Al Magazine Volume 6 Number 4 (1985) (© AAAI)

Object-Oriented Programming: Themes and

Variations
Mark Stefik & Daniel G. Bobrow

Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 3333 Coyote Hill Road,

Palo Alto, California 94304

any of the ideas behind object-oriented programming

have roots going back to SIMULA (Dahl & Nygaard,
1966). The first substantial interactive, display-based im-
plementation was the SMALLTALK language (Goldberg
& Robson, 1983). The object-oriented style has of-
ten been advocated for simulation programs, systems pro-
gramming, graphics, and Al programming. The history
of ideas has some additional threads including work on
message passing as in ACTORS (Lieberman, 1981}, and
multiple inheritance as in FLAVORS (Weinreb & Moon,
1981). It is also related to a line of work in Al on the the-
ory of frames (Minsky, 1975) and their implementation in
knowledge representation languages such as KRL (Bobrow
& Winograd, 1977), KEE (Fikes & Kehler, 1985), FRL
(Goldstein & Roberts, 1977) and UNITS (Stefik, 1979).

One might expect from this long history that by now
there would be agreement on the fundamental principles
of object-oriented programming. As it turns out, the

Thanks to Ken Kahn and Mark Miller who were especially generous
with their time and ideas as we prepared this article for publica-
tion Thanks also to Sanjay Mittal and Stanley Lanning who read
earlier drafts and who contributed to the design and implementa-
tion of Loops Ken Kahn, Gregor Kiczales, Larry Masinter, and
Frank Zdybel helped broaden our understanding of the variations
in object-oriented languages as we worked together on the design of
CommonLoops. Much of the discussion in this paper was inspired
by the electronic dialog of the members of the Object-oriented Sub-
committee for Common Lisp.

Special thanks to John Seely Brown and Lynn Conway, who encour-
aged our work on Loops, and helped us to develop larger visions
while we slogged through the bits Thanks also to Bill Spencer and
George Pake for maintaining the kind of intellectual environment at
PARC that has allowed many different projects in language design
to flourish.

Copyright © 1984, 1985 by Xerox Corporation.

40 THE AI MAGAZINE

programming language community is still actively exper-

imenting. Extreme languages can be found which share
the description “object-oriented” but very little else. For
example, there are object-oriented operating systems that
use a much more general notion of message sending than
in most of the languages described here.

This article is an introduction to the basic ideas of
programming with objects. A map of the field is naturally
drawn from where one stands. Most of the examples will
be from the authors’ own system, Loops (Bobrow & Ste-
fik, 1981), and we will describe other object languages from
that vantage point. We have not tried to be complete in
our survey; there are probably fifty or more object-oriented
programming languages now in use, mostly with very lim-
ited distribution. We have selected ones we know that
are widely used for applications in artificial intelligence or
have a particularly interesting variation of an issue un-
der discussion. For pedagogical purposes we begin with a
white lie. We introduce message sending and specializa-
tion as the most fundamental concepts of object-oriented
programming. Then, we will return to fundamentals and
see why some object languages don’t have message send-
ing, and others don’t have specialization.

Abstract

Over the past few years object-oriented programming lan-
guages have become popular in the artificial intelligence com-
munity, often as add-ons to Lisp. This is an introduction to the
concepts of object-oriented programming based on our experi-
ence of them in Loops, and secondarily a survey of some of the
important variations and open issues that are being explored
and debated among users of different dialects.

Basic Concepts of Object-Oriented Programming

The term object-oriented programming has been used to
mean different things, but one thing these languages have
in common is objects. Objects are entities that combine
the properties of procedures and data since they perform
computations and save local state. Uniform use of objects
contrasts with the use of separate procedures and data in
conventional programming.

All of the action in object-oriented programming
comes from sending messages between objects. Message
sending is a form of indirect procedure call. Instead of
naming a procedure to perform an operation on an object,
one sends the object a message. A selector in the message
specifies the kind of operation. Objects respond to mes-
sages using their own procedures (called “methods”) for
performing operations.

Message sending supports an important principle in
programming: date abstraction. The principle is that call-
ing programs should not make assumptions about the im-
plementation and internal representations of data types
that they use. Its purpose is to make it possible to change
underlying implementations without changing the calling
programs. A data type is implemented by choosing a rep-
resentation for values and writing a procedure for each op-
eration. A language supports data abstraction when it has
a mechanism for bundling together all of the procedures
for a data type. In object-oriented programming the class
represents the data type and the values are its instance
variables; the operations are methods the class responds
to.

Messages are usually designed in sets to define a uni-
form interface to objects that provide a facility. Such a
set of related messages is called a protocol. For exam-
ple, a protocol for manipulating icons on a display screen
could include messages for creating images of icons, mov-
ing them, expanding them, shrinking them, and deleting
them. When a message protocol is designed for a class, it
should be made general enough to allow alternative imple-
mentations.

There is additional leverage for building systems when
the protocols are standardized. This leverage comes from
polymorphism. In general the term polymorphism means
“having or assuming different forms,” but in the context of
object-oriented programming, it refers to the capability for
different classes of objects to respond to exactly the same
protocols. Protocols enable a program to treat uniformly
objects that arise from different classes. Protocols extend
the notion of modularity (reusable and modifiable pieces as
enabled by data-abstracted subroutines) to polymorphism
(interchangeable pieces as enabled by message sending).

After message sending, the second major idea in
object-oriented programming is specialization. Specializa-
tion is a technique that uses class inheritance to elide in-
formation. Inheritance enables the easy creation of objects
that are almost like other objects with a few incremental

changes. Inheritance reduces the need to specify redun-
dant information and simplifies updating and modifica-
tion, since information can be entered and changed in one
place.

We have observed in our applications of Loops that
changes to the inheritance network are very common in
program reorganization. Programmers often create new
classes and reorganize their classes as they understand the
opportunities for factoring parts of their programs. The
Loops programming environment facilitates such changes
with an interactive graphics browser for adding and delet-
ing classes, renaming classes, splitting classes, and re-
routing inheritance paths in the lattice.

Specialization and message sending synergize to sup-
port program extensions that preserve important invari-
ants. Polymorphism extends downwards in the inheri-
tance network because subclasses inherit protocols. In-
stances of a new subclass follow exactly the same proto-
cols as the parent class, until local specialized methods are
defined. Splitting a class, renaming a class, or adding a
new class along an inheritance path does not affect ssimple
message sending unless a new method is introduced. Simi-
larly, deleting a class does not affect message sending if the
deleted class does not have a local method involved in the
protocol. Together, messsage sending and specialization
provide a robust framework for extending and modifying
programs.

Fundamentals Revisited

Object languages differ, even in the fundamentals. We
next consider object languages that do not have message
sending, and one that does not have specialization.

Variations on Message Sending. When object lan-
guages are embedded in Lisp, the simplest approach to
providing message sending is to define a form for message
sending such as:

(send object selector argl arg2 ...)

However, some language designers find the use of two
distinct forms of procedure call to be unaesthetic and a
violation of data abstraction: a programmer is forced to be
aware of whether the subsystem is implemented in terms
of objects, that is, whether one should invoke methods or
functions.

An alternative is to unify procedure call with message
sending. Various approaches to this have been proposed.
The T (Rees & Meehan, 1984) programming language uni-
fies message sending and procedure calling by using the
standard Lisp syntax for invoking either methods or func-
tions. For example, (display obj x y) could be used either
to invoke the display method associated with obj, or to
invoke the display lisp function. A name conflict resulting
in ambiguity is an error.

CommonLoops (Bobrow, Kan, Kiezales, Masinter,
Stefik, & Zdybel, 1985) takes this unification another step.

THE Al MAGAZINE 41

Lisp function call syntax is the only procedure calling
mechanism, but ordinary Lisp functions can be extended
by methods to be applied when the arguments satisfy cer-
tain restrictions. In Lisp, functions are applied to argu-
ments. The code that is run is determined by the name of
the function. The Lisp form (foo a b) can be viewed as:

(funcall (function-specified-by 'foo) a b)

Sending a message (send a foo b) in object-oriented
programing can be viewed as equivalent to the invocation
of:

(funcall (method-specified-by 'foo (type-of a)) a b)

The code that is run is determined by both the name of
the message, foo, and the type of the object, a A method
is invoked only if its arguments match the specifications.
In this scheme a method with no type specifications in its
arguments is applied if no other method matches. These
methods are equivalent to ordinary functions, when there
are no other methods for that selector. From the point of
view of the caller, there is no difference between calling a
function and invoking a method.

CommonLoops extends the notion of method by intro-
ducing the notion of “multi-methods” to Common Lisp. It
interprets the form (foo a b ...) as:

(funcall (method-specified-by 'foo (type-of a)
(type-of b)...)ab...)

The familiar methods of “classical” object-oriented
programming are a special case where the type (class) of
only the first argument is used. Thus there is a contin-
uum of definition from simple functions to those whose
arguments are fully specified, and the user need not be
aware of whether there are multiple implementations that
depend on the types of the arguments. For any set of ar-
guments to a selector, there can be several methods whose
type specifications match. The most specific applicable
method is invoked.

A variation among object oriented languages is
whether the method lookup procedure is “built-in.” In
the languages we have described here, there is a standard
mechanism for interpreting messages—with the selector
always used as a key to the method. In Actors, the mes-
sage is itself an object that the receiver processes however
it wishes. This allows other possibilities such as pattern
matching on the message form. It also allows “message
plumbing” where the receiver forwards the entire message
to one or more other objects. Splitting streams to allow
one output to go to two sources is a simple example of the
use of this feature.

Variations on Specialization. Specialization as we
have introduced it so far is a way to arrange classes so
that they can inherit methods and protocols from other
classes. This is a special case of a more general concept:
the concept is that objects need to handle some messages

42 THE Al MAGAZINE

themselves, and to pass along to other objects those mes-
sages that they don’t handle.

In actor languages (Lieberman, 1981) this notion is
called “delegation” and it is used for those programming
situations where inheritance would be used in most other
object languages. Delegation is more general than spe-
cialization, because an actor can delegate a message to an
arbitrary other object rather than being confined to the
paths of a hierarchy or class lattice.

If delegation was used in its full generality for most
situations in actor programming, the specifications of del-
egation could become quite verbose and the advantages
of abstraction hierarchies would be lost. Actor programs
would be quite difficult to debug. In practice, there are
programming cliches in these languages that emulate the
usual forms of inheritance from more conventional object
languages, and macros for language support. However,
since there is no standardization on the type of inheri-
tance, it makes it more difficult for a reader of the code to
understand what will happen.

Classes and Instances

In most object languages objects are divided into two ma-
Jjor categories: classes and instances. A class is a descrip-
tion of one or more similar objects. In comparison with
procedural programming languages, classes correspond to
types. For example, if “number” is a type (class), then
“4” is an instance. In an object language, Apple would
be a class, and apple-1 and apple-2 would be instances
of that class. Classes participate in the inheritance lat-
tice directly; instances participate indirectly through their
classes. Classes and instances have a declarative structure
that is defined in terms of object variables for storing state,
and methods for responding to messages.

Even in these fundamentals, object languages differ.
Some object languages do not distinguish between classes
and instances. At least one object language does not pro-
vide a declarative structure for objects at all. Some lan-
guages do not distinguish methods from variable structure.
Languages also differ in the extent to which variables can
be annotated.

Themes

We begin be describing classes and instances as they are
conceived in Loops. We will then consider some variations.

What’s in a Class? A class in Loops is a description
of one or more similar objects. For example, the class
Apple provides a description for making instances, such
as apple-1 and apple-2. Although we usually reserve the
term instance to refer to objects that are not classes, even
classes are instances of a class {usually the one named
Class). Every object in Loops is an instance of exactly
one class.

GLOSSARY FOR OBJECT-ORIENTED PROGRAMMING

class. A class is a description of one or more siimilar objects.
For example, the class Apple, 1s a description of the struc-
ture and behavior of instances, such as apple-{ and apple-2.
Loops and Smalltalk classes describe the instance varviables,
class variables, and methods of their instances as well as the
position of the class in the inheritance lattice.

class inheritance. When a class is placed in the class lat-
tice, it inherits variables and wmethods ftom its superclasses.
This means that any variable that is defined higher in the
class lattice will also appear in instances of this class. If a
variable is defined in more than one place, the overriding
value 1s determined by the ipheritance order. The inheii-
tance order is depth-first up to joins, and left-to-right in the
list of superclasses.

class varviable. A class variable is a variable stored in the
class whose value is shared by all instances of the class
Compare with instance variable

composite object. A group of interconnected objects that
are instantiated together, a recasive extension of the no-
tion of object. A composite is defined by a template that
deseribes the subobjects and their conneetions.

data abstraction. The principle that programs should not
make assinptions about implementations and internal yrep-
resentations. A deta fype is characterized by operations on
its values. 1n object-ariented programming the operations
are methods of a class. The class represents the data type
and the values age its instances.

default value. A value for an instance variable that has not
been set explicitly in the instance. The default value is found
in the class, and tracks that value uatil it is changed in the
instance. This contiasts with injtial values.

delegation. A technique fov forwarding a message off to be
handled by another object.

initial value., A value for an jnstance variable that is com-
puted and installed in the instance at object creation. Dif-
ferent systems provide initial values and/or default values.

instance. The teim Yinstance” is used in two ways. The
phrase “instance of” describes the refation betweesn an ob-
ject and and its class. The methods and structure of an
instance are determined by s class. All objects in Loops
{including classes) are instances of some class. The noun
“instance” 1efers to objects that are not classes

instantiate.

instance variable. Instance variables (sometimes called
slots) are vaviables for which local storage is available in
instances, ‘This contrasts with class vaziables, which have
storage only in the class In some Janguages instance vai-
ables can have optional properties,

lattice.

To make a new instance of a class.

In this document we ave using “lattice™ as a directed

graph without cycles. In Loops, the inheritance network is
antanged in a lattice. A lattice is more general than a tree
because it admits more than one parent. Like a tvee, a lattice
rules out the possibility that a class can (even indirectly)
have itself as a superclass.

metaclass. This term is used in two ways: as a relationship
applied to an instance, it refers to the class of the instance’s
class; as a noun it refers to a class all of whose instances are
classes

message. ‘The specification of an operation to be performed
on an object. Shmilar to a procedure call, except that the
aoperation to be performed is named indirectly through a se-
lector whose interpretation is determined by the class of the
object, vather than a procedure nase with a single interpre-
tation.

method. The function that implements the vesponse when a
message is sent to an object. In Loops, a class associates
sefectors with methods.

mixin, A class designed to augment the deseription of its
subclasses in a multiple inheritance lattice. For example,
the mixin NamedObject allocates an mstance vaviable fo
bolding an object's name, and connects the value of that
vatiable to the object symbol table

object. The primitive clement of object-oviented prograw-
ming. Objects combine the atiributes of procedures and
data. Objects store data in variables, and respond 1o wmoes-
sages by carrying out procedures {methods).

perspective. A forsn of composite object interpreted as dif-
ferent views on the samse conceptual entity. For exam-
ple, one might represent the concept for “Joe™ in terms of
JoedsAMan, JocAsAGolfer, JocAsAWelder, JocAsAFather.
One can access any of these by view name from cach of the
others.

polymorphism. The capability for dillesent classes of ob-
jeets to 1esponsd to exactly the same protocols. Protacols
enable a program to treat uniformly objects that avise fiom
different classes A eritical feature is that cven when the
same message is sent from the same place in code, it can
invoke different methods.

protocol. A standardized set of messages for implomenting
something., Two classes which implement the same set of
messages are said to follow the same protocol.

slot. Sce instance vartable

specialization. The process of modifying a generic thing for
a specific use
subclass, A class that is lowes in the inheritance lattice than

a given class.
super class. A class that is highet i the inheritance lattice
than a given class,

THE Al MAGAZINE 43

Figure 1 shows an example of a class in Loops. A
class definition is organized in several parts—a class name,
a metaclass, super classes, variables, and methods. The
metaclass part names the metaclass (Class in this case)
and uses a property list for storing documention. A meta-
class describes operations on this class viewed as a Loops
object. The super class part (supers) locates a class in
the inheritance network. The other parts of a class defi-
nition describe the places for specifying data storage and
procedures.

Truck
MetaClass Class
EditedBy (*dgb “29-Feb-85 4:82)

doc{**This sample class dlustrates the syntax of classes in
Loops.

Commentary i3 inserted in a standard property in the class.

--t.g. Trucks are ...}
Supers (Vehicle CargoCarrier)
ClassVariables

tankCapacity 79 doc{*gallons of «iesel)
InstanceVariables

owner PIE docf *oumer of truck)

highway 66 doc{*Route number of the highway.)

milePost O doc(*ocation on the highway)

direction Bast dec(“One of North, Fast, South, or West.}

cargolist NI doc{*List of carge descriptions.)

totalWeight 0 doc{?Current weight of cargo in fons.)
Methods

Drive Truck.Drive docf*Moves the vehicle in the simulation)}

Park "Uruck. Park doc{*Parks the truck in a double space.)

Display Truck.Display doc{*Praws the truck in the display.)

The class, called Truck, inherits variables and methods from both of
its super classes (Vehicle and CargoCarrier). The form of the defini-

tion here shows the additions and substitutions to inberited infor- |

snation. Iun this example a value for the class variable tankCapacity
is introduced, and six instance variables (highway, milePost, divection,

cargolist, and totalWeght} are defined, along with their default values. |

The Methods declaration names the procedures {Interlisp functions)
that implement the methods. For example, Truck Drive is the name of
a function that implements the Drive method for instances of Truck.

Example of a Class Definition in Loops.

Figure 1.

Variables in objects are used for storing state. Loops
supports two kinds of variables: class variables and in-
stance variables. Class variables are used to hold infor-
mation shared by all instances of the class. Instance vari-

44 THE Al MAGAZINE

ables contain the information specific to a particular in-
stance. Both kinds of variables have names, values, and
other properties. We call the instance variable part of a
class definition the instance variable description, because
it specifies the names and default values of variables to
be created in instances of the class. It acts as a template
to guide.the creation of instances. For example, the class
Point might specify two instance variables, z and y with
default values of 0, and a class variable associated with all
points, lastSelectedPoint. Each instance of Point would
have its own z and y instance variables, but all of the
instances would use the same lastSelectedPoint class vari-
able; any changes made to the value of lastSelectedPoint
would be seen by all of the instances. Default values are
the values that would be fetched from the instance vari-
ables if the variables have not been assigned values par-
ticular to the instance. As motivated by Smalltalk, Loops
also has indexed instance variables, thus allowing some
instances to behave like dynamically allocable arrays.

A class specifies the behavior of its instances in terms
of their response to messages. A message is made of argu-
ments and a selector. The class associates a selector (e.g.,
the selector “Drive” in Figure 1.) with a method, a proce-
dure to respond to the message. When a message is sent to
an instance, its response is determined by using the selec-
tor to find the method in a symbol table in the class. The
method is located in the symbol table and then executed.
Since all instances of a class share the same methods, any
difference in response by two instances is determined by a
difference in the values of their instance variables.

What’s in an Instance? Most objects in a Loops
program are instances (that is, not classes). For example,
in a traffic simulation program there may be one class
named Truck and hundreds of instances of it representing
trucks on the highways of a simulation world. All of these
truck instances respond to the same messages, and share
the class variables defined in the class Truck. What each
instance holds privately are the values and properties of
its instance variables, and perhaps an object name. The
variables of an instance are initialized with a special token
indicating to the Loops access functions that the variables
have not been locally set yet. Figure 2 shows an example
of an instance object.

Instantiation and Metaclasses. The term metaclass
is used in two ways: as a relationship applied to an in-
stance, it refers to the class of the instance’s class; as a
noun it refers to a class all of whose instances are classes.
The internal implementation of an instance is determined
by its metaclass.

For example, to create a new instance of the class Mac-
Truck a New message is sent to MacTruck. This creates
a data structure representing the truck with space for all
of the instance variables. The method for creating the

Automobile-1

Clags Automobile

InstanceVariables
highwey 66
milePost 38
direction Ihast
driver Sanjay
Juel 1

Instances have local storage for theh instance vaviables, If no Jocal
value has been set yet, default values for instance variables are ob-
tained from the class. In this example, the “?7 in the value place
for the instance variable fuel indicates that the actual value is to be
obtained by lookup from the class Automobile. Mcthods and class
variables are not shown since they are accessed thiough the class.

instance of an Automobile

in a Traffic Simulation Model.
Figure 2.

data structure is found in MacTruck’s metaclass— Class.
To create a new class (e.g., the class PickUpTruck, an in-
stance of the class Class), a New message is sent to Class.
The method for creating and installing the data structure
is found in the metaclass of Class called MetaClass. The
New method creates a data structure for the new class,
with space for class variables, instance variable descrip-
tion, and a method lookup table. The new class is also
installed in the inheritance network. Figure 3 illustrates
this process of instantiation.

AbstractClass is an example of a useful metaclass in
Loops. It is used for classes that are placeholders in the
inheritance network that it would not make sense to in-
stantiate. For example, its response to a New message is
to cause an error. Other metaclasses can be created for
representing some classes of objects as specialized LISP
records and data structures.

Classes and Instances, Revisited.

The distinction between classes and instances is usual in
object languages. In applications where instances greatly
outnumber classes, a different internal representation al-
lows economies of storage in representation. It also pro-
vides a natural boundary for display of inheritance, and
hence helps to limit the visual clutter in presentations of
the inheritance network.

The object language of KEE (Fikes & Kehler, 1985)
does not provide distinet representations for classes and in-
stances. All objects, or “units,” as they are called in KEE,
have the same status. Any object can be given “member”

MetaClass

N

Vehicle
Truck
Mac Truck PickUpTruck
cnerenannccs SUper Class
e Instance of
T T {some links edited)
MacTruck-1 PickUpTruck-1

Instantiation is the process of making a new object. In Loops,
this process beging when a New wessage is sent to a class. In this
figure, the instance MocTruck £ is created by sending a New mes
sage to MaeTruck The line between MacTruck-1 and MaeTruck indi-
cates the instance-of relationship between the instance and its class,
Similasly, a class like PickUpTruck is created by sending a New mes-
sage to Class. 'The line between PickUpTruck and Cless indicates the
instance-of rclationship between the class PickUpTruck and its smeta-
class Class. Every object has an instance-of relationship with exactly
oneclass Class and MetaClass are called metaclasses, since all of their
“instances” are classes. Another tmportant metaclass is dbstractClass
(not shown}. AbstractClass is the metaClass for classes not meant to
be instantiated {e¢ ¢., Jike Vehicle)

{nstantiation.

Figure 3.

slots which will be inherited by instances of this object.
Proponents of this more uniform approach have argued
that for many applications, the distinction does little work
and that it just adds unnecessary complications. Similarly
there is no such distinction in actor languages (Lieberman,
1981). Inheritance of variables in these languges is gener-
ally replaced by a copying operation. ThingLab (Borning,
1979), a constraint driven object language used prototypes
rather than classes to drive object creation, and special-
ization was simply instantiation followed by editing.

In Object Lisp (Drescher, 1985), the declarative struc-
tures conventionally associated with classes are dispensed
with. Objects are simply binding environments, that is,

THE Al MAGAZINE 45

“closures.” An operation is provided for creating and nest-
ing these environments. Object variables are Lisp variables
bound within an object environment; methods are function
names bound within such an environment. To get the ef-
fect of message sending, one “ASKS” for a given form to be
evaluated in the dynamic scope of a given object. Nested
environments are used to achieve the layered “inheritance”
effect of specialization. Use of an “ASKS” form, however,
precludes the unification of message-sending and proce-
dure call that is now appearing in other object languages.

Not all object languages have metaclasses. Since Fla-
vors are not objects, instances of Flavors have no meta-
classes. All Flavor instances are implemented the same
way: as vectors. Loops uses metaclasses to allow variations
in implementation for different classes. For example, some
objects provide a level of indirection to their variable stor-
age, allowing updating of the object if there are changes in
its class definition. Smalitalk-80 has metaclasses, and uses
them primarily to allow differential initialization at ob-
ject creation time. CommonLoops (Bobrow, et al., 1985)
makes more extensive use of metaclasses than Loops, us-
ing them as a sort of “escape mechanism” for bringing
flexibility to representation and notations of objects.

Another difference in systems is whether instance vari-
ables of an object can be accessed from other than a
method of the object. Proponents of this strict encap-
sulation, as in Smalltalk, base their argument on limiting
knowledge of the internal representation of an object, mak-
ing the locus of responsibility for any problems with the
object state well-bounded. A counter argument is that
encapsulation can be done by convention. Loops allows
direct access to object variables to support a knowledge
representation style of programming. This is particularly
useful, for example, in writing programs that compare two
objects.

Not all object languages provide property annotations
for variables. In Smalltalk, Flavors, and Object Lisp,
variables have values and nothing more. However, lan-
guages intended primarily for knowledge engineering appli-
cations tend to support annotations. For example, KEE,
STROBE (Smith, 1983), and Loops, which are all direct
descendants of the Units Package, have this. Annotations
are useful for storing auxiliary information such as de-
pendency records, documentation, histories of past values,
constraints, and certainty information.

In Loops, the approach to annotating variables has
evolved over time. In its most recent incarnation, property
annotations have been unified with a means for triggering
procedure call on variable access (active values) (Stefik,
Bobrow, & Kahn, 1986). These annotations are contained
in objects and it is possible to annotate annotations recur-
sively.

The distinction between class variables and instance
variables varies across object languages. Smalltalk makes
the same distinction as Loops (and was the source of the

46 THE Al MAGAZINE

idea for the Loops developers). Flavors does not have class
variables. KEE provides own and member declarations for
slots, serving essentially the same purposes as the distinc-
tion between class and instance variables. CommonLoops
provides primitives for describing when, how, and where
storage is allocated for variables. From these primitives,
the important notions of class variables can be defined, ex-
cept that they share the same name space as other object
variables.

Most object languages treat variables and methods
as distinct kinds of things: Variables are for storage and
methods are for procedures. This distinction is blurred
somewhat by active values in Loops, which make it possi-
ble to annotate the value of a variable in any object so that
access will trigger a procedure. The distinction is blurred
also in languages like KEE, STROBE, and the Units Pack-
age in which methods are procedure names stored in in-
stance variables (which they call slots). In these languages
there is an additional kind of message sending: sending a
message to a slot. For specified kinds of messages, the
value returned can be just the value of the slot.

Another important extension in the Units Pack-
age, KEE, and STROBE is that slots are annotated by
datatypes. The datatype distinguishes the kind of data
being kept in the slot, be it an integer, a list, a procedure,
or something defined for an application. An object repre-
senting the datatype provides specialized methods for such
operations as printing, editing, displaying, and matching.
These datatype methods are activated when a slot mes-
sage is not handled by a procedure attached to the slot
itself. The form of message forwarding and representation
of datatypes as objects provides another opportunity for
factoring and sharing information. Thus, what all slots of
a given type share, independent of where they occur, is
characterized by methods in the corresponding datatype
object.

Inheritance

Inheritance is the concept in object languages that is used
to define objects that are almost like other objects. Mecha-
nisms like this are important because they make it possible
to declare that certain specifications are shared by multi-
ple parts of a program. Inheritance helps to keep programs
shorter and more tightly organized. The concepts of in-
heritance arise in all object languages, whether they are
based on specialization or delegation and copying.

We begin with the simplest model of inheritance, hi-
erarchical inheritance. We will then consider multiple in-
heritance, as it is done in Loops and other languages.

Hierarchical Inheritance.

In a hierarchy, a class is defined in terms of a single super-
class. A specialized class modifies its superclass with

Window

width 100 doc (* width in pixels)
height 100

Gauge /

LatticeBrowser

reading 0

Instrument ™ LCO
precision 4
height 14
width 44

LGD ¢

width 44 doc (* width in pixels)
height 14

reading 0

precision 4

In hieraichical inhetitance in Loops, the description of a class is
inhevited by every subcelass, unless it is overridden in the subclass.
The instances of the class LCD have a class precedence list for getting
description LOD, Gauge, Wimdow, Object ‘The default value for the
instance variable width is 44 (1ather than 100), becanse LOD is closer
in the search path than Window. In this example, the doc property
of the instance variable width is still inherited by instances of LCD
passing along documentation about the use of the variable,

Hierarchical lnheritance of Instance Variables.
Figure 4.

Window (Update Window Update)

{Move Window Move)

Gauge (Update Gauge.Update) LatticeBrowser

Instrument LCD (ShowReading LCD ShowReading)

I1s hierarchical isheitance in Loops, the deseription of 2 method is
inhmited by every subclass, snless it is oveniidden in the subcelass
This inheritance can be characterized as a first-found seaich thiough
superclasses, I this figure, the Move method for the class LCD is
inherited from ¥Vindow.

Hierarchical Inheritance of Methods.
Figure 5.

additions and substitution. Addition allows the introduc-
tion of new variables, properties, or methods in a class,
which do not appear in one of its superclasses in the hier-
archy Substitution (or overriding) is the specification of a
new value of a variable or property, or a new method for
a selector that already appears in some superclass. Both
kinds of changes are covered by the following rule. All
descriptions in a class (variables, properties, and meth-
ods) are inherited by a subclass unless overridden in the
subclass. (See Figure 4.)

The values to be inherited can be characterized in
terms of a class precedence list of superclasses of the class
determinined by going up the hierarchy one step at a time.
Default values of instances are determined by the closest
class in the superclass hierarchy, that is from the first one
in the class precedence list. Figure 5 illustrates essentially
the same lookup process for methods.

There is always an issue about the granularity of inher-
itance. By this we mean the division of a description into
independent parts, that can be changed without affecting
other parts. In Loops, any named structural element can
be changed independently—methods, variables, and their
properties. For example, substituting a new default value
for one instance variable does not affect the inheritance of
the properties of that variable, or the inheritance of other
instance variables. Figure 4 shows this for the indepen-
dent inheritance of documentation when a default value is
changed.

Several approaches for implementing inheritance are
possible offering different tradeoffs in required storage,
lockup time, work during updating, and work for com-
pilers. For example, the lookup of default values need not
involve a run-time search of the hierarchy. In Loops, the
default values are cached in the class, and updated any
time there is a change in the class hierarchy.

The position of a variable is determined by lookup in
the class, but the position of this variable is cached at
first lookup. Changes in the hierarchy affecting position
of instance variables simply require clearing the cache.

In Flavors, the position of an instance variable is
stored in a table associated with a method, and is ac-
cessed directly by the code. This gives faster access, but
requires updating many method tables for some changes
in the hierarchy.

Multiple Inheritance in a Lattice.

Inheritance is a mechanism for elision. The power of inher-
itance is in the economy of expression that results when a
class shares description with its superclass. Muliiple inher-
itance increases sharing by making it possible to combine
descriptions from several classes.

Using multiple inheritance we can factor informa-
tion in a way that is not possible in hierarchical inheri-
tance. Figure 6 illustrates this in a lattice of commodities.

THE AI MAGAZINE 47

.COMMODITY. INHERITANCE LATTICE.

A

Refrigerator
CommodityTransporstability Television
FragileCommodity m&—m— Egg
\\\
PerishableCommodity Fruit —=== Strawberry
Appliances < Grape

Groceries

/

Dishes

Saw

LuxuryGoods

Commodity
Hardware
Gasoline
ArtSupplies
OfficeSupplies < Book
Xerox 1100
SportingGoods < Baseball
Bicycle
Clothing

Pants
: Shirt

Hammer

Vegetable Tomato
Carrot
StereoSystem
Goid
Diamond

different use,

This lattice illustrates the use of multiple superclasses to factor inherited information in a network of classes. Multiple inheritance
allows increased brevity in specifications by increasing the ability to share descriptions. For example, the class StereoSystem in
this lattice inherits information from LuzuryGoods, Appliances, aud FragileCommodity. 1n a stvictly hievarchical system, it would
be necessary to duplicate infovmation in the hicrarchy- for example by creating classes for FragileAppliances or FragileLuzuryAp-
plances. In a hierarchical scheme, the methods and variables assoctated with *fragility” would need to be replicated for each

Multiple Inheritance in a Lattice.
Figure 6.

The class StereoSystem inherits descriptions from Luzu-
ryGoods, Appliances, and FragileCommodity. The meth-
ods and variables describing FragileCommodity are also
used for Egg, StereoSystem, and other classes. It would
be necessary to duplicate the information about fragility
in several classes such as FragileAppliances, FragileGro-
ceries, FragileFruit, and Fragile LuzuryGoodsAppliances in
a strictly hierarachical system. In contrast, multiple inher-
itance lets us package together the methods and variables
for FragileCommodity for use at any class in the network.

A class inherits the union of variables and methods

48 THE AI MAGAZINE

from all its super classes. If there is a conflict, then we
use a class precedence list to determine precedence for the
variable description or method. The class precedence list
is computed by starting with the first (leftmost) superclass
in the supers specification and proceeding depth-first up to
joins. For example, the precedence order for DigiMeter in
Figure 7 first visits the classes in the left branch (DigiMe-
ter, Meter, Instrument), and then the right branch (LCD),
and then the join (Gauge), and up from there.

The left-to-right provision of the precedence ordering
makes it possible to indicate which classes take precedence

in the name space. The “up to joins” provision can be un-
derstood by looking at examples of mixins. Mixins often
stand for classes that it would not make sense to instanti-
ate by themselves. Mixins are special classes that bundle
up descriptions and are “mixed in” to the supers lists of
other classes in order to systematically modify their behav-
ior. For example, PerishableCommodity and FragileCom-
modity are mixins in Figure 6 that add to other classes
the protocols for being perishable or fragile. Another ex-
ample of a mixin is the class NamedInstance, which adds
the instance variable name to its subclasses, and overrides
methods from Object so that appropriate actions in the
Loops symbol tables take place whenever the value of a
name instance variable is changed. DatedObject is another
mixin which adds instance variables that reflect the date
and creator of an object. Mixins usually precede other
classes in the list of supers, and are often used to add
independent kinds of behavior.

When mixins are independent, the order of their in-
clusion in a supers list should not matter. Like all classes
in Loops, mixins are subclasses of Object. If the “up to
joins” provision was eliminated from the precedence or-
dering, then the depth-first search starting from the first
mixin would cause all the other default behaviors for Ob-
ject to be inherited—interfering with other mixins later in
the supers list that may need to override some other part of
Object. Changing the order of mixins would not eliminate
such interference, since most mixins need to override the
behavior of Object in some way. The “up-to-joins” provi-
sion fixes this problem by insuring that Object will be the
last place from which things are inherited. Although this
effect could also be achieved by treating Object specially,
we have found that analogous requirements arise whenever
several subclasses of a common class are used as mixins.
The up-to-joins provision is a general approach for meeting
this requirement.

Multiple Inheritance, Revisited.

A major source of variation in object languages that pro-
vide multiple inheritance is their stand towards precedence
relations. In Smalltalk, multiple inheritance is provided,
but not used much or institutionalized. Smalltalk-80 takes
the position that no simple precedence relationship for
multiple inheritance will work for all the cases, so none
should be assumed at all. Whenever a method is provided
by more than one superclass, the user must explicitly indi-
cate which one dominates. This approach diminishes the
value of mixins to override default behavior.

Flavors and Loops both use a fixed precedence rela-
tionship, but differ in the details. The two approaches
can be seen as variations on an algorithm that first lin-
earizes the list of superclasses (using depth-first traversal)
and then eliminates duplicates to create a class precedence
list. In Flavors, all but the first appearance of a duplicate

are eliminated. In Loops, all but the last appearance of a
duplicate are eliminated.

CommonLoops takes the position that experimenta-
tion with precedence relationships is an open issue in
object-oriented programming. In CommonLoops, the
precedence relation for any given class is determined by
its metaclass, which provides message protocols for com-
puting the class precedence list.

Method Specialization and Combination

One way to specialize a class is to define a local method.
This is useful for adding a method or for substituting for an
inherited one. In either case a message sent to an instance
of the class will invoke the local method. The grain size of
change in this approach is the entire method.

A powerful extension to this is the incremental spe-
cialization of methods, that is, the ability to make incre-
mental additions to inherited methods. This is important
in object-oriented programming because it enables fine
grained modification of message protocols. In the follow-
ing we consider two mechanisms for mixing of inherited be-
havior. The first mechanism «— Super (pronounced “send
super”) allows procedural combination of new and inher-
ited behavior. It derives initially from Smalltalk and is
used heavily in the Loops language. Then we will consider
an interesting and complementary approach pioneered by
the Flavors system in which there is a declarative language
for combining methods.

Procedural Specialization of Methods.

Incremental modification requires language features be-
yond method definition and message sending. In Loops,
«— Super in a method for selector M1 invokes the method
for M1 that would have been inherited. Regular mes-
sage sending («) in a local method can not work for this,
because the message would just invoke the local method
again, recursively.

An example of its use is shown in Figure 8. In this
example, Gauge is a subclass of Window. The method
for updating a Gauge needs to do whatever the method
for Window does, plus some initial setting of parameters
and some other calculations after the update. The idiom
for doing this is to create an Update method in Gauge
that includes a «— Super construct to invoke Window’s
method. This is better than duplicating the code from
Window (which might need to be changed), or invoking
Window’s method by procedure name (since other classes
might later be inserted between Window and Gauge).

« Super provides a way of specializing a method with-
out knowing exactly what is done in the higher method, or
how it is implemented. «— Super uses the class precedence
list to choose when a method appears in more than one
superclass. The precedence ordering is the same as that
used for object variables.

THE Al MAGAZINE 49

/Gauge \

Instrument {CD

Meter

DigiMeter

Local supers of DigiMeter: {Meter LCD)

Order of inheritance:
(DigiMeter Meter Instrument LCD Gauge...)

In multiple inheritance it is possible ta inherit things from several su-
perclasses. The precedence of different inherited values is determined
Ly a search as shown.
Order of Inheritance in a Lattice.
Figure 7.

— Super uses the class precedence list in order to pre-
serve the correctness of protocols under changes to the in-
heritance lattice. The most obvious definition of «+ Super
would be to search for the super-method from the begin-
ning of the class precedence list. This fails for nested ver-
sions of + Super, and even for a — Super in a method
which is not defined locally, but is inherited. A second in-
correct implementation would use the class precedence list
of the class in which the method was found. This gives in-
correct results for classes with multiple super classes. To
insure that protocols work the right way in subclasses,
«— Swuper starts the search in the object’s class precedence
list at the class from which the current method is inherited.
Because <« Super is defined this way, inherited methods
using «— Super consistently locate their “super methods™
and common changes to the lattice yield invariant opera-
tion of the message protocols.

Combination of several inherited methods is also im-
portant. A simple version combines all of the most-local
methods for a given selector, that is, all of the methods
that have not themselves been specialized. These meth-
ods are called the fringe methods, and the construct for
invoking them all is called «— SuperFringe. For example,
in Figure 9 the class DigiMeter combines the updating
processes for LCD and Meter by using — SuperFringe to
invoke the ShowReading methods of its superclasses.

For selective combination of methods from different
classes Loops provides a construction called DoMethod.
DoMethod allows the invocation of any method from any
class on any object. It can be viewed as an escape mecha-
nism, allowing one to get around the constraints imposed

50 THE Al MAGAZINE

Window

Place window

TitledWindow

Write title

Gauge

Update reading

[Gauge.Update (seif}
{* first update the guage parameters }
{« self SetParameters)

{* Now update using the method trom a super ¢lass }
(«Super sell Update)

(* Now do other things)

]

In this example, Gauge is a subelass of other classes (say Window),
which have their own methods of updating. The Update wmethod for
Cauge needs to do whatever the method for Window does, except that
sowme parameters need to be set fist and then some other compnta-
tions need to be done afterwards. This effect is achieved by using
the «- Super construct, which allows embedding an invocation {o
Window’s method imside new method code for Gauge.

Example of Using - Super.
Figure 8.

by message sending. It also steps outside the paradigm
of object-oriented programming and opens the door to a
wide variety of programming errors. When programs are
written using standard message invocations, then proto-
cols keep working even when common changes are made
to the inheritance lattice. This happy situation is not the
case when programs use DoMethod. Since DoMethod al-
lows specification of the class in which the message will
be found, it encourages the writing of methods that make
strong assumptions about the names of other classes and
the current configuration of the inheritance lattice. Pro-
grams that use DoMethod are likely to stop working under
changes to the inheritance lattice.

Declarative Method Combination

Flavors supports a declarative language for combining
methods at compile time. An important new distinction
made in Flavors is that there can be three named parts to a
method—a before part, an after part, and a main method,
each of which is optional. By default, the main method

Window

Place window

TitledWindow

Write title

Gauge

o

Update reading

e
Instrument

Meter

DigiMeter /

[DigiMeter.ShowReading (self)

{* Shaw displayVal both on dial aad oo digits }

{«Superfringe self ShowReading reading)
]

In this example, Didfeter combines the classes of LOD and Meter. To
show a reading, a DigiMefer must cairy out the Showfeading methads
in both its LCD portion and its Meter portion. This combination
of protocols can be done by using the «— SuperPringe constiuet
to invoke the Showdlcading mnethods for all of the supaiclasses The
snethod above invokes the eviginal Showleading imethods of both Meter
and LCD

Example of Using « SuperFringe.
Figure 9.

overrides any inherited main method, but the before and
after parts are all done in a nested order determined by
the class precedence list. Thus a supplier of a method in
a mixin can ensure that whatever the main method, its
before method will be executed.

A declarative language used in a newly defined method
can specify other than the default behavior for combina-
tion of inherited method parts. For example, and combi-
nation of before methods allows the execution of the entire
method to stop if one of the before methods returns nal.
The defwhopper combinator allows a compile time con-

struction of the equivalent of «— Super.

The concept of organizing methods and variables into
classes that can be mixed together for use in combination
admits at least two distinct philosophies for assigning re-
sponsibility for the viability of the combination. In Flavors
responsibility is assigned, at least in part, to the suppliers,
that is, to the classes that are being combined. Com-
binator specifications include things like do this method
before the main method, or do it after the main method,
or do parts of it at both times. The intention is to get the
specification right once in the supplier so that consumers
need not know about it. When this kind of specification
is successful, it reduces the total amount of code in the
system since consumers need only specify the order of su-
perclasses.

In Loops, responsibility for method combination is as-
signed to the consumer; that is, the local method uses
the procedural language and the special form «— Super to
combine the new behavior with behavior inherited.

It is important to consider the effects on program
change when evaluating alternatives like this. How often
are suppliers changed? consumers? To what extent are
suppliers independent? Do mixins need notations for in-
dicating what kinds of classes they are compatible with?
What kinds of changes in the suppliers require changes in
the consumer classes?

CommonLoops takes the position that both philoso-
phies are worth exploring, and that continued experimen-
tation in the refinement of method combinators is called
for. It provides a primitive RunSuper (analogous to the
Loops «— Super) in the kernel. Methods are represented
as objects in CommonLoops; this means that a system can
have different kinds of methods with different techniques
for installing them or displaying their sources. Flavor-style
methods would be a special kind of object with extra spec-
ifications for combinators. These specifications would be
interpreted at appropriate installation and reading times
by Flavors-style discriminator objects for those methods.

Composite Objects.

A composite object is a group of interconnected objects
that are instantiated together, a recursive extension of the
notion of object. A composite is defined by a template
that describes the subobjects and their connections. Fa-
cilities for creating composite objects are not common in
the object languages we know, although they are common
in application languages such as those for describing cir-
cuits and layout of computer hardware. The current Loops
facility is based on ideas in Trillium (Henderson, 1986),
which is a language for describing how user interfaces for
copiers are put together.

Principles for Composite Objects.

Composite objects in Loops have been designed with the
following features:

THE AI MAGAZINE 51

e Composite objects are specified by a class con-
taining a description indicating the classes of the
parts and the interconnections among the parts.

The use of a class makes instantiation uniform so that
composite objects are “first class” objects.
e Instantiation creates instances corresponding to
all of the parts in the description.

The instantiation process keeps track of the correspon-
dence between the parts of the description and the parts in
the instantiated object. It fills in all of the connections be-
tween objects. It permits multiple distinct uses of identical
parts.

e The instantiation process is recursive, so that
composite objects can be used as parts.

For programming convenience, the instantiation pro-
cess detects as an error the situation where a description
specifies using another new instance of itself as a part, even
indirectly. Instantiation of such a description would result
in trying to build an object of unbounded size. An alter-
native is to instantiate subparts only on demand. This
allows the use of a potentially unbounded object as far as
needed.

e It is possible to specialize a description by
adding new parts or substituting for existing
parts.

This reflects the central role of specialization as a
mechanism for elision in object-oriented programming.
The language of description allows specialization of com-
posite objects with a granularity of changes at the level of
parts.

An Example of a Composite Object.

Composite objects are objects that contain other objects
as parts. For example, a car may be described structurally
as consisting of a body, a power system, and an electrical
system. The body has two doors, a hood, a chassis, and
other things. Parts can themselves contain other parts: a
door has various panels, a window, and a locking system.
Objects can also be parts of more than one container: the
fan belt can be viewed as a component of the cooling sys-
tem or of the electrical charging system.

The boxed figure in the next column shows the Loops
class definition of Mercedes24/0D defined as a composite
object.

Mercedes240D is a subclass of the mixin CompositeQb-
Ject that supports protocols for instantiation that will in-
terpret descriptions of parts. The value of the instance
variable engineSystem will be filled by an instance of the
class DieselEngine. In that instance of DieselEngine, the
value of the instance variable numCylinders is initialized
to 4 and transmission to 4Speed.

The body instance variable of the Mercedes240D will
be initialized to and instance of Body300. Its instance

52 THE Al MAGAZINE

Mercedes240D
MetaClass Class
EditedBy (*dgb “15-Feb-82 14:32”)
doc (*This class is a CompositeQbject representing a
car and its parts.)
Supers (CompositeObject Automobile)
ClagsVariables
Manufacturer DaimlerBens.
StandardCarStuff ({color
(Qcolor) Y owner{@owner)).. .)
InstanceVariables

yearManufactured Nil,
owner NIL
style traditional
color ivory
engineSystem NiL
part (Diesellngine (numCylinders 4)
{transmission (QUOTE 4Speed)).. .)
body NIi,
part {Body300
{style (Qstyle)
(color {€@color)
StandardCarStuff))

variable style is set to the value of the style from the Mer-
cedes240D, that is, traditional. In addition, the color prop-
erty of the style instance variable will be set to ivory. These
exemplify the propagation of values from the containing
instance to those parts contained in it.

The class variable StandardCarStuff indicates a num-
ber of variables for the body part that will inherit values
from the car. For example, the color of the body is the
color of the car. Finally, the instance variable parts will be
set to a list of all the immediate parts of the Mercedes240D.
If any of the parts are themselves CompositeObjects, their
parts will be instantiated too.

Perspectives.

Perspectives are a form of composite object interpreted as
different views on the same conceptual entity. For exam-
ple, one might represent the concept for “Joe” in terms
of views for JoeAsAMan, JoeAsAGolfer, JoeAsAWelder,
JoeAsAFather. We will first describe perspectives as they
are used in Loops, and then contrast this with other lan-
guages.

Perspectives in Loops.

Perspectives in Loops are implemented by independent
linked objects representing each of the views. One can
access any of these by view name from each of the others.

Mark
asa
Loops Trombone Traveler Father Xerox
Teacher Player Employee
Inverter - 1
Display Switch Layout
Object Description

For some applications, it is important to have different peispectives
or views of an cutity, with independent name spaces In the npper
poition of this figure, the entity Mark is shown with perspectives
for Loopsteacher, TrombmePlayer, Trveler, and so on. Bach peispec-
tive offers o different view of Mark in a distinet object with its own
variables and micthods. For example, the TrombonePlayer perspective
would contain information relevant to Mark’s ability to make music.
In the exassple of an inverter, shown in the lower part of the figure,
variables with the same naine, such as zCoordinate and yCoondinate,
smay have one weaning in the perspective DisplayOlgect and another
meaning in the perspective LayoutDescription

Perspectives.
Figure 10.

Because the linked objects are independent, the same in-
stance variable name in more than one of the objects can
mean different things, and can be changed independently.
For example, Figure 10 illustrates an object Inverter-1
which has the perspective DisplayObject as well as the per-
spective LayoutDescription. Both perspectives may have
instance variables named zCoordinate and yCoordinate,
but with different interpretations. For a DisplayObject,
the variables could refer to the coordinates in pixels on a
workstation display. For a LayoutDescription perspective,
the variables could refer to coordinates in the silicon chip
on which the inverter is fabricated.

Perspectives were designed in Loops to have the fol-
lowing properties:

e Perspectives are accessed by perspective names.

Given an object, one can ask for its Traveler perspec-
tive using the name “Traveler.” A given perspective name
has at most one perspective of an object. Perspectives

form a kind of equivalence class.
e Perspectives are instantiated on demand.

This contrasts with usual composite objects in which
all the parts are created at instantiation time. Additional
views can be added as needed to any object.

Perspectives can be compared with class inheritance.
In inheritance only one variable is created when there is
a “coincidence” in the names of variables inherited from
different superclasses. Thus inheritance assumes that the
same name is always intended to refer to the same variable.
For perspectives, variables of the same name from different
classes are used for different views and are distinct. When
classes are combined by inheritance, all of the instances of
the combined class have the same structure (that is, vari-
ables and methods) and all of the structure is created at
once. For perspectives, the situation is different. Instances
have varying substructure.

Variations on Perspectives.

The term perspective was first used for different views
of the same conceptual object in KRL, and later in PIE
(Goldstein & Bobrow, 1980). Each view had an indepen-
dent name space for its slots. However, in neither PIE
nor KRL was a perspective a full-fledged object; access to
the view could only be obtained through the containing
object.

Although the terminology of perspectives is not
widespread, some other object languages (e.g., Snyder,
1985) have a similar capability to combine the structure of
multiple classes in this way. Snyder suggests that name co-
incidence in multiple inheritance ought not imply identity.
He believes that this violates an important encapsulation
principle of object oriented programming—that users of
objects ought not to have privileged access to the internals
of those objects. He extends that notion to classes which
inherit from previously defined classes. For his language,
inheritance from a super class means the embedding of an
instance of the super class in the subclass. Messages of the
super class are to be inherited explicitly, and implemented
by passing the message on to the embedded instance.

Examples of Object-Oriented Programming

Examples of programming can be presented at several
levels. This section considers three examples of object-
oriented programming that illustrate important idioms of
programming practice. The first illustrates the use of mes-
sage sending and specialization. The second example il-
lustrates choices among techniques of object combination.
The third example illustrates common techniques for redis-
tributing information among classes as programs evolve.

Programming the Box and the BorderedBox.

Object-oriented programming has been used for many pro-
grams in interactive graphics. The following example was

THE Al MAGAZINE 53

motivated by these applications. We will consider vari-
ations on a program for displaying rectangular boxes on
a display screen. This example explores the use of mes-
sage sending and specialization in a program that is being
extended and debugged.

Figure 11 gives our initial class definition for the class
Boz. Instances of this class represent vertically aligned
rectangular regions on a display screen. The four instance
variables store the coordinate and size information of a
box. The origin of a box in the coordinate system is de-
termined by the variables zOrigin and yOrigin and the
default origin is at (100, 200). The size of a box is deter-
mined by variables zLength and yLength and the default
size is 10 x 30. Operations on a box include moving it to
a new origin, changing its size, and changing the shading
inside the box. In the following we will specialize the Boz
class and also uncover a bug in it.

Message protocols define an interface for interacting
with boxes. Instances of Boz are created by sending it
a New message. Size and position of an instance are es-
tablished by sending it a Reshape message. Shade is es-
tablished by sending it a Shade message. These messages
provide a structured discipline for interaction with boxes,

that is, a data abstraction. Outside agents need only know
the relevant messages. They need not know the implemen-
tation of a box in terms of its instance variables.

Suppose that we wanted to create another kind of box
with a visible border that frames it in the display. This
BorderedBozx would be essentially a Boz with a border.
This suggests that we employ inheritance and specialize
the class definition of Boz.

In programming BorderedBox several choices about
the interpretation and representation of the border need
to be made. The foremost question is about the treat-
ment of coordinates of the border, that is, whether the
border frames the outside of the box or is included as part
of the box. For example, is the border included in the
length measurements? If the border is on the outside, is
the origin on the inside or the outside of the border? The
answers to these questions do not come from principles of
object-oriented programming, but rather from our inten-
tions about the meaning of the BorderedBoz program. The
answer affects the meaning of the instance variables zO-
rigin, yOrigin, zLength, and yLength inherited from Boz.
For this example, we will assume that the borders are in-
tended only to make the boxes easier to visualize in the

Box
MetaClass Class
KditedBy {* dgb “31-September-84 11:287}
doc (* Rectilinear box that can be displayed.)
Supers (DisplayObject)
InstanceVariables
xLength 10 doc (* length of the horizontal side.)
yLength 30 doe (* lengih of the vertical side.)
xOvigin 100 doc {* = coordinate of ongin
yOrigin 200 doc {* y coordinate of orgm

Methods
Move Box.Move

args {(newXOrigin newYOrigin)

Reshape Box.Reshape

lower left corner.)

lower left corner.}

doc {* Moves boz (change originjin the display)

doc (* Changes the location and axes of the boz.)

args {newXOrigin new¥ Origin newXLength newYlength)

Shade Box.8hade

Draw Box.Draw doc {*Displays the boz.)

doc {¥ Fulls the inside of the box with a new shade.} args (newShade)

Instances of this class represent vertically aligned rectangular regions on a display screen The four instance variables store the coordinate
ang size information for a box. For example, the origin in the comdinate systew is determined by the variables 2O0rigin and yOrigin and the
defanlt origin is at {100, 200) Operations on the box are defined by messages to the box. They include moving it to a new atigin, changing

the size of the box, and changing the shading inside the box.

Class Definition for the Box.
Figure 11.

54 THE AI MAGAZINE

display and that for this purpose they will be treated as
part of the box.

The next step is to decide whether any of the methods
of Boz need to be specialized in BorderedBoz. Since a
border needs to be redrawn when a box is increased in size,
it is clear that at least the Reshape method needs some
revision. Figure 13 shows a specialized Reshape method
that uses «— Swuper to invoke the Reshape method from
Boz. The specialized Reshape also invokes local methods
to Draw and FErase the boundary. These methods plus
one for setting the size of the boundary must be added
to BorderedBor. The Draw and Erase methods are for
internal use, but the SetBorder method will become part
of the external protocol. Figure 12 shows these methods
together with a new instance variable for recording the size
of the border.

The use of a variable for borderSize brings up a ques-
tion of how the methods of the original Boz class work for
shading. In fact, they cannot work if the shade is not saved
as part of the state of an instance (or is otherwise com-
putable). Box’s Reshape method should use the current
shade in order to fill new areas when a box is expanded.
To fix this deficiency, we can now go back to the definition
of Boz to add a shade instance variable that will be saved
by the Shade method. We can also modify Boz’s Reshape
method to use this new variable.

After the shade bug is fixed, we should ask whether the
specialized class BorderedBoz must also be changed. Bor-
deredBoz will inherit the shade instance variable and the
revised Shade method. Furthermore, the specialized Re-
shape method in BorderedBoz, which uses «— Super, will
effectively “inherit” the shade changes from Boz’s Reshape
method. In this example, the inheritance mechanisms of
the language work for us in just the right way. This il-
lustrates how language features can provide leverage for
accommodating change.

Programming the DigiMeter.

Gauges are favorite pedagogical examples in Loops be-
cause they use features of both object-oriented and access-
oriented programming. They are defined as Loops classes
and are driven by active values.

Figure 14 illustrates a collection of gauges in Loops.
Gauges are displayed in a window, an active rectangular
region in the bitmap display. They have a black title bar
for labels and a rectangular center region in which they
display values. Instances of LCD (for “little character dis-
play”) show their values digitally, but most gauges simu-
late analog motion to attract visual attention when they
change. For example, subclasses of VerticalScale and Hor-
1zontalScale simulate the movement of “mercury” as in a
thermometer. Instances of subclasses of RoundScale move
a “needle” in a round face.

For some purposes it is convenient to combine digital
and analog output in a single gauge. The digital output

makes it easy to read an exact value from the gauge. The
analog output makes it easy to notice when the gauge is
changing and to estimate the position of the current value
in a fixed range. With gauges like this it is easy to tell at
a glance that something is “half full.”

The programming of combination gauges gives rise to
a choice of programming techniques for combining classes.
Figure 14 shows the DigiMeter as an inheritance combi-
nation of a Meter and an LCD. Such a gauge needs to
combine the programmed features of the two classes. In
the following we will consider the arguments for choosing
an appropriate technique of object combination.

Here are some goals bearing on the design of a DigiMe-
ter:

e The DigiMeter should respond in the standard
way to gauge protocols.

For example, a single request to Set the DigiMeter
should suffice, without having to send separate messages
for the meter and the LCD. Both gauges should display
the same correct value.

e The DigiMeter should use a single window to
display both gauges.

The combination gauge should not have two separate
windows and bars. The component gauges should ap-
pear in a single window on the display screen that is large
enough for both of them.

e The combined description should make direct
use of the classes for LCD and Meter.

DigiMeter should use some method for combining Me-
ter and LCD. This does not preclude making changes to
the classes for Meter and LCD in order to make them com-
patible for combination, but we do not want to duplicate
code or descriptions in DigiMeter. The class descriptions
should continue to work whether the classes are used alone
or in combination.

The three techniques of object combination supported
in Loops are perspectives, composite objects, and multiple
inheritance.

Using perspectives for combination, we would create
a DigiMeter with one perspective for the meter and one
for the LCD. Unfortunately, the direct approach to this
would result in the creation of separate windows for each
gauge. We could fix this for all of the gauges in the lat-
tice, for example, by making a window be a perspective
of a gauge. The main utility of perspectives is that they
support switching among muitiple views and instantiat-
ing these views on demand. In this application, we always
need to create all of the views and the views are very close-

THE AT MAGAZINE 55

BorderedBox
MetaClass Class
EditedBy {* mys “1-Oct-84 01:67")
doc {* Like a Box except displays a black border. The origin is the outside of the border.}
Supers (Box)
InstanceVariables
borderSize 2 deoc (* width of the border.)
Methods
Reshape BorderedBox. Reshape
SetBorder BorderedBox.SetBorder doc (* Set a new border size.) args (newBorderSize)
EraseBorder BorderedBox. fivaseBorder

DrawBorder BordercdBox.DrawBorder

A BordercedBoz is like a box except that it is dvaws with a vasiable sized border in the display. BorderedBox is huplemented by specializing
Boxr A new instance variable borderSize is added to record the size of border. The width of the border is included as part of the dimensions
of the box.

Class Definition for the BorderedBox.

Figure 12,

{Bordered3ox.Reshape (self newXOrigin newYOrigin newXLength newY Length)

{«~ solf BraseBorder) (¥ Erase old border.}
{* Now Reshape boz as before)
(- Super sclf Reshape newXOrigin newYOrigin newXLength newYLength)

{+ self DrawBorder) (* Draw new border.}

The specialized Reshape miethod needs to redisplay a revised border when the shape of the box changes. « Super is used to invoke the
Reshape method from Boz. The specialized Reshape also invokes methods to Draw and Erase the boundary. T'hese methods plus one for setting
the size of the boundasy must be added to BorderedBor. "Che Draw and Frase methods are for internal use and the SetBorder method is part
of the external protocol.

Reshape Method for BorderedBox.
Figure 13.

56 THE AI MAGAZINE

Gauges -~ Defined by Classes, Driven by Active Values

Dany Sat ay M*k

P Instrument —— Round3cale <—Meter
Gauge =< 05"_.gi e D ilteter
. == JigiScale
BoundedH ix In -wmez==% Grizontalscale I .
Verticalscale———————BarChart . - So0igilers:
e
SelfScaletlixin == > 83Barthart

Gauges are tools used to monitor the values of object variables. They can be thought of as having probes that can be inserted
on to the variables of an arbitrary Loops program. Gauges are defined in Loops as classes and driven by active values the
computational mechanism behind access-oriented progrannming in Loops. A browser at the bottom of the figure iflustiates the
relationships between the classes of gauges. Irom this figuie, we can sec that the Dugdeter is a combination ol a Meter and an
LCD. Other kinds of gauges, mimicing vscilloscope traces or chart vecorders, would also be usetul.

Gauges in Loops.
Figure 14,

THE Al MAGAZINE 57

ly associated. Hence, the main features of perspectives
don’t do much work for us. Using composite objects as the
method combination, we would create a DigiMeter with a
meter as one part and an LCD as another part. Again,
the straightforward combination would yield a separate
window for each gauge. As before, we could revise all of
the gauges in the lattice, perhaps treating a window as a
part of a gauge. In addition, the DigiMeter description
would need to identify the window parts of the meter and
LCD as referring to the same window. The main benefit of
composite objects is to describe for instantiation a richly
connected set of objects and to differentiate between ob-
jects and their parts. In this application, the connections
between the parts are relatively sparse and the part/whole
distinction doesn’t do much work for us.

Using multiple inheritance for combination, we would
create a DigiMeter as a class combining an LCD and a
meter. Since the LCD and Meter classes inherit their win-
dow descriptions from the same place, multiple inheritance
vields exactly one window. As in the other cases, we may
need to tune parts of the window description to make
sure that it is large enough for both gauges, but this is
a straightforward use of the inheritance notion. In multi-
ple inheritance it is important to ask whether same-named
variables in the combined class refer to the same thing. For
this application, we need to be on the alert for the use of
variables in Meter and LCD that have the same name but
different meanings, but there are no such conflicts in this
case.

The preceding arguments suggest that multiple inher-
itance is the most appropriate technique of object com-
bination for this application. The next step in designing
a DigiMeter is to understand and design the interactions
between the constituents. The main interactions are:

o The window should be large enough to accom-
modate both gauges.

e The methods for displaying both gauges should
be invoked together.

The first interaction can be handled by specializing the
method (UpdateParameters) that establishes the window
parameters. The major window sizing constraints come
from the Meter, which must provide room for the cali-
brated circle and its interior needle. In the Loops imple-
mentation the DigiMeter method uses — Super to invoke
the parameter-setting code for the Meter and then revises
them to allow extra room at the top of the window for the
LCD.

The second interaction can be handled by specializ-
ing the ShowReading method for showing a reading. As
shown earlier in Figure 9, this method consists of a simple
application of + SuperFringe which invokes the original
ShowReading methods of both Meter and LCD. In Flavors
this would have involved the application of a progn method
combinator.

58 THE AI MAGAZINE

The Evolution of Classes—Gauge Examples.

Most of our applications of Loops take place in a research
environment in which new goals and ideas are always sur-
facing. In such an environment frequent revisions and ex-
tensions are a constant part of programming. To cover
the kinds of reorganizations that we carry out in our work
we have developed some idioms for systematic program
change. This section considers three cycles of revision in
the design of Loops gauges. Each cycle of revision has the
following steps:
e A new goal or requirement is introduced for the
design.
e A conflict in the current organization is recog-
nized between sharing of code and flexibility.
e A new factoring of information is chosen to ease
the conflict.

Cycle 1. In our first example we will consider the ad-
dition of a DigiScale to the class inheritance lattice. A
DigiScale will be a combination of a HorizontalScale and
an LCD as in Figure 15. A major design constraint for
this example is that the DigiScale must be visually com-
pact. To make it small we want to omit the tick marks
and labels from the horizontal scale portion. Such a gauge
would present both an exact digital value and an analog
indication of the value within its range.

However, the plan of omitting the tick marks also in-
teracts with the inheritance of existing code from it Hor-
izontalScale and Instrument. In particular, the display of
instruments is governed by the Showlnstrument method
of Instrument, which carries out the following sequence of
steps:

e Draw the instrument structure (circular dials,
an so forth)

e Draw and label the tick marks.

o Print the scale factor.

For the DigiScale this organization is too coarse. This
illustrates a common situation where inheritance in a sub-
class requires finer granularity of description than was pro-
vided in the super class. The situation arises often enough
in our programming that we have a name for it—a grain-
size conflict. In Loops, pieces of description which are
intended to be independently inherited must be indepen-
dently named—e.g., methods have their own selectors and
instance variables have their own variable names. A spe-
cific fix in this case is to decompose the Showlnstrument
method into several smaller methods that we can indepen-
dently specialize, reorder, or omit.

Cycle 2. Sometimes a grainsize conflict is the first
stage in recognizing new possibilities in a design. In the
previous example, we considered the creation of a spe-
cial kind of horizontal scale that has no tick marks. We
could generalize that idea to have vertical scales or even
round scales without tick marks. Another observation in

Gauge

instrument

RoundScale VerticalScale HorizontalScale

——

Proposed

Dial
Meter\ -:]
685

DigiMeter

DigiScale

The proposed DigiScale will be a combination of a4 HerizontalSeate and an LCD An unusual programming constraint in this
case is that we want to omit the tick marks {vom the horizontal scale portion. At issue is the fact that the code inherited from
Instrement bundles in one chunk the drawing of the gauge and the drawing and labeling of the tick marks.

Programming the DigiScale.
Figure 15.

> V1
_ M1
V1 V1
M1 M1

A A

Often there is a motivation to move structure up in the class lattice in order to increase sharing. We call this promotion of
structure. In this case a method M, and an instance variable IV, are initially duplicated in two sibling classes. Promotiosn would

move them to their conunon superclass.

Promoting Methods and Variables.
Figure 16.

gauges use space filling—Ilike the sliding of a column of
mercury. Several other kinds of gauges are possible—such
as a PieScale gauge—a round scale gauge that uses an

the same vein is that the round scale gauges differ from the
others in the way that they indicate their values. Round
scale gauges use a needle. Vertical and horizontal scale

THE AI MAGAZINE 59

expanding “slice of pie” to indicate its value.

This suggests that there are some independent prop-
erties of gauges that we could recognize:
e (alibration—gauges can have tick marks and
scale factors or not.
o Indicator style—gauges can use needles or space
filling to present their values.

The recognition that a particular distinction arising in
a subclass can be generalized is a common occurrence in
object-oriented programming. Often there is a motivation
to move structure up in the lattice to increase the amount
of sharing. We call this promotion of structure. Figure 16
illustrates a simple case of this where a method M?! and
an instance variable IV! are initially duplicated in two
sibling classes.

Promotion would move them to their common super-
class. The Loops environment encourages and facilitates
such activities by making them easy to do with interactive
browsers that show the inheritance structure, and allowing
menu driven operations to make changes.

Figure 17 shows a first attempt to organize a class lat-
tice for these distinctions. In this attempt, instruments are
partitioned into CalibratedInstrument and UncalibratedIn-
strument. This partitioning tries to exploit the observation
that the best-looking uncalibrated instruments are also the
space-filling ones. The classes VerticalGraph, Horizontal-
Graph, and PieGraph are created as uncalibrated space-
filling gauges. The main problem with this approach is the
duplication of code. For example, code is duplicated be-
tween HorizontalScale and HorizontalGraph, and between
VerticalScale and VerticalGraph. This leads to a different
proposal for a lattice as shown in Figure 18.

In the second proposal, a mixin is created for the code
that generates tick marks and labels. The gauge lattice
appears essentially the same as before the reorganization
except that the classes are now uncalibrated. Classes like
Vertical Graph have calibrated subclasses like VerticalScale
that use the CalibratedScale mixin. The mixin establishes
the procedural connection between instrument drawing
and tick mark drawing. Each subclass also supplies spe-
cialized local methods for arranging the tick marks and
labels.

Cycle 3. Gauges have upper and lower bounds for the
values that they display. When data go out of range, the
standard behavior is to light up an “out of range” indicator
and to “pin” the gauge to the maximum or minimum value.
This highlights a nuisance with analog gauges. Their read-
ings become useless when data go out of range. One idea
is to have gauges automatically recompute their extreme
points and scaling factors as needed. For example, if a
gauge goes out of bounds, it could automatically increase
the maximum reading by about 25 percent of the new high
value subject to some constraints of display aesthetics.

60 THE Al MAGAZINE

The rescaling requirement is independent of the style
of display, that is, it is independent of whether we are
spinning a needle or driving mercury up and down. This
suggests using a uniform technique for revising the scale
for all the gauges. The natural choice for additive behavior
is a mizin.

Unfortunately there is a difficulty in doing this for the
BarChart. The BarChart is unique among the gauges in
Figure 14 in that it displays several values at once. A
SelfScalingMizin could be easily defined that would work
for all of the gauges except the BarChart. This mixin
would just use the value of the gauge in computing a new
maximum. For a BarChart, it is necessary to look at all of
the bars to determine the maximum. This seems to lead
to the following design choices for using mixins:

e We could design two mixins. One for the Bar-
Chart and one for all the other gauges. (Equiv-
alently we could just mandate that the gauge
mixin should not be used with BarChart.)

e We could design one mixin that worked differ-
ently for the BarChart and the other gauges.
The method for computing the maximum would
need to check whether it was being used in a
class with BarChart as a super class.

e We could modify the definition of the single-
value gauges by adding a method to simply re-
turn the value when asked for the “maximum”
value.

The first two choices do not extend well if we later add
additional multi-value gauges. In our Loops implementa-
tion, we chose the third option.

Usually we think of mixins as classes that we can mix
in with any class whatsoever. For example, when the Date-
dObject mixin is added to class it causes instances to have
a date instance variable initialized with their date of cre-
ation. Some kinds of mixins are designed to be used with a
more limited set of classes. This example illustrates a case
where the “mixees” can fruitfully be modified slightly to
accommodate the mixin. The modification broadens the
set of classes with which the mixin is compatible.

Conclusion and Summary

Objects are a uniform programming element for comput-
ing and saving state. This makes them ideal for simulation
problems where it is necessary to represent collections of
things that interact. They have also been advocated for
applications in systems programming since many things
with state must be represented, such as processes, directo-
ries and files. Augmented by mechanisms for annotation,
they have also become important in the current tools for
knowledge engineering.

Gauge

Instrument LCD

——

\\\\\
\\
Calibrated instrument Uncalibrated instrument
MNN\%
\ Nh‘“""““—ﬁmﬁ.
RoundScale HorizontalScale Vertical Graph Horizontal Graph Pie Graph
VerticalScale
Dial Meter
Pie Scale

This lattice shows gauges partitioned into Calibratedinstrument and UncalibratedInstrument which exploits the observation that
the best-looking uncalibrated instrinments are also the space-filling ones, However, code is duplicated, for example, between
HorizontalScale and HorizontalGreph.

Rearranging the Lattice of Gauges.
Figure 17.

Gauge
Instrument LCD
Calibrated Scale
RoundGauge Vertical Gauge HorizontalGauge

~. Tr—

Vertical Scale Horizontal Scale

Pie Gauge Dial Gauge

Pie Scale Meter Dial

In this arvangement, a CalibratedSeale mixin is created for tick marks and labels. In this reorganization there is a CalibratedScale
mixin which is added to uncalibrated classes to create tick marks. For exasnple, VerticalScale is a subclass of VerticalGraph and
uses the CaltbratedScale mixin.

Rearranging the Lattice of Gauges, Again.
Figure 18.

THE Al MAGAZINE 61

As object languages have become widespread, consid-
erable interest has been expressed in developing standards
so that objects could be used as a portable base for pro-
grams and knowledge bases. Towards this end, the Com-
mon Lisp Object-Oriented Programming SubCommittee is
now considering several proposals to extend Common Lisp
with objects.

The diversity of language concepts discussed here sug-
gests that research is very active in this area. Standards
will need to provide the kind of open-endedness and flexi-
bility that enables languages to endure.

As object-oriented programming has taken hold in
the mainstream of Al languages, they have reinforced a
more general principle. There are multiple paradigms
for programming. Procedure-oriented programming and
object-oriented programming are but two of a larger set
of possibilities that includes: rule-based programming,
access-oriented programming, logic-based programming,
and constraint-based programming. Different paradigms
are for different purposes and fill different representational
niches.

In this article we have not tried to describe all of the
ways in which features of object oriented programming
have been achieved in the context of other systems. For
example, logic programming has inspired a number of in-
teresting mergers. In Concurrent Prolog (Shapiro, 1983),
objects are represented by processes, and messages are
passed to the process along a stream. Delegation is used to
achieve the effect of inheritance. Tn Uranus {Nakashima,
1982) objects are bundles of axioms in a database. Inher-
itance is done by following links in the databases, using a
logic-based language to express the methods.

In Uniform (Kahn, 1981) objects are represented by
expressions, and methods as operations on objects that
would unify with the “head” of the method. Inheri-
tance is implemented by viewing one expression as an-
other (through an axiom that states, for example, that
(SQUARE X) is equivalent to (RECTANGLE X X)). This
has the nice property that “inheritance” can go in both
directions—from specialization to super, and from super
with the right parameters to specialization.

Languages that combine multiple paradigms grace-
fully are known as hybrid or integrated languages. Lan-
guages that succeed less well might be called “smorgas-
bord” languages. In any case, language paradigms are no
longer going their separate ways and attempting to do all
things. Separate paradigms now co-exist and are begin-
ning to co-evolve.

References

Bobrow, D G., Kahn, K , Kiczales, G , Masinter, L , Stefik, M, &
Zdybel, F ({1985) CommonLoops: Merging Common Lisp and
Object-oriented programming Xerox Palo Alto Research Center:
Intelligent Systems Laboratory Series ISL-85-8, August 1985

Bobrow, D.G, and Stefik, M (1981) The Loops manual

62 THE Al MAGAZINE

Tech Rep. KB-VLSI-81-13 Knowledge Systems Area Xerox
Palo Alto Research Center

Bobrow, D G, & Winograd, T (1977) An overview of KRL, a knowl-
edge representation language Cogmitwe Science. 1:1, pp 3-46.

Borning, A (1979) A constraint-oriented simulation laboratory
Stanford University. Stanford Computer Science Department Re-
port: STAN-CS-79-746

Dahl, 0.J & Nygaard, K. (1966) SIMULA—an algol-based simula-
tion language Communications of the ACM 9: 671-678

Drescher, G L (1985) The ObjectLisp USER Manual (preliminary)
Cambridge: LMI Corporation.

Henderson, D A (1986) The Trillium user interface design environ-
ment (submitted to Computer Human Interaction Boston:
April.)

Fikes, R , & Kehler, T. (1985) The role of frame-based representation
in reasoning Communacations of the ACM 28:9, pp 904-920

Goldberg, A , & Robson, D (1983) Smalltalk-80: The language and its
smplementation. Reading, Massachusetts: Addison-Wesley

Goldstein, I, & Bobrow, D G, {1980) Descriptions for a programmang
envronment. AAAI-1

Goldstein, I P, & Roberts, R B. (1977) NUDGE, a knowledge-based
scheduling program. IJCAIL-5, pp 257-263.

Kahn, K, (1981) Uniform—A Language based upon Unification which
umifies (much of) Lusp, Prolog, and Act 1 1JCAI-7, pp 933-939.

Lieberman, H , (1981) A Preview of Act 1. Massachusetts Institute
of Technology. Artificial Intelligence Laboratory Memo No 625
June

Minsky, M A (1975) A framework for representing knowledge In
P Winston (Ed), The psychology of computer msion New York:
McGraw-Hill.

Nakashima, H (1982) Prolog/KR-—language features Proceedings
of the First International Logic Programming Conference Mar-
seille, France: ADDP-GIA.

Rees, J A, Adams, NI, & Mechan, JR (1984) The T Manual, 4th
edition Tech Rep. Yale University January 1984

Shapiro, E , & Takeuchi, A (1983) Object oriented programming in
concurrent prolog. New Generation Computing 1, 25-48

Smith, R G (1983) Structured object programming in STROBE
Schlumberger-Doll Research: Artificial Intelligence Publications:
Al Memo No 18 September

Snyder, A. (1985) Object-oriented proposal for Common Lisp ATC-
85-1 Palo Alto: Hewlett Packard Laboratories

Stefik, M, Bobrow, D G, & Kahn, K (1986) Integrating access-
oriented programming into a multi-paradigm environment To
appear in IEEE Software

Stefik, M (1979) An ezamination of a frame-structured representation sys-
tem 1JCAI-T9, pp. 845-852

Weinreb, D , & Moon, D, (1981) Lisp Machine Manual. Symbolies
Inc

AAAI-86 EXHIBIT PROGRAM

Companies interested in exhibiting at this year's Na-
tional Conference on Artificial Intelligence can obtain in-
formation and an application formn from:

Ms. Lorraine Cooper
AAAL
445 DBurgess Drive
Menlo Park, CA 94026-3496

