recognize: 

l Calibration-gauges can have tick marks and 
scale factors or not. 

l Indicator style-gauges can use needles or space 
filling to present their values. 

The recognition that a particular distinction arising in 
a subclass can be generalized is a common occurrence in 
object-oriented programming. Often there is a motivation 
to move structure up in the lattice to increase the amount 
of sharing. We call this promotion of structure. Figure 16 
illustrates a simple case of this where a method M1 and 
an instance variable IV1 are initially duplicated in two 
sibling classes. 

Promotion would move them to their common super- 
class. The Loops environment encourages and facilitates 
such activities by making them easy to do with interactive 
browsers that show the inheritance structure, and allowing 
menu driven operations to make changes. 

Figure 17 shows a first attempt to organize a class lat- 
tice for these distinctions. In this attempt, instruments are 
partitioned into CalibratedInstrument and Uncalibratedln- 
strument. This partitioning tries to exploit the observation 
that the best-looking uncalibrated instruments are also the 
space-filling ones. The classes VerticalGraph, Horzzontal- 
Graph, and PieGraph are created as uncalibrated space- 
filling gauges. The main problem with this approach is the 
duplication of code. For example, code is duplicated be- 
tween HorizontalScale and HorizontalGraph, and between 
VerticalScale and VerticalGraph. This leads to a different 
proposal for a lattice as shown in Figure 18. 

In the second proposal, a mixin is created for the code 
that generates tick marks and labels. The gauge lattice 
appears essentially the same as before the reorganization 
except that the classes are now uncalibrated. Classes like 
VerticalGraph have calibrated subclasses like VerticalScale 
that use the CalibratedScale mixin. The mixin establishes 
the procedural connection between instrument drawing 
and tick mark drawing. Each subclass also supplies spe- 
cialized local methods for arranging the tick marks and 
labels. 

Cycle 3. Gauges have upper and lower bounds for the 
values that they display. When data go out of range, the 
standard behavior is to light up an “out of range” indicator 
and to “pin” the gauge to the maximum or minimum value. 
This highlights a nuisance with analog gauges. Their read- 
ings become useless when data go out of range. One idea 
is to have gauges automatically recompute their extreme 
points and scaling factors as needed. For example, if a 
gauge goes out of bounds, it could automatically increase 
the maximum reading by about 25 percent of the new high 
value subject to some constraints of display aesthetics. 
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The resealing requirement is andependent of the style 
of display, that is, it is independent of whether we are 
spinning a needle or driving mercury up and down. This 
suggests using a uniform technique for revising the scale 
for all the gauges. The natural choice for additive behavior 
is a mixin. 

Unfortunately there is a difficulty in doing this for the 
BarChart. The BarChart is unique among the gauges in 
Figure 14 in that it displays several values at once. A 
SelfScalingMixin could be easily defined that would work 
for all of the gauges except the BarChart. This mixin 
would just use the value of the gauge in computing a new 
maximum. For a BarChart, it is necessary to look at all of 
the bars to determine the maximum. This seems to lead 
to the following design choices for using mixins: 

We could design two mixins. One for the Bar- 
Chart and one for all the other gauges. (Equiv- 
alently we could just mandate that the gauge 
mixin should not be used with BarChart.) 
We could design one mixin that worked differ- 
ently for the BarChart and the other gauges. 
The method for computing the maximum would 
need to check whether it was being used in a 
class with BarChart as a super class. 
We could modify the definition of the single- 
value gauges by adding a method to simply re- 
turn the value when asked for the “maximum” 
value. 

The first two choices do not extend well if we later add 
additional multi-value gauges. In our Loops implementa- 
tion, we chose the third option. 

Usually we think of mixins as classes that we can mix 
in with any class whatsoever. For example, when the Date- 
dObject mixin is added to class it causes instances to have 
a date instance variable initialized with their date of cre- 
ation. Some kinds of mixins are designed to be used with a 
more limited set of classes. This example illustrates a case 
where the “mixees” can fruitfully be modified slightly to 
accommodate the mixin. The modification broadens the 
set of classes with which the mixin is compatible. 

Conclusion and Summary 

Objects are a uniform programming element for comput- 
ing and saving state. This makes them ideal for simulation 
problems where it is necessary to represent collections of 
things that interact. They have also been advocated for 
applications in systems programming since many things 
with state must be represented, such as processes, directo- 
ries and files. Augmented by mechanisms for annotation, 
they have also become important in the current tools for 
knowledge engineering. 
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As object languages have become widespread, consid- 
erable interest has been expressed in developing standards 
so that objects could be used as a portable base for pro- 
grams and knowledge bases. Towards this end, the Com- 
mon Lisp Object-Oriented Programming Subcommittee is 
now considering several proposals to extend Common Lisp 
with objects. 

The diversity of language concepts discussed here sug- 
gests that research is very active in this area. Standards 
will need to provide the kind of open-endedness and flexi- 
bility that enables languages to endure. 

As object-oriented programming has taken hold in 
the mainstream of AI languages, they have reinforced a 
more general principle. There are multiple paradigms 
for programming. Procedure-oriented programming and 
object-oriented programming are but two of a larger set 
of possibilities that includes: rule-based programming, 
access-oriented programming, logic-based programming, 
and constraint-based programming. Different paradigms 
are for different purposes and fill different representational 
niches. 

In this article we have not tried to describe all of the 
ways in which features of object oriented programming 
have been achieved in the context of other systems. For 
example, logic programming has inspired a number of in- 
teresting mergers. In Concurrent Prolog (Shapiro, 1983), 
objects are represented by processes; and messages are 
passed to the process along a stream. Delegation is used to 
achieve the effect of inheritance. In Uranus (Nakashima, 
1982) objects are bundles of axioms in a database. Inher- 
itance is done by following links in the databases, using a 
logic-based language to express the methods. 

In Uniform (Kahn, 1981) objects are represented by 
expressions, and methods as operations on objects that 
would unify with the “heap of the method. Inheri- 
tance is implemented by viewing one expression as an- 
other (through an axiom that states, for example, that 
(SQUARE X) is equivalent to (RECTANGLE X X)). This 
has the nice property that “inheritance” can go in both 
directions-from specialization to super, and from super 
with the right parameters to specialization. 

Languages that combine multiple paradigms grace- 
fully are known as hybrid or integrated languages. Lan- 
guages that succeed less well might be called “smorgas- 
bord” languages. In any case, language paradigms are no 
longer going their separate ways and attempting to do all 
things. Separate paradigms now co-exist and are begin- 
ning to co-evolve. 
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