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T he major limitations in building large software have 
always been (a) its brittleness when confronted by 

problems that were not foreseen by its builders, and (b) 
the amount of manpower required. The recent history of 
expert systems, for example, highlights how constricting 
the brittleness and knowledge acquisition bottlenecks are. 
Moreover, standard software methodology (e.g., working 
from a detailed “spec”) has proven of little use in AI, a 
field which by definition tackles ill-structured problems. 

How can these bottlenecks be widened? Attractive, el- 
egant answers have included machine learning, automatic 
programming, and natural language understanding. But 
decades of work on such systems (Green et al., 1974; Lenat 
et al., 1983; Lenat & Brown, 1984; Schank & Abelson, 
1977) have convinced us that each of these approaches has 
difficulty “scaling up” for want of a substantial base of real 
world knowledge. 

Making Al Programs More Flexible 

[Expert systems’] performance in their special- 
ized domains are often very impressive Never- 
theless, hardly any of them have certain common- 
sense knowledge and ability possessed by any non- 
feeble-minded human. This lack makes them 
“brittle.” By this is meant that they are difficult 
to expand beyond the scope originally contem- 
plated by their designers, and they usually do not 
recognize their own limitations. Many important 
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applications will require commonsense abilities. . . 
Common-sense facts and methods are only very 
partially understood today, and extending this un- 
derstanding is the key problem facing artificial in- 
telligence. -John McCarthy, 1983, p. 129. 

How do people flexibly cope wit.h unexpected situa- 
tions? As our specific ‘Lexpert” knowledge fails to apply, 
we draw on increasingly more general knowledge. This 
general knowledge is less powerful, so we only fall back on 
it reluctantly. 

“General knowledge” can be broken down into a few 
types. First, there is real world factual knowledge, the sort 
found in an encyclopedia. Second, there is common sense, 
the sort of knowledge that an encyclopedia would assume 
the reader knew without being told (e.g., an object can’t 
be in two places at once). 

Abstract 
MC& CYC project is the building, over the coming 

decade, of a large knowledge base (or KB) of real world facts 
and heuristics and-as a part of the KB itself-methods for 
efficiently reasoning over the KB. As the title of this article 
suggests, our hypothesis is that the two major limitations to 
building large intelligent programs might be overcome by using 
such a system. We briefly illustrate how common sense rea- 
soning and analogy can widen the knowledge acquisition bot- 
tleneck The next section (“How CYC Works”) illustrates how 
those same two abilities can solve problems of the type that 
stymie current expert systems. We then report how the project 
is being conducted currently: its strategic philosophy, its tac- 
tical methodology, and a case study of how we are currently 
putting that into practice. We conclude with a discussion of 
the project’s feasibility and timetable. 
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A third, important, immense, yet nonobvious source 
of general knowledge is one we rely on frequently: all of 
the specific knowledge we have, no matter how far-flung 
its “field” may be from our present problem. For example, 
if a doctor is stymied, one approach to deciding what to 
do next might be to view the situation as a kind of combat 
against the disease, and perhaps some suggestion that is 
the analogue of advice from that domain might be of use 
(“contain the infection,” “give the infection some minor 
chances, as the risk is worth the information learned about 
its behavior,” and so on). Unlike the first two kinds of gen- 
eral knowledge, which simply get found and used directly, 
this type of knowledge is found and used by analogy. In 
other words, the totality of our knowledge can-through 
analogy-be brought to bear on any particular situation 
we face; and that, after all, is what we mean by knowledge 
being ‘Lgeneral.” To perform this in “real time,” we em- 
ploy heuristics for prioritizing which analogies to consider 
first, and we may also use our brain’s parallelism to good 
effect here. 

Presenting an example of this sort of synergy that 
doesn’t appear contrived is difficult. We refer the reader 
to Skemp (1971)) Hadamard (1945)) and Poincare (1929), 
to name a few, who document cases of the use of detailed 
analogies to aid in solving difficult problems. In notes only 
recently analyzed and reported (Broad, 1985) Edison de- 
scribes how most of his inventions started out as analogues 
of earlier ones; e.g., the motion picture camera started 
out looking like a phonograph and gradually evolved from 
there. Some evidence for the reliance on metaphor may 
come from the reader’s own introspections: try to be 
aware in the next few days of how pervasively-and ef- 
ficaciously-you employ metaphors to solve problems, to 
cope with situations, and in general to make decisions. 
Usually these metaphors are not very ‘Ldeep;” rather, we 
get power from them because of the immense breadth of 
knowledge from which we can choose them. Lakoff and 
Johnson (1980) go even further, arguing persuasively that’ 
almost all of our thinking is metaphorical. 

The test of this idea-solving problems by analogizing 
to far-flung specific knowledge-will be in the performance 
of the CYC system, once it has a large enough accumula- 
tion of specific knowledge. 

The CYC project is an attempt to tap into the same 
sources of power by providing a comprehensive skeleton of 
general knowledge (to use directly) plus a growing body 
of specific knowledge (from which to draw analogies). 

Making It Easier to Add New Knowledge 
Interestingly, the large real world knowledge base nec- 

essary to open the brittleness bottleneck also provides an 
answer to the other bottleneck problem, knowledge acqui- 
sition (KA). Let’s see why this is so. How do people learn 
and understand new information? In a recent essay, Mar- 
vin Minsky (1984) points out that humans rarely learn 

“what” -we usually learn ‘Lwhich,” In other words, we 
assimilate new information by finding similar things we 
already know about and recording the exceptions to that 
‘Lanalogy.” This leads to amusing mistakes by children 
(“Will that Volkswagen grow up to be a big car?“) and by 
adults (e.g., cargo cults), but these are just extreme cases 
of the mechanism that we use all the time to assimilate 
new information. In other words, we deal with novelty the 
best we can in terms of what we already know (or, more 
accurately, what we believe) about the world. 

We have to date seen no Al system which 
tries to do knowledge acquisition “from 
strength”. . . 

Another way of saying this is that the more we know, 
the more we can learn. That is, without starting from 
a large initial foundation, it’s difficult to learn. We have 
to date seen no AI system which tries to do knowledge 
acquisition “from strength,” from an initially given large, 
broad body of knowledge. If the knowledge base is large 
(and representative) enough, then adding a new piece of 
knowledge ought to be doable just by pointing to-and 
thereby connecting-a few existing pieces. 

A very weak form of this process is in use today in 
building expert systems, namely the simple expedient of 
“copy&edit”: As you build up your expert system’s knowl- 
edge base, and you’re about to enter the next chunk (rule, 
frame, script,. . .), t i is often faster to find a similar chunk, 
copy it, and then edit that copy, than it is to enter (for- 
mulate and type in) that new chunk into the system from 
scratch. 

One limitation to current uses of copy&edit is that if 
the growing system only knows a couple hundred things 
(rules, frames, etc.), then those form the total universe of 
potential objects from which to do the copy. As the size of 
the knowledge base grows, it becomes increasingly likely 
that one can find a match that’s close enough to result in 
a large savings of time and energy and consistency. (The 
new piece of knowledge is more likely to preserve the ex- 
isting semantics if it’s been copied, rather than typed in 
from scratch.) 

CYC is aiming at tapping this source of power, gladly 
swapping the problem of “telling the system about 3’ for 
the problem of “finding an already known x’ that’s similar 
to x.” But there are two more powerful ways in which 
CYC may help the copy&edit process along. The first is 
to employ analogy to suggest or help the user choose par- 
ticular existing frames from which to copy. The second is 
to use analogy to do some of the editing itself, automati- 
cally. The following section shows how these two new aids 
to knowledge acquisition would work. 

Analogical Reasoning 
Suppose one has begun to explicate the “medical treat- 
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r -_-- ___________._.._______________________ __.______.____________________ I 
Representing Knowledge in CY C 

CYC’s rcprescjltatiorJ hIguagr is frajnc-based and is silnihr to 131,1, ((hiJAw Rrjd J,cnat, 1080) a1it1 KRL (13obrow a11d 
Winograd, 1977). 01jc of the ccjltral prijlciph in its tlesig~~ is that it. be a pnrt of t,hc CYC KJ3 itself. That s.hoI~ld facilihtc 
trnnslating tire systcin t.0 other “ujjd~rlyiug hguages,” and should allow C:YC to apply its own knowlrdgc and skills (question- 
answcrijIg il~id ailalogixing) to itself. CVc bChC this is iniportarlt if it is to JlIojlit~Jr its 0w1J rmtimc behavior and enforce a 
Consistent semantics on its builders a~jd users. 

To impIcjncnt such a self-describing language, each kind of slot is given a TuIl-fhlgrd frajnc c\escrihhg its semantics: What 
is its invcrsc? What kiud of frames can legally have this slot ? What kind of vnlucs cn11 fill it.? IJow cat1 its value br fount1 if jlo~lc 

is currcnt~ly there? Wljcn should such values grt cacl~ed? What relations of various sorts does it. part.iCiJJate in with other slots? 

This last category of hformatiojj (rclatiojjs to other slots) is very important. It jncaus that the set of known slot IIRIIICS forms 
a part of the C:Y(: hierarchy of co~~~e1)t.s. So a rule or sCript or slot definition that asks if Grebcs is an clemejjt of Supergejjuses 
cau get, an afirrnativc response CVCJJ though there is no elementOf slot explicitly rccortlcd on the <hhs franic, hcause the is a 
biolaxonomicLcvet slot sitting bhcrc; a~~(1 bc~aus~ lljc frame for biol%xonomlcl.evel says that. it is a spccializatiojj of elementOf 

Almost every step of our jnet.Irotlology loop cjhls atltling new, spccializctl kinds of slots to the system. as ~jccdctl, along 
with tljc olhcr kinds of frames that get added. Let’s corjsidcr a Case whcrc JICW kinds of Slots were added 10 tile syskm. 

%rctxs have small wings.” That sounds easy to rcprcscjit. Givejj a Grcbcs frame, we COlJId add any of tl1r fO1kJWilIg 

S1Ot/vahlC! pairs t0 it,: 

wirjgsiac: Small 
wiugs: (# - - - size Sj~jall) 
parts!hc: (Wings Small) 
partsl~cscripliOIi: (Wings (sine Small)) 

~hfcJrtllrl,?k~y, tlwrc aje actually many ttiifcrcjil things llrc serjt.ejiCc could mean. What is it, exactly. that is small? Is it: 

0 The length of a Grctjc’s wing; cojrjparcd to the Iciiglli of stnjitlnrd jnctcrstjck? (actualValue) 
0 What. we’d expect their wings Icrjgtll to bc (compared to a meterstick), knowing that ~htXX arc aquatic birds, and the 

aCtualValue of the lcngtlj of mosL aquat,ic bircls’ wings?*(expectcdValuc) 
* What we’d cxpcct their wings’ 1cJjgth to ~JC (COjqJarCd to a metcrstick), knowing hhe length of most other parts of a ~hcbc?* 

(expectedPartValue) 
0 ‘rile ratio of the kJIgth of a Grebc’s wi~ig lo the? hgth of most aquatic birds’ wings? (relativek4agnitude) 

* Tlrc ratio of ttlc length of a G~.cbc’s wing to the JJlCall length of its hotly parts? (relPartMagnitude) 
0 ‘ih rat.jO of <hbeS’ wiljg-to-bOdy-Siae to t~IIC Wing-to-body-size for typical aqllatk birds? (I.e., t1Jc ~~IlotiCiit of reIJ’arth!ag- 

jiitude for Grcbcs’ wings antI reli’artMagnit~u& foj Aquat~icDirds wings.) (rclPfoportlonParts[)c?scrlption) 

hi the casr of our Grcbcs articlc, tlio sixth meaning was intcrjtlcd. Our language sliouttl and dot3 permit each of ttjcsc 
meanings to 1~ rC[Jr~?wlltcd in a separate but equally cffjcient njajjjjer. Essentially. there arc six diffeicnt relations hcing talked 
,&out, and we trajjslatc thn irjto six sepalate kinds of slots. 1Snclj of the can exist for Grcbcs and CRY have JIKLJJY mtrics; iII 

caclr case, 01Ic of the rjjtries could bc (Wings (size Small)). Each of the six slots can he cojisitlcred a relation over four argujjjcjjts 
(II i ni v), wlicre II is the name of a frame (h this case, “Grcbcs’!), i is tlic ~iainc of a l)art (iii this cast: %~ii:gs’!), JII is the name 
of a jric~asuring or comparing furiction (ijj his case %ixc”), and s is the purported value (in this Case “Sjnall”j. Each of the six 
slots has its own definition, a function that takes the first tljrcc arguments and returjja t,Jjc fourth OJIC (the valj~c v): 

actualValue. (in (i II)) 

expectedvalue. (III (i (basicJiindOf u))) 
expectedPartValuc (in (apply (basicKijitIOf i) Ii)) 

relativahlagnitude: (Quohnt (actualValue II i nj) (cxpcctedValuc II i III)) 
relPartMagnitude: (Q uotjctjt .’ ( aCtiialValuc u i m) (cxpcctedl’artValrjr II i m)) 
relProportionPat tsDcscription: (Quotient (rcll’artMagjjitljdc u i III) 

(r#artMagnit utlc (basicKindOf u) i 111)) 

OJIC of 011r Iarjguago rlcsigjj priiiciplcs is to view “hgc vahid’ a.9 a sign ht WC hwI’t di~‘i&?d II1J th? WOrk1 CjJOIlgh, or 

propxly. ilrncc tljc proliferation of related slots, i hove. Another design principle is to view any piece of Jhp Co&> in our 1~13 as 
a transient I an intcrjncdinttl value which has bcc3i conqnttctl and then “cacliccl” from some dcclarativc, dcscriptivr knowlcdgc. 

Ipor most slots, this 1iICai3s that their defn slots arc to bc thought of as virtual slots, which arc computed from other slots. 
JJI the siml~lcst cast, tfjcsc other slots arc slotCombiner and builtl3om? antI (3’C applies the va111e stored in the slotCombiner 
slot (0 the vaiuc storctl in the builtFrom sht.. Jhr ijjstajjce, relativeMagnltude has a slotCombiner slot fiIIctI with tljr value 
~~OJjlbiIIr~~y~~atioirlg and ii builtfrom dot fihd with the list (actlia1\~:11l~e CxpCCtd\/ahIe). 
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ment is warfare” analogy; i.e., CYC has been told about 
this correspondence (or discovered it), has seen “bacte- 
ria” map to “enemy soldiers,” “infection” to “invasion,” 
“containment” to “containment,” “drugsi to “weapons,” 
has seen some medicine heuristics map to warfare heuris- 
tics and vice versa. CYC could then notice that certain 
medical concepts had no warfare analogues-at least, not 
yet-and suggest that they ought to get created. 

For instance, suppose the knowledge base already con- 
tains a heuristic rule about the use of infiltrators to subvert 
and undermine the enemyis effort from within, If no medi- 
cal analogue were known, then CYC could suggest creating 
one. Then, instead of requiring a person to create and edit 
the new rule, CYC could use its knowledge of the overall 
“medicine as warfare” analogy (of what mapped to what) 
to do most of the needed substitutions itself. 

The two analogous items (in this case, heuristic rules) 
might be kept separate or merged into a common general- 
ization, or all three items might be worth keeping in the 
KB. This last case is most likely, since each has some rea- 
son for continuing to exist. The generalization may be 
easier to apply to a new situation and may capture some 
deeper knowledge about the world than either special case. 
The special cases may have some idiosyncratic information 
attached only to them such as the relative success rate of 
the rule in each specific domain; the frequency of igno- 
rance of the rule among practitioners in the field; the cost 
of applying the rule, etc. Another way of thinking of this 
is that each analogy is a useful but partial generalization 
(Lakoff and Johnson, 1980). The seven items (a-g) in Di- 
mension 1, below, suggest even more clearly a spectrum 
between generalization and analogy. 

Most analogies “work” because there is some common 
causality that led the analogues to be similar. Analogies 
are useful because often that common causality has re- 
sulted in many more shared attributes that haven’t yet 
been noticed. We understand so little about the world 
that those common causes are often unknown or even un- 
detectable by us directly; hence analogical reasoning is im- 
portant and ubiquitous. This suggests that causal meta- 
knowledge (justifications for values of slots) will play a key 
role in deciding how to find and extend analogies. 

One or the other of the two analogous items is likely 
to be much better understood at the time the analogy 
is formed; often, in English, this leads to the practice of 
using its terminology for the common generalization as 
well. Nevertheless there is a full-fledged symmetry here, 
and every slot whose value exists for one frame but not 
for the other is a candidate for analogizing a new piece of 
information to the other. 

Each medical heuristic (and object and operator) 
could lead to a warfare analogue and vice versa. Each 
kind of slot that exists in only one domain suggests an 
analogous kind of slot that might be worth defining in the 
other domain. For instance, the susceptibleToDrugs slot, 

and its inverse, effectiveAgainstBacteria, would map into 
brand new concepts, new kinds of slots, ones we might call, 
respectively, susceptibleToWeapons and effectiveAgainstEn- 

emySoldiers 

Then, as each of these new frames are created, CYC 
should use its growing model of the analogy to decide 
which substitutions to make in the frame body, instead 
of forcing the human (knowledge base builder) to make 
them all manually. For instance,’ 

makesSenseFor(susceptibleToWeapons) = 

analogue(makesSenseFor 

(analogue(susceptibleToWeapons))) = 

analogue(makesSenseFor(susceptibleToDrugs)) = 

analogue(Bacteria) = 

EnemySoldiers 

In a similar fashion, the makesSenseFor slot of ef- 
fectiveAgainstEnemySoldiers would be filled automatically 
with Weapons (i.e., each kind of weapon has its own char- 
acteristic effectiveness against each type of enemy troop). 

We do not believe the analogy process needs to be 
much more complicated than the structure-matching pro- 
cess that we (Lenat, 198413) and others (Greiner, 1985; 
Mitchell, 1985; Bobrow and Winograd, 1977; Winston, et 
al., 1983) have hypothesized and described. In its sim- 
plest form, analogy is the matching between values of cor- 
responding slots of frames. 

On the other hand, analogy is certainly not limited to 
finding identical values in two identically named slots of 
two frames. For instance, the two analogous frames might 
have very different levels of detail in the slots describing 
them. Consider a particular VLSI circuit, whose complete 
layout is known, and a particular city, whose layout is 
only vaguely known. Because the slots in CYC are part 
of its knowledge base, they are arranged hierarchically in 
a generalization/specialization graph. In particular, full- 

CircuitLayout is a specialization of vaguei-ayout Whenever 
the former slot exists for a frame, the latter slot exists vir- 
tually (it can be computed from the former, more detailed 
value; see Greiner & Lenat, 1980). So the analogy could 
be detected at the vagueLayout level, because that slot ex- 
ists (actually or virtually) for both frames. This process 
relied on the slots existing in a hierarchy; one of our tasks 
is therefore to taxonomize slots and build that hierarchy 
into CYC’s KB. 

We agree with Amarel (1983) that the term “analogy” 
is a vague catchall obscuring dozens of more specific kinds 

‘Frequently, throughout this article, a call to get the value of the f 
slot of frame z is written in functional notation: f(x); this dual nota- 
tion carries through to the current CYC program as well. Typically, 
the names of frames will be capitalized, whereas the names of slots 
will not be. A conflict arises when one wants to discuss the frame 
that talks about the elementof kind of slot; in those cases, we also 
choose to leave the name uncapitalized. 
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of phenomena, each of which is worth distinguishing’ and 
studying. Even our initial inspection turned up several dif- 
ferent dimensions along which one could profitably classify 
analogies. “Profitably” here means that different, special- 
ized heuristics apply at each point of each dimension. 

The four dimensions below define a four-dimensional 
matrix, and for each point in this LLanalogy-space” a unique 
set of heuristics holds, heuristics for how to find analogies 
in that region, when it is and isn’t worth looking for them, 
when and how to extend an existing analogy, when and 
how to use an analogy, etc. Think of this matrix as a start 
in meta-analogical reasoning: reasoning about when and 
how two analogies are similar to each other. 

Dimensron 1: Variatzons in the level and degree of 
matching. 

(a) 

(b) 

(cl 

(4 

Two frames have several slots with identical names 
and values. For instance, Irrigating and Raining share: 

basicKindOf Transporting 

transportee Water 
destination Ground 
recipients Plants 
aidsRecipientln Growing 

Two frames can have identically named slots whose 
values are not quite identical; the resultant mapping 
becomes part of the analogy. Irrigating and Teach- 
ing are analogous in this fashion, since Teaching has a 
recipients slot filled with Students, and an aidsRecipi- 

entln slot filled with Learning. This is the analogy that 
teachers distribute knowledge to aid their students in 
learning, just as irrigation systems distribute water to 
aid plants in growing. This analogy will, in turn, ei- 
ther suggest the “Learning as Growing” analogy, or, 
if it already exists, be strengthened by it. 
Two frames can have matching slots whose names are 
not identical, but whose values are. For instance, ‘LJu- 
ries” has NumberofMembers 12 and “Doughnuts” has 
soldBy 12. Not all analogies appear useful, unless one 
has been sequestered for a long time. 
Both the names of the slots and the values they contain 
may match but be nonidentical. An example is the 
biovector slot for bacteria and the troopTransport slot 
for troops. This is handled naturally by CYC because 
the kinds of slots are part of our (hierarchical) KB. 
In this case, both of those slots are specializations of 

*Given Brachman’s article in the last issue of this magazine, it is 
worth mentioning when it is (and isn’t) worth distinguishing two 
concepts, i e , making two separate frames out of them. Such dis- 
tinguishing should be done for those, and only those, concepts for 
which some specialized, powerful heuristics exist and can be brought 
to bear Thus, “one-legged-sushi-loving-programmers” is not worth 
distinguishing unless there’s more one can say about such individuals 
than one would inherit individually from one-legged people, sushi- 
lovers, or programmers 

(e) 

(f 1 

k) 

transportVehicles, which makes sense for Transporting 
in general. 
The matching can also be at a higher level: two ag- 
gregates of frames match each other. The “Medicine 
as Warfare” analogy involves dozens of frames from 
each domain, including objects, operators, heuristics, 
and so on. This is more the rule than the exception in 
practice. 
The matching can also be at a lower level: the two en- 
tities that match each other may merely be properties 
about the values of two slots of two frames. For ex- 
ample, two stocks on the NY Stock Exchange may be 
analogous because their prices fluctuate wildly; in our 
terms, the values in the price slot of the Stocki frame 
and the Stocks frame have different and uncorrelated 
values most of the time, but both of those slots have 
the same LLextra” property/value-namely volatility 
High. 
In some analogies, the two analogues coincide. For 
instance, it may be worth conceptualizing the match 
between two parts of the same frame, say the physical 
and mental attributes of a person. At another level, 
there may be a match between the volatility property 
of all the (values of the) physical description slots of 
an object (i.e., for most objects, either all the physical 
attributes are all stable over time or else many of them 
are volatile). 

Even copy&edit in its present, 100 percent 
manual form, is highly cost-efFective. 

Dimenszon 2: Nature of the boundary, i.e., the kinds of 
places where the analogy almost breaks down, or just barely 
does break down. For instance, some analogies share the 
property that using them can be a powerful heuristic 
method in one situation and yet be a fatal trap in nearly 
identical situations (e.g., “nuclear weapons are like con- 
ventional weapons”). Other analogies are similar to each 
other in that they fail less abruptly at their boundaries. 
We expect that analogies that differ along this dimension 
will have some specialized heuristics about when and how 
to use them-and not use them. 

Dimension 3: The particular nature of the analogues 
(domain-specific processes, objects, heuristics, etc.), the 
kinds of domains they come from, and the particular iden- 
tities of some of the analogy pieces. What we’re saying 
in the first case is that an analogy between two processes 
probably has some special heuristics for finding and us- 
ing it, compared with analogies between two static ob- 
jects. The second case says that there may be some special 
heuristics that apply whenever you analogize to medical 
domains, to physical processes, or to computer science. 
The third case goes even farther: it says we distinguish 
some very special cases. An example of one is when the 
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difference between the two analogues is mainly one of time 
having gone by; in such a case we rarely think of the mat.ch 
as analogy at all, calling it instead something like conti- 
nuity, aging, or stability. When the difference is one of 
the nontemporal situational variables, we again think of 
this as something other than analogy, namely flexibility 
or generalization. There are no doubt many more such 
special cases to be found and organized; even the two just 
mentioned need to be much further refined. 

Dimension 4: The context for the analogy. This is a way 
of saying that the current goals, resources, audience, re- 
cent performance, etc., all contribute to the way in which 
we find and exploit analogies. So two analogies lie close to 
each other along this dimension iff they were found in, or 
are being used in, similar extended contexts. This distinc- 
tion was useful in getting programs to do goal-directed 
learning (Mitchell, 1983). As with all the other dimen- 
sions, when this dimension is further refined, we expect 
different heuristics to apply at various places along it. 

We expect to need a taxonomy not only of the types of 
analogies, but of the types of analogical reasoning as well. 
These include finding analogies, extending them, import- 
ing them to new areas, suspecting misleading analogies; 
restraining overzealous ones, assimilating new ones, and 
repairing old ones. 

The final wrinkle we’ll mention here is that the pre- 
cise way two concepts are represented can radically effect 
how easy it is to find the analogy between them; this is 
discussed more fully in Lenat and Brown (1984). What 
this means for CYC is that our representation language 
must expand in ways to facilitate analogical reasoning; not 
merely in ways to shorten the expression of facts (in other 
words, elegance is its own reward). 

Even copy&edit in its present, 100 percent manual 
form, is highly cost-effective, saving expert system KB 
builders a large amount of time. CYC’s two analogy- 
driven extensions (automatically suggesting new concepts 
to copy, and helping to automate the new concepts’ edit- 
ing) should be an even larger step in that same direction. 

Functionality of the CYC System 

A very important part of the CYC knowledge base is a 
large, organized body of reasoning methods. These are be- 
ing described declaratively in CYC in a network of frames 
spanning both problem-solving architectures (e.g.; exhaus- 
tive backward chaining) and specific heuristics. The meth- 
ods also include ways of operationalizing methods (i.e., 
actually executing them), and CYC has “cached” efficient 
procedures for many of the common methods. Included 
in this part of the KB are analogical and common sense 
reasoning methods, as well as more traditional problem- 
solving techniques. 

The foregoing sections have illustrated only a few of 
the functions that a large real-world KB could be used 

for, given the “methods base” just described. CYC holds 
the promise of a qualitatively new kind of reference work 
(Lenat et al., 1983), the improvements coming from the 
dynamic nature of the interaction, the multiply connected 
nature of the knowledge (rather than linear text), the 
three-dimensionality and aural “soundspace” that aid in 
navigating and apprehending, and the custom-tailored na- 
ture of the experience: filtering through individual user 
models; organizing material based on the individual user 
and his/her current purpose, rather than based on tra- 
ditional article boundaries and sequencing. This leads 
to a kind of exploring of knowledge space (by humans). 
A weaker and probably sooner-realized form of this is 
question-answering. If the system is given more of the 
initiative, this also merges into ICAI, although to be an 
effective teacher, the KB would have to include a great 
amount of additional material (models of the human learn- 
ing process, how to diagnose and repair students’ models 
of a subject, useful metaphors for teaching specific lessons, 
etc.). 

In a standard expert system, the rules refer 
to technical terms that are related to each 
other in various ways but are not “tied in” 
to a global model of the real world. What 
we propose is precisely that tying in. 

CYC may also be able to boost AI performance pro- 
grams’ ability to solve problems: semantic disambiguation 
for natural language programs, guessing at possible new 
“Unless conditions” for expert system rules, and so on. 

Earlier, we discussed how analogy-finding could be 
done in the context of a specific problem that must be 
solved. But it can also be pursued “offline” by the sys- 
tem; more or less for its own sake. One might run CYC 
overnight, each night, as was done for Eurisko (Lenat & 
Brown, 1984), having it discover analogies of intrinsic in- 
terest to the user, meanwhile building up an ever larger 
bank of analogies for possible future use. 

How CYC Works 

This section illustrates how general real-world knowledge 
might aid expert systems. In this example, a rule is en- 
tered with its “unless” conditions absent, and CYC then 
fills them in automatically. This could be done either 
to improve knowledge acquisition (do it when the rule is 
first entered) or to improve performance (don’t do it until 
the expert system gets “stuck:’ and needs common sense 
knowledge to guess what sort of exceptional case it’s in the 
midst of). 

Before we see how CYC might help, let’s see what the 
problem really is. In a standard expert system, the rules 
refer to technical terms that are related to each other in 
various ways but are not “tied in” to a global model of the 
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real world. What we propose is precisely that tying in. 
Consider the following dialogue between a human (called 
LLExpert”) trying to build an expert system and a conven- 
tional AI expert-system-building shell (called “TOOL”). 
The $ signs indicate variables. 

TOOL: Ploaee type in the next rule. IF: 

Expert: AskedInInterview 
($doctor,$pationt,“Do you have $x?“) 
-YOS 

TOOL: THEN : 

Expert: Has($patient,$x) 

TOOL: Thank you. 

societal mores (e.g., abortion, homosexuality) come and 
go, the rule would have to be updated. 

We’ve now begun to get at the real problem. It comes 
down to a knowledge illusion: The rule appeared to make 
sense to us, but only because we as human beings already 
knew what the various terms it mentioned all meant: doc- 
tors, patients, intake interviews: and symptoms. All the 
expert system knows about AskedInInterview is that it is 
an operator, a Lisp function it can call, which returns one 
of the values Yes, No, and unknown To the expert system, 
it is not much different from the various lab test operators, 
for instance, such as GramStainTest and AerobicityCheck. 
Consider the rule from the point of view of the expert sys- 
tem. It might just as well have been written: 

Here is my rephrasing of the rule in English: 
If doctor AskedInKnterview patient 
I’D0 you have x ?#I 

If the result of F083(A,B,C) was D, 
Then conclude F002(B,C).3 

and ref3ult was Yes, 
Then conclude patient Has x. 
Is this correct? 

Expert: Yea. 

TOOL: Good. Ploaoo type in the next rule. IF: 

I 

Now nothing is actually “wrong” with the rule, and 
the expert may continue to enter hundreds of additional 
rules that help the system diagnose various kinds of med- 
ical problems. The system appears to work fine on many 
cases, even though it does not really understand much 
about symptoms, disease, doctors, patients, or interview- 
ing people. 

As various cases are run, some mistaken diagnoses may 
be tracked to this rule, and each one may result in a new 
clause being added to its If part; e.g., what if $x were the 
kind of thing someone might lie about, such as “a history 
of insanity in your family?” Indeed, many expert system 
languages (Petrie, 1985; Winston et al., 1983) provide for 
explicit ‘Unless” conditions to be a.dded to each rule. Un- 
less conditions are logically equivalent to (negated versions 
of) clauses one could conjoin to the If parts of rules, but 
it is worth keeping them separate for several pragmatic 
reasons: Unless conditions are learned more cheaply, they 
can be added and modified with less effect on the rest of 
the system and they’re less important to teach neophyte 
performers early on. 

When actually coding the new Unless condition re- 
ferred to above (“unless the patient might lie about $x”), 
the kinds of things someone might lie about would have 
to be listed explicitly (insanity in the family, use of illegal 
drugs, country of birth, etc.). Here is an opportunity for 
the knowledge base builder to accidentally overlook some 
items. As new embarrassments (e.g., herpes, AIDS) and 

When recast in the harsh light of GENSYMs, the lim- 
its of expert system “common sense” become all too clear. 

How can CYC help? After the session in which the 
rule was added, CYC would ask the expert to explain, in 
turn, each of the unknown terms in the rule: AskedInIn- 
terview, $doctor, $patient, and $x. 

CYC starts by requesting, “Please help explain what 
the AskedInInterview operator is all about.” In response, 
the user goes through a rapid search through the knowl- 
edge base, from Anything, to Processes, to MentalPro- 
cesses, on down through Communications, all the way to 
Querying. This is implemented graphically at present and 
will take only a few seconds to perform. The user needs 
only to glance at the log of the number of frames in the 
system. 

CYC now asks, “What set is the variable $doctor in- 
tended to range over?” The user finds the relevant frame 
(Doctors) and points to it. Similar interactions occur to 
find that $patient ranges over Patients, and $x over Symp- 
toms. 

If this is the tenth medical diagnosis rule being en- 
tered, probably all of those sets exist already. But what if, 
say, Patients wasn’t known to CY C yet? The expert would 
discover this by arriving at the place where Patients should 
be (e.g., kinds of RecipientsOfService) and not finding it 
there. At that moment, s/he enters a screen editor, to 
record several facts about a brand new frame called Pa- 
tients. S/he chooses to copy it from Students, which elimi- 
nates the need to type in the facts that Patients are People 
and also are RecipientsOfService; it incidentally defines a 
weak but intriguing new analogy, namely “medicine as ed- 
ucation.” 

3We’re willing to admit that the program might understand “the 
result was,” but will not grant that it understands the meaning of 
‘:HaS.” There are dozens of things that the average five year old 
child knows about “having a symptom” and “having a disease” that 
no current medical expert system knows. See McCarthy (1983) 
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Now the expert manually adds two more slots to the 
Patients frame, representing the facts that the service be- 
ing received is medical care and that, by definition, some- 
thing is wrong with the health of the typical patient. All 
these related concepts-People, RecipientsOfService, typi- 

calmember, MedCare, health, NecessaryDefiningSlots-are 
concepts CYC knows. That is, they are the names of 
frames it already has in its KB. They in turn participate in 
relations with many other frames representing sets (Doc- 
tors, Symptoms), attributes (mentalHealth, physicalHealth), 

and scripts (Providingservice). 
The expert makes most of these connections by point- 

ing to related frames, as s/he navigates through “knowl- 
edge space.” This navigation can be implemented simply 
by a Zoglike network of menus or less simply by using 
three-dimensional graphics, joysticks, helmets, and even 
less simply by employing artificial personae as guides. At 
present, we are using an Inspectorlike (Interlisp Reference 
Manual, 1983) frame editor to display each frame in detail, 
plus a Grapherlike network of “mouse-buttonable” nodes 
showing only a few kinds of links among them at any one 
time. Buttoning a node causes it to be Inspected (and 
thereby made editable). Figure 1 is a snapshot of two of 
the windows on the screen while the Patients frame is being 
entered. Near the top is the Inspector’s display of what’s 
known about Patients; below that is the Grapher’s dis- 
play of some LLnearby” nodes that the enterer can browse 
through and copy. 

The difference in the two dialogues-without CYC 
and with it -is that CYC doesn’t let the expert get 
away with ambiguity and jargon, or with new terms 
it doesn’t understand. It continues to ask about all 
the various unknown terms and variable names, forc- 
ing the expert to describe and explain them, until s/he 
finally is using only terms that CYC already under- 
stands (such as Goal, Querying, BodyPart, LogicalDeduc- 
tion, Remove, Weapons, Symptoms, HasAsAPossession, 
HasAsAnAttribute, or Transporting). 

This seems to make a fair amount of extra work for 
the knowledge base builder. We have claimed that it more 
than compensates for :,his. To see how this is so, we need 
to peek at some of what CYC knows (see Figure 2). 

Our point is to show that CYC can use the above 
knowledge to automatically compute many of the Unless 
conditions for our rule, conditions we would otherwise have 
to get by introspection or hard experience. In other words, 
these Unless conditions are implicit in the knowledge base, 
specifically in the constraints slots of certain frames. How 
does CYC locate this relevant knowledge and transform it 
into explicit Unless conditions? 

We simply ask CYC for values of the allWaysltFails slot 
of AskedInInterview. This is typical of the way in which 
computation is initiated in CYC: calling for the value of 
a particular slot of a particular frame. Even a complex 
task, such as proving a difficult theorem, would be initially 
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posed in this way, calling for the proof slot of the Theo- 
rem87 frame. An important “rule of operation” in our sys- 
tem is not to give up just because a primitive access (such 
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as (GETPROP ‘Theorem87 ‘proof)) fails; rather, the rule* (NOT (CanUnderstand dr patient 

says to examine the definition of the slot involved (proof) (Remembering patient query))) 

to see if there is some way of calculating its current value. (NOT (Desires patient(Communicating patient dr 

If so, that procedure is applied to the frame (Theorem87). (Remembering patient query)))) 

So calling for a slot of a frame can start a cascade of ad- (NOT (Accurate (Remembering patient query))) 

ditional processing, which might take minutes (or longer!) (NOT (Accurate (Remembering dr 

to terminate. This is one reason why our language enables (Remembering patient query)))) ) 

extra arguments to the Get function: to implicitly or ex- 
plicitly restrict and guide the computational resources that 

In English, here is the meaning of those expressions, 

should be brought to bear before giving up. 
the Unless conditions CYC would propose: 

In the current case; CYC looks at the AskedInInter- 
view frame and sees that there’s no slot there labelled ali- 
WaysltFails, at the moment, there’s no slot at all on that 
frame, except a basicKindOf slot that points to Querying- 
this is the fact that the user told CYC in the above dia- 
logue, in response to the question about what AskedInIn- 
terview was an instance of. CYC doesn’t give up at this 

The patient didn’t understand the doctor’s 
question; 

The doctor didn’t really want to ask the pa- 
tient the true question; 

The doctor misunderstood the patient’s reply; 
point; it uses the “rule of operation” we discussed above 
and consults the defn slot of the frame called allWaysIt- 
Fails. There it finds that it can compute the desired value 
by combining the (values of the) waysltFails slots of all the 
specific subactions that come together to form the fullAc- 
tion, or script, for AskedInInterview. The frame for fullAc- 

tion specifies how it can be inherited and pieced together 
from the various generalizations of a frame: one appends 
their action slots after doing the appropriately composed 
variable substitutions (as specified in the actors slots along 
the way). In the present case, the search will assemble to- 
gether pieces of action from AskedInInterview, Querying, 
2WayCommunicating, Communicating, Remembering, In- 
forming, and on up to even more general frames not shown 
above (MentalProcessing, Processing, Anything). 

After assembling this large fullAction script for Aske- 
dInInterview, CYC finds that none of these frames has a 
waysltFails slot! But instead of giving up, our “rule of op- 
eration” comes into play again. CYC consults the defn 

slot of the frame in the system called WaysltFails There 
it finds it can compute such values by negating the value 
of the constraints slot for each of those frames. Some of 
them, namely Communicating and Remembering, do have 
nonempty constraints slots listed. Others don’t, and CYC 
consults the constraints frame to see if it has a defn from 
which constraints can be computed; since there is none, 
it quits at this point. The value returned is therefore the 
union of the negations of the constraints it did find: 

((NOT (CanUnderstand patient dr query)) 

(NOT (Desires dr (Communicating dr patient query))) 

The patient didn’t really want to tell the doc- 
tor the true answer; 

The patient mis-remembered the answer; 

The doctor mis-remembered the significance 
of the patient’s answer. 

Actually, many more Unless conditions might turn 
up; we haven’t shown enough of the knowledge base in 
the above example to generate the compleat fullAction of 

To build CYC, we must encode all the 
world’s knowledge down to some level of 
detail: there is no way to finesse this. 

AskedInInterview. For instance, OpeningCommunications 
might have failed because the patient was deaf and never 
heard the question, and the doctor mistook silence for an 
“I don’t know” answer. Telling might have failed because 
of poor pronunciation or background noise. We used the 
archaic spelling of “cornpleat” here, because we believe 
that no objective value can ever claim to be the “full 
script” for a complicated real-world action. We could 
always delve one level deeper in each subaction. In our 
present case, that means that more and more Unless con- 
ditions could be generated, though they gradually would 
become less and less likely events. 

Some general knowledge can be used to prune as well 
as generate Unless clauses. Since patients are the Recip- 
ientsOfService from doctors, the second Unless clause in 
the above list can be reasoned to be unlikely (the one that 
said the doctor might have intentionally misled the pa- 
tient). 

This incremental style of reasoning is somewhat differ- 
ent from the normal von Neumann model. CYC returns 
an answer and begins using it, but meanwhile continues 

4This is not implemented as an If/Then rule in CYC Rather, it is a 
function stored “in the proper place,” namely, in the toGet slots of 
frames describing each kind of slot that follows this rule of operation 
(such as proof). In most cases, this value itself would be inherited 
from a much more general frame (e .g, ComputableSlots) Finally, 
even there the function would just be a superfluous caching of a 
more declaratively specified piece of information stored in a frame 
describing a problem-solving method 

. 
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looking for more accurate answers, which can thus ap- 
pear at much later times. CYC must explicitly manage its 
processing resources, deciding when and how to allocate 
background processes to carry on-and terminate-such 
“incubation” searches. This use of concurrent processes is 
analogous to pipelining: The later values are only rarely 
so much at odds with the quickly-found ones that a back- 
track is required. Techniques of nonmonotonic reasoning 
can be brought to bear on maintaining dependencies, so 
as to preserve as much as possible when a contradictory 
later value does arrive. 

This is the kind of thinking that makes doctors robust 
problem solvers compared to current expert systems. The 
stream of Unless possibilities can be mechanically gener- 
ated by the program because it has tied previously isolated 
terms, such as AskedInInterview, into a global knowledge 
base of general real world information. General knowl- 
edge about human communications and human memory 
were thereby brought to bear on the problem. 

Building the CYC System 

This project is based on a series of assumptions and hy- 
potheses that we enumerate below. They have led to a 
methodology, a set of tactics for carrying out the project, 
which we discuss following the listed assumptions. 

Underlying Assumptions 

Assumption: To build CYC, we must encode all the 
world’s knowledge down to some level of detazl; there is no 
way to finesse this. Fifteenth century explorers couldn’t 
discover new lands without long voyages. The breadth of 
our task may sound staggering, but consider that a one- 
volume desk encyclopedia spans that same magnitude of 
information. 

Assumption: We are not talking about assemblzng a 
large textual data base of facts; entries in the knowledge 
base are so heavily interrelated that they are nothzng more 
than their set of interconnectzons. Also, much of that 
knowledge is knowledge of how to do things, ranging from 
cached efficient algorithms to high-level descriptive scripts. 
Entering knowledge into CYC means that we must repre- 
sent the knowledge in such a form that the program can 
find and use it when appropriate. For this reason, simply 
having an online version of an encyclopedia would be of 
little use, as there is practically nothing that current AI 
technology could draw from the raw text. Rather, we must 
carefully re-represent the encyclopedia’s knowledge ~ by 
hand-into some more structured form. 

Assumptzon: AI has for many years understood 
enough about representatzon and inference to tackle this 
project, but no one has sat down and done it. It is at once 
an extremely humble and an extremely brash hypothesis. 
To take the edge of humility off it, we remark that only 

by pulling together the latest human interface tools, Lisp 
machines, ideas of enforced semantics, and funding for a 
decade-long effort could we attempt a project of this scale. 
To take the edge of brashness off the hypothesis, we re- 
mark that we may fail in some ways (e.g., our current ideas 
about how to reason by analogy may not %cale up”), but 
we expect that in the process we will learn some powerful 
new lessons about building large intelligent programs. 

Assumptaon: Common sense knowledge is just the 
knowledge (facts, procedures, representations, heurtstics) 
we employ most frequently. Therefore it includes special- 
ized knowledge about human-sized and human-velocitied 
objects moving in space and time, human artifacts moving 
in space and time and doing their job, and humans inter- 
acting-and developing-socially, culturally, politically, 
militarily, economically, scientifically, etc. 

Assumption: As the first few hundred most mutually 
distinct types of articles are encoded, we will encounter a 
typzcal representative of each fact that wall ultimately be a 
part of the finished CYC knowledge base. After those ar- 
ticles are entered, simple Copy&Edit will be an adequate, 
cost-efficient method to add the final 99 percent. 

Assumption: Most of the common sense will also 
emerge durang our coding of the jirst few hundred mutu- 
ally distinct articles. When a knowledge enterer gets to 
“Panthers,” there will be little or no common sense re- 
quired to understand the article that wasn’t already re- 
quired for “Lions” (or some other representative article, 
such as “Guerillas” ). 

Assumptaon: The sentences in encyclopedia articles 
provzde enough structure and context to enable the extrac- 
tzon of their underlying common sense. Introspection cur- 
rently serves us as an adequate tool for extracting the 
common sense knowledge, so long as we work sentence 
by sentence. As the KB grows, the existing framework 
of common sense knowledge should facilitate this proces’s. 
The system’s hierarchy of problem-solving methods should 
eventually help, as well. 

Assumption: Similarly, there needs to be little time 
spent agonizing over the ambzguities and contradzctions in 
the sentences. Introspection (plus the growing KB itself, 
especially its methods) will work instantaneously most of 
the time, and whatever uncertainties and disagreements 
remain can be explicitly represented in CYC. 

Our plan is to carefully represent approxi- 
mately 400 articles from a one-volume desk 
encyclopedia. 

Assumption: Parallelism is not a panacea. It is an 
alternative: usually not a good one; to knowledge directed 
(best first) search. A small amount of parallelism is proba- 
bly usable, and even a highly parallel machine architecture 
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is not antithetical to our system: allotting each frame, or 
even each slot of each frame, its own processor; allowing 
small sets of frames to LLcaucus” in private areas. Never- 
theless, we are not actively pursuing any of this research at 
the present time. When time becomes a factor, when the 
system runs too slowly to be useful, and knowledge-based 
guidance (heuristic rules and metarules) fails to correct the 
problem, we will turn to parallelism. Hopefully, by that 
time, AI will have learned enough about its use that we’ll 
be glad we waited. 

Assumption: One potentaal problem is coordinatang a 
large team of knowledge enterers, so that they employ a 
shared semantics (e.g., for the meanong of each kind of 
slot); we believe this problem can be managed by enforced 
semantics. Implicitly, this occurs as people copy exist- 
ing structures rather than try to come up with ways to 
organize things on their own. Explicitly, we have our lan- 
guage state the semantic constraints. For example, every 
rule’s ifMaybeRelevant slot is supposed to be faster than 
and logically implied by its iffrulyRelevant slot. This can 
be checked dynamically, and if someone is misusing those 
slots then the “proper” use can be explained to them. An- 
other semantic constraint is that each example of a frame 
must satisfy the frame’s definitzon. A third such constraint 
is that a frame’s definition must be implied by the defini- 
tion of every entry listed on the frame’s generalizations slot. 

Hundreds, eventually thousands, of such explicit semantic 
constraints work together, much as rules in an expert sys- 
tem, to advise the knowledge enterer when and how he 
or she is misusing the commonly accepted meaning of the 
various slots. Knowledge about the slots is a full-fledged 
part of CYC’s knowledge base, hence they are organized 
and interrelated in dozens of ways. This not only enables 
explicitly enforced semantics but also enables the knowl- 
edge enterers to quickly locate the “right” slot to use (or 
to see that it doesn’t exist and needs to be defined). 

Assumption: Another potential problem is the increas- 
ing dificulty of finding the right existing frame to point to 
(or type in the name of) as one is entering a new piece 
of knowledge; we believe that this will require some hu- 
man interface innovation, but not turn out to be insolv- 
able. We expect that most of the knowledge entry will be 
done by helicoptering around “knowledge space,” point- 
ing at objects and substructures to be tied together. Al- 
though this is just a graphical extention of current-day 
text-based copy&edit, we have already found text editing 
and conventional graph-editing tools, insufficient for eas- 
ily extending the growing CYC knowledge base. We are 
adding raw graphics power (an IRIS interface, a helmet- 
mounted display, and orientation-sensitive Palhemus sen- 
sors for fingers), but that alone may not suffice to keep 
humans oriented as the knowledge space keeps growing. 
We expect that some human engineering of the interface, 
however, will keep this problem tractable. We are consid- 
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ering: always displaying certain parts of the neighborhood 
of the “current” frame; maintaining menus of recently vis- 
ited or frequently useful landmark views; using heuristics 
to choose what to display, and where; shifting to other 
metaphors besides piloting, such as mapping frames as 
rooms, slots as objects in the room, editing as redecorating, 
frame creation as building; and having fictional personae 
act as guides, advisers, and agents. 

Assumptzon: Once built, the CYC system could form 
a common language or foundation upon (within) which fu- 
ture AI programs could be written. Even if we don’t get 
the representation to suit everyone (a Pareto triviality), 
each researcher and engineer may still judge that it’s cost 
effective to build within the CYC framework because of 
the already large (and thus, in a sense, large enough) 
knowledge base that will exist there. This is a positively- 
reinforcing critical mass assumption. CYC is not being 
built to demonstrate new AI theory; it is conceived by us 
as a beneficial juggernaut, but a juggernaut just the same: 
its size and breadth and usefulness serving as irresistible 
lures to its use, and those uses serving in turn to enhance 
CYC’s size and breadth and usefulness. 

Methodology 
Our plan is to carefully represent approximately 400 ar- 
ticles (about 1000 paragraphs worth of material) from a 
one-volume desk encyclopedia. These are chosen to span 
the encyclopedia and to be as mutually distinct types of ar- 
ticles as possible. We will then bring on board a large num- 
ber of knowledge enterers to add the final part (the last 
99 percent-about 30,000 articles) by using copy&edit. 

Phase I: For each of the 400 mutually distinct arti- 
cles, we go through the following loop. 

Represent the stated information in our represen- 
tation language. During this step we must disam- 
biguate what the writer actually meant. Also, we 
may need to expand our language to handle the 
new information to be represented, though this 
should be less and less frequent each time we re- 
peat the loop. 

Move each frame/slot/value “fact,” up to the most 
general frame for which it’s valid. If that frame 
isn’t already in the system, create it now. 
For each fact F, write down the additional facts 
about the world that are needed to understand 
F These are common sense facts that the writer 
of the article presumed the reader already knew. 
Now repeat steps 2 and 3 on this new set of facts. 
This step may entail creating new frames. The 
careful reader will notice that it might also lead 
to an infinite regress, as each common sense fact 
gets “explained” by a set of new common sense 
facts. In practice, this regress ends rather fast, 
“bottoming out” in primitive facts about human 
motivation and economics and everyday physics. 



4. For each adjacent pair of sentences in the article, 
write down-and encode into our language-the 
additional facts about the world that are needed 
to understand what transpired “between” the two 
sentences. Now repeat steps 2 and 3 on this 
new set of facts, which may entail creating new 
frames. 

5. Throughout the above four steps, collect a set of 
questions that ought to be answerable and prob- 
lems that ought to be solvable, based on having 
read the article (plus “common sense”). If CYC 
errs on one of them, that points out a lack of either 
some common sense fact or some general reasoning 
method. In either case, add it. Occasionally, go 
back to articles encoded earlier, and ensure that 
their set of common sense problems and questions 
still get answered correctly. 

Phase II: After the initial 400 articles are encoded 
and the representation language settles down, we converge 
on the KB. 

1. Employ a large cadre of (10-50) knowledge enter- 
ers to encode the final 99 percent of the knowl- 
edge base. Each enterer will take an article, lo- 
cate the already-represented similar article(s), and 
perform a machine-assisted “copy & edit” proce- 
dure to produce a machine-understandable ver- 
sion of the new article. For example, to enter 
the knowledge about Britannia-Metal, the enterer 
would copy the closest existing article already rep- 
resented, say Pewter, and then edit that struc- 
ture to reflect the differences between the two al- 
loys This is the analogue of the source of power 
tapped by the TI NLMenu (Ross? 1981) system: 
giving users choices rather than having them type 
in things “from scratch ” It is one way of implic- 
it’ly enforcing a common semantics. 

2 As this long phase proceeds (1988-93), test out the 
system by hooking it to-or, more likely, build- 
ing within it -various particular AI programs: 
expert systems, natural language understanders, 
and problem solvers During this period we will 
examine other sources of knowledge (such as chil- 
drens’ stories, Tell Me Why books, newspapers, 
fictional short stories), and will hopefully enter a 
sample of each type. 

3. Systematzc entry of that level of knowledge is be- 
yond the ten-year scope of this project and could 
occur during the mid- and late- 1990s if the 
project is a success. That would also be the time 
when many expert systems could “hook in,” and 
during which the CYC knowledge base would be 
adapted into products: knowledge utilities akin to 
electric utilities, advanced entertainment and art 
tools, the next generation of CA1 systems, and so 
on. As more and more expert knowledge is access- 
able to (processable by) CYC, it should be able to 
exploit analogy more and more effectively for ac- 
quisition and for problem solving 

An Example of the CYC Methodology 
We have looked at scores of articles in several ency- 

clopedias by now, but here is the first article we looked at 
and to which we applied our methodology. 

coke, hard, gray, porous fuel substance with a 
high carbon content. It is the residue left when 
bituminous coal is heated in the absence of air. 
Coke is used in extracting metals from ores in the 
blast furnace 

-Concise Columbia Encyclopedza, 1983, p. 180 

Almost any article could have been used as the ini- 
tial article, as it was bound to be a representative of some 
class of articles. Analyses of articles, begun in Lenat et 
al (1983), provided the approximate figure of 400 for the 
number of types of articles. The intent is that two arti- 
cles are of the same type iff we could reasonably expect a 
knowledge base enterer to add the second article relatively 
easily using copy&edit from the first one. Thus, Lions and 
Tigers are of the same type, but no two of these are of 
the same type: Lions, ForwardChaining, AnimateObjects, 
Cheese, Cheesemaking. Our notion of “type” is a vague 
measure, to be sure, but we have not needed to revise it 
much even after several months of further work. 

Step 1: Encode the Explicitly Stated Factual Information. 

This resulted in the following frame being created and 
filled in. (See Figure 3.) 

I 
_______ - ____________- - - _ _ ____- 

Coke 
basicKindOf: SolidIl\clSubsta~\nccs 
color: Gray 
ingrcdienls: (# . - (C 1 Au xm wlr2b1mda11ce High)) 

hwdness: High 
porosity: High 
uscdA.sZnput To: Swdting 
creafedrlsllesid~~eln: Coking 
m@ealor: Shepherd 
myC~renlionl)ate: “2-I%-85 357: 10’: 

Figure 3. 

The value stored in the ingredients slot says that 
one of the ingredients of Coke is Carbon and, more- 
over, that coke is mostly carbon. We subsequently found 
out more about coke’s composition, and developed a vo- 
cabulary of connectives that let us describe most mix- 
tures: InDecreasingAbundance, InIncreasingAbundance, 
InNoParticularOrder, Absolute%, InApproximatelyEqual- 
Amounts. Using these connectives, we could concisely ex- 
press the fact that coke is 98 percent carbon, and the re- 
maining 2 percent is mostly metals, with small amounts 
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______________._________________________-------------------.-.-- 

Coking 
efemefltl)l: ChcJJJicalI’roccsscs Iudustriall’roce.~es 
inputu: B3itunIil~ollsCoal 
operators: Heating 
residues: Coke 
constraints: (now.+prcscnt air) 

(grcnfer-thau temperature? 550) 
action: apply operators t.0 inputs under constraints 

Smelting 
elementOf: ChcJJlicalProcrssrs Indust.riall’roccsscs 
inputs: MctdOrc Coke 
operntors: Kxting 
residues: Metal 

focus: I3lastl~J‘unlace.r 
action: apply operators to inputs under constraints 
applicntion~~~rocess: ItcductioJJOfPvfctalOxitlc 

Figure 4. 

of organic compounds and other miscellaneous trace ele- 
ments. We put off the phrase about “heating bituminous 
coal in the absence of air” into a separate, named frame, 
namely the one for the process called Coking. We similarly 
separated and identified the extraction of metals from ores 
in a blast furnace as the process called Smelting. We then 
sketched in those two frames as shown in Figure 4. 

By now we had dozens of additional frames to add, 
namely one for each kind of slot (e.g., “applicationOfPro- 

cess, ” “hardness”) and one for each concept named inside 
a value so far (e.g., “Heating,” “BituminousCoal”). 

While trying to answer questions (step 5) using the 
hardness and porosity slots, we noted that they are relative 
attributes: Coke is hard compared to coal, say, but not 
compared to diamonds or steel. Coke is relatively hard, 
compared with (most) other solid fuel substances. At this 
stage, we replaced hardness and porosity by two new kinds 
of slots, relHardness and relporosity, whose values used the 
# notation to capture the notion that it is SolidFuelSub- 
stances with respect to which Coke is hard and porous. 
This later got subsumed by the relativeMagnitude slot. The 
Coke frame now looked like Figure 5. 

Step 2: Move Information to More General Frames. 

In this subsection, we list three criteria for deciding that 
a piece of information might merit being moved from its 
current position to one on a more general frame. Then, 
we show examples of when and how we did this for Coke 
(and related frames). 

The most obvious signal is when information appears 
to be duplicated time after time, frame after frame. Even 
in the few snippets of frames we’ve listed in the section 

above, there are duplications (e.g., the action slot of both 
Coking and Smelting). These are clear signals that some- 
thing more general is going on here. 

A second signal of this kind is the use of deep con- 
structs. In the ingredients slot of Coke, the deepest en- 
try (namely, that traces of miscellaneous elements exist 
in the mixture) is probably true for a large collection of 
mixtures used in the real world. Perhaps it ought to be 
a default ingredient for Mixtures; i.e., if you (or CYC) 
had to guess, those trace impurities are probably present 
in most mixt,ures, or else it would be worth noting that 
exception explicitly. 

The third signal that some information ought to get in- 
herited from somewhere (i.e., ought to now be moved from 
its present position to a more general frame) is that the 
English language version of the fact is much terser than its 
current encoding. For instance, saying that “Coke is hard 
and porous” took up a large fraction of the symbols used in 
encoding the Coke frame at one time, namely the two huge 
slots relHardness and relporosity which explicitly recorded 
the fact that coke’s hardness and porosity are high relative 
to the set of solid fuel substances. Almost all of that went 
away when we switched to the relativeMagnitude slot. 

The same kind of generalizing is done for each piece of 
knowledge that is signaled to be moved. For instance, in 
the Smelting frame, the action slot is fully inherited from 
ChemicalProcesses; most of what we initially entered for 
that frame eventually was moved farther on up to Pro- 
cesses. The values of Smelting’s operators and residues 
slots are fully inherited from ReductionOfMetalOxide, as 
is one of the values of its elementof slot. Thus the Smelting 
frame now is shortened to: 
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Smelting 
elementof: IndustrialProcesses 
inputs: MetalOre Coke 
locus: BlastFurnaces 
applrcationOfProcess: ReductionOfMetalOxide 

This activity of generalization and abstraction not 
only reduces the redundancy of the knowledge base, but it 
also drives the conceptualization-the defining and nam- 
ing-of new, general concepts such as RelativeProperty- 
Slots and SolidFuelSubstances. It is at this intermediate 
level of generality that we expect convergence and power, 

as CYC develops, more than down at the level of particular 
specific facts such as those about Smelting. Intermediate 
level concepts exist when, and only when, we have some 
useful specific information about them. Useless generaliza- 
tions like “GrayFuelSubstancesInAustria” will thus never 
be created. 

As another illustration of this process, consider the 
frame describing irrigation (Figure 6). This began with 
a large script in its action slot, describing how irriga- 
tion was done. We then moved more and more informa- 
tion to increasingly general concepts: WaterConducting, 
FluidConducting, Conducting, Transporting, and so on. 
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Indeed, almost all the Irrigating information was moved 
all the way up to Transporting; a little was left behind 
along the way (e.g., the frame WaterConducting retains 
the knowledge that the transportee is water). The Irrigat- 
ing frame now only needs to remark on the restricted set 
of transport vehicles (pipes and ditches) and the restricted 
set of energy sources used (pumps gravity capillary ac- 
tion). Once this general knowledge of transportation pro- 
cesses was codified, adding the frames for the concepts of 
the rain cycle (i.e., EarthWaterEvaporating, RainClouds- 
Forming&Moving, and Raining) went quickly because each 
of them is an instance of Transporting, having its own par- 

titular values for destination and departure points, energy 
source, and a few other slots. 

Step 3: Extract and Encode the Implied (Common Sense) 
Knowledge. 

At this stage, after representing the factual information 
from the Coke article, we inspected each sentence, extract- 
ing from it the common sense knowledge of the world that 
its writer assumed its reader would know. Examining the 
Coke article, we noticed these unstated facts: 

l Each kind of fuel is a mass noun; i.e., there isn’t 
just one piece of coke in the world; if you split 
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one in half, each half is a full-fledged piece of 
coke. 
Hardness and porosity are negatively correlated; 
both are uncorrelated with color; all three are 
form (appearance) properties of physical ob- 
jects. 
Co-occurrences of negatively correlated proper- 
ties are worth noting; they help define a concept 
(or at least help distinguish it from others). 
Fuels have widely varying color, solidity, and 
other physical attributes. 
Real world objects have both form (physical at- 
tributes) and function, and both of these kinds 
of properties are assumed to be relatively con- 
stant over time, place, and from one individual 
(piece of coke) to another. 
“Fuels” is a class of substances grouped together 
because of similarities in function, not form. 
They store energy from one source so it can be 
released at a different time, place, and/or rate 
that enables some subsequent process to take 
place. Typically, the fuel is consumed at that 
time. 
Most processes, including heating, generally 
start at a certain time and stop at a later time. 
The duration is rarely random: it’s either fixed 
or lasts until some condition is met (typically, 
this condition is: the goal of the process is ei- 
ther achieved or irrevocably failed) or noticed 
by a monitoring process. 
After a process runs, residues may be left-usu- 
ally deposited where the original inputs to the 
process were located. While a process is run- 
ning, dynamic outputs are generated, usually at 
that same locus. 
Industrial processes are run either for their dy- 
namic effect, or because their outputs (including 
residues) are more valuable than their inputs. 
A substance is valuable if it’s used in a process 
that is highly valuable (e.g., producing an even 
more valuable end product). 
Often, substances are needed in purer states 
than those in which they naturally occur (or ini- 
tially get produced). 

Besides this, the article presumed that the reader was 
already acquainted with (or would now look up an article 
on) various items: carbon, coal, hardness, porosity, gray- 
ness, residues, heating, absence, air, extracting, metals, 
ores, and blast furnaces. 

As we began to collect common sense knowledge, two 
things surprised us. 

First, common sense knowledge often involves an un- 
derstanding of economics and, more generally, human mo- 
tivation and values. For instance, the article doesn’t say 
why we’d bother to produce coke out of coal, and metal 
out of ore and coke. It assumes the reader understands 

that such processes must be economically viable, hence 
the end products must be much more valuable than the 
inputs. Whenever such processes are or were used, there 
was probably no known alternative method that produces 
those same end products more cost effectively (where, per- 
haps, other “costs” than ergs are involved: threat to life 
and limb, pollution, need to centralize rather than dis- 
tribute’ the loci, and uncertainty of success despite a high 
expected return on investment). 

The second surprising thing is that most of the un- 
stated knowledge is declarative-not procedural-infor- 
mation about other concepts. In other words, the common 
sense you need to understand $X is often just the explic- 
itly stated form and function knowledge about concepts 
mentioned in the various values of slots of $X (notably in 
$X’s basicKindOf and other types of generalization slots). 
For instance, much common Sense knowledge about Coke 
turned out to be factual knowledge about Fuels; much of 
the the common sense knowledge required to understand 
Fuels turned out io be the factual knowledge about even 
more general concepts: physical objects, energy, and eco- 
nomics. 

Step 4: Extract and Encode the Intersentential Knowledge. 

Another surprise occurred when we entered Step 4 of 
our loop, looking for the unstated knowledge that let the 
reader cross the gap from one sentence to the next. In 
most short articles, there was almost no such knowledge re- 
quired! The articles were simply a stream of facts, loosely 
clumped into sentences. For instance, in the Coke arti- 
cle, the three sentences could come in any order, with no 
degradation in the article’s content or comprehensibility. 
Only in the long articles (several paragraphs in length) 
and in historic accounts of a person or region did we find 
such iimissing link” common sense knowledge. In the lat- 
ter case, typically what’s going on “between” sentences is 
that various actors in the scenario are reacting to what 
just happened (matching their perceptions to their own 
goals and then deciding what to do next). For instance: 
“Atomic bombs were dropped on Hiroshima and Nagasaki. 
Japan surrendered.” 

We have found that compilations of goals into hierar- 
chies of scripts similar to MOPS (Kolodner, 1980) handles 
both the shallow, fast inferences, and-when needed-the 
reasoning from deeper and deeper knowledge. Coke does 
not provide a good example of this; instead, consider these 
sentences (brought to our attention by John McCarthy): 
“Napoleon died on St. Helena. Wellington was saddened.” 
The intersentential knowledge includes: Wellington out- 
lived Napoleon. Wellington heard of Napoleon’s death. 
These two facts follow from more general knowledge: 

l People react to an event iff they’re conscious of 
it and have an interest in some features of it. 

l To be conscious of an event, a person must be 
alive and witness or hear of the event. 
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l People can’t be in two places at once. 
0 People live for a single continuous interval of 

time. 

Since the writer of the two sentences didn’t explicitly 
state that Wellington heard of Napoleon’s death, he must 
have considered it to be obvious that such would have 
been the case. What is the knowledge used to make it 
unsurprising to a human reader? Below are some of the 
necessary facts: 

The ‘Ldoings” of famous people are widely pub- 
licized. 
“Doings” include births, deaths, weddings, di- 
vorces, victories, defeats,. . . 
Such doings are even more likely to be known by 
other important contemporaries (in intercom- 
municating cultures). 
Such doings are even more likely to be known by 
“interested parties,” those who have some close 
relationship to the famous person. 
“Close relationships” of this kind include fam- 
ily members, allies (coworkers, team members), 
enemies (rivals, victims), and so on. 
Wellington and Napoleon were not only impor- 
tant contemporaries, but also bitter enemies. 
European countries have had regular communi- 
cations passing among them for centuries. 

A slightly deeper analysis rests on the fact that there 
was an initial wztnessing event (in which one or more peo- 
ple saw Napoleon die or saw direct evidence of it, such 
as his corpse); following this, there was a chain of com- 
municating events, wherein each person told the next one; 
finally, that chain stretched to Wellington. It is likely that 
one or more links in the chain were not strictly verbal, but 
involved the written reporting of the event in newspapers 
or letters and the subsequent reading of that story by the 
next person in the chain. This explains the possibility, 
but not the likelihood of Wellington hearing the news; If it 
had been Napoleon’s barber who died on St. Helena that 
day, we wouldn’t expect Wellington to have heard of that 
event. In other words, why is it true that “the doings of 
famous people are widely publicized, especially to other 
important, involved contemporaries?” 

The witnessing event needs no further justification- 
perception of other people is more or less “turned on” 
for human beings all the time. But why would the chain 
of communicating events take place? Why is it likely that 
that spreading activation network touched Wellington? To 
answer that, we had to dig deeper into human motivation. 

Clearly the people in the chain were satisfying some 
goals or subgoals of their own by passing the news along. 
Mostly, this appears to be curiosity (on the part of the lis- 
teners) and self-aggrandizement (on the part of the speak- 
ers). Wellington’s close relationship with Napoleon would 
have made him even more eager to hear of the news, and 
Wellington’s high position in England promised yet higher 

rewards for whoever should bring it to him, so someone 
may even have gone out of their way to have been the first 
to tell Wellington. 

We went one step deeper, analyzing why people are cu- 
rious, why they try to make themselves seem important, 
etc. This entailed organizing (and entering into our sys- 
tem) a top-level tree of human goals. Incomplete and naive 
as it is, it has proven useful for explaining several inter- 
sentential gaps so far. The top (general) level of this tree 
ended up to be species preservation and self preservation 
and emotional well-being. Below that are self improve- 
ment , self aggrandizement, group (esp. family) preserva- 
tion and improvement, sating desires, and avoiding unhap- 
piness (“dreads”). Beneath that (as subgoals) come curios- 
ity, ecstasy (including physical pleasure, and vengeance), 
love (including friendship, family ties, and romantic love), 
and planning (to decrease the future costs of satisfying 
goals). Mental dreads include unavenged wrongs, fear it- 
self (!), mental inadequacy (inability to meet a goal), and 
increasing dependency (such as drug addiction). Phys- 
ical dreads include death (and-less extreme -wasting 
of time), pain, and physical inadequacy. Pain included 
the absence of a needed resource, hence included thirst, 
suffocation, starvation, and addiction withdrawal. There 
were some independent partitionings of motivation-space 
as well, such as conscious vs. instinctual, physical vs. men- 
tal, short vs. long term, individual versus communal, and 
so on. These became the names of slots that each kind of 
motivation frame possesses. 

The point here is that several levels of knowledge are 
present in and can be used by CYC. Most of the time, 
it’s not necessary to delve below the superficial knowl- 
edge we use every day (“famous people know the doings 
of other famous people”). Sometimes, when the superfi- 
cial knowledge fails to explain the current situation, CYC 
must draw upon deeper knowledge, ultimately reaching 
down to physics and human motivation. See Bledsoe 
(1985). Whenever one level of depth of knowledge fails, 
the program can-albeitly more slowly-reason at the 
next deeper level of knowledge. This is very much in the 
spirit of the whole CYC effort. 

Feasibility and Milestones of the CYC Project 

The previous section illustrated qualitatively, by ex- 
ample, how it is that our effort will be conducted. This 
section provides a set of milestones and asymptotic goals 
for the project and, in the process, partially quantifies the 
effort involved. 

1. Asymptotic Goal: A documented, debugged represen- 
tation language, adequate for representing the spectrum 
of material contained in-and assumed by-the encyclo- 
pedia. The way to measure performance for this will be 
to monitor how often the language needs to be augmented 
as new articles are encoded. In other words, how often is 
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the representation language the bottleneck in adding new 
knowledge into the system? If we fail to asymptotically 
approach this sort of closure, that would signal the need 
for a fundamental redesign of the language, perhaps aban- 
doning the goal of enforced simplicity and naturalness in 
representation in favor of a simpler, fixed language within 
which we’d put up with somewhat awkward statements of 
some kinds of knowledge. 

2. Milestone: An interface suitable for browsing and edit- 
ing CYC’s knowledge base. The measure of performance 
is to be able to locate and enter knowledge faster using 
this interface than with current text-based screen editors, 
such as the Grapher and Inspector packages of Interlisp-D 
(Inter-lisp Reference Manual, 1983). Our initial design in- 
volves viewing the KB as a semantic net, employing three 
dimensional graphics to display it, and developing naviga- 
tional aids of various sorts. The point of (1) and (2) is 
that the bottleneck to building CYC should not be orient- 
ing oneself in knowledge space nor using this editor to find 
and change the knowledge base. We want (so to speak) 
the bottleneck to be in deciding what the knowledge is 
that ought to be entered, not in the entry process itself. 
That’s why the language and the interface to it are being 
stressed early on; they are “power tools” for knowledge en- 
try. If we fail, the existing graphics metaphors may have 
to be expanded, extended, or replaced; additional types 
of displays and interfaces may be experimented with; the 
text-based editors may be improved enough to eliminate 
the need for the graphics interface; automated personae 
may be simulated to act as agents and guides. 

3. Asymptotic Goal: Have the CYC system find and use 
analogies: (a) analogy useful in entering new knowledge, 
(b) analogy interesting in its own right to human beings; 
(c) analogy capable of coping with some situation that 
would “break” an expert system. The measure of progress 
toward this goal is how often and how usefully our knowl- 
edge enterers exploit analogies while they add new knowl- 
edge; to hook performance programs up to our system and 
track how often analogy (rather than just general knowl- 
edge) gets them out of binds; and so on. If we fail to 
have CYC exhibit any of these three uses of analogy, that 
would force us to rethink our ideas of how analogizing gets 
done. We would look more carefully at real cases of prob- 
lem solving and knowledge acquisition by analogy and try 
to reformulate algorithms for those processes. There are 
several alternative diagnoses we may consider: Analogy 
may not be as useful as we currently believe (this would 
actually reduce the need to have a broad base of specific 
knowledge); analogy is important and ubiquitous, but re- 
quires better interfacing tools to exploit; or more detailed 
cross-indexing of knowledge (more kinds of slots for our 
frames) must be added. 

4. Milestone: One important milestone is to have repre- 
sented some pieces of each type of knowledge we intend to 
represent in the coming decade. This excludes perceptual 
knowledge (e.g., visual scenes), but includes almost all en- 
cyclopedic knowledge and the common sense underlying it. 
The measure of performance is that one example of each 
type of article is represented within CYC. As discussed 
earlier, there are about 400 distinct kinds of articles. We 
expect our system to contain about 10,000 frames at that 
time, about half of which will be very general (common 
sense) concepts. Unlike the other milestones, there is no 
good alternative for failure here. We could restrict the do- 
main of knowledge over which CYC will have some grasp 
(e.g., only knowledge about static, concrete, real-world ob- 
jects), but it is hard to envision any such restriction that 
would not defeat the whole point of-and expected sources 
of power of-the CYC program. If this milestone is not 
within reach after a few years of work, it will be time to 
rethink the entire project. 

5. Asymptotic Goal: Represent most of the common sense 
knowledge underlying the encyclopedia. This will of course 
not end until the entire encyclopedia is finished (milestone 
7), and even then each piece of common sense knowledge 
might be further broken down (rationalized) in terms of 
others, and so on. Each deeper level explains the outlying 
cases, the exceptions not handled by the previous, more 
shallow layer. Hence, the codification of common sense 
knowledge should be asymptotic: the first few thousand 
facts being the most important and useful ones, and so 
on. The measure of performance is the number of such 
concepts represented, and the rate at which new ones are 
needed. The average article we add now (Fall 1985) re- 
quires dozens of new common sense frames to be added; 
this rate should drop asymptotically over time; our current 
guess is that the rate will stabilize at about 0.1 new entry 
per article, after the first few thousand articles are entered. 
If we fail to converge, working by ourselves, on this entry 
process, that is an interesting finding about common sense. 
It would mean that the knowledge enterers would have to 
have and use tools for adding common sense knowledge 
themselves, as they went along adding factual knowledge 
from articles. If the rate of spawning new common sense 
concepts does not come down, not only would those tools 
be needed, but careful monitoring of the semantics of the 
common sense knowledge base would then be in order. It 
might turn out that new ways of organizing it (e.g., hook- 
ing it to a set of simulations of the world) would be needed 
to keep it from continuing to explode in size. 

6. Milestone: Utilize a large cadre of lightly trained knowl- 
edge enterers, working together on a common, consistent 
version of the system. This follows a decision point to hire 
these workers, reached after milestones l-4 have been met. 
The measure of performance for this task (cost-effective 
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utilization of the knowledge enterers) is the rate at which 
they add new concepts and the degree to which they main- 
tain a consistent semantics for that knowledge. Our first 
“knowledge entry personnel” will help us test out the var- 
ious tools we’ll be building to speed up their task. We 
also must discover what kinds of knowledge enterers we 
need. If we fail to fully utilize this group of people, we 
will vary our techniques for selecting them, training them, 
keeping them oriented, managing them, having them work 
in teams, etc. Continued failure at this could be fatal to 
the project, but two possible alternatives are: (a) devise 
an interface that lets us (a small group of AI researchers) 
enter knowledge ten or twenty times faster than we can at 
present; (b) mount a coordinated effort, distributing the 
task of building the KB to other AI research groups. 

7. Asymptotic goal: Enter “the world’s most general 
knowledge,” down to ever more detailed levels. A prelim- 
inary milestone would be to finish encoding a one-volume 
desk encyclopedia. Other sources of knowledge (such as 
childrens’ stories) will be examined, and some samples will 
be entered. Systematic entry of that level of knowledge 
might be called for eventually, if the project is a success. 
The measure of performance here is probably as simple as 
the amount already encoded, plus a check on the rate at 
which each knowledge enterer is adding knowledge. There 
are approximately 30,000 articles in a typical one-volume 
desk encyclopedia, and most of them are one paragraph 
long. For comparison, the Encyclop&dia Brittanica has 
nine times as many articles, and their mean length is about 
five times as long. A conservative estimate for the data 
enterers’ rate is one paragraph per day; this would make 
their total effort about 150 man-years. The initial 1 per- 
cent of the encyclopedia articles and the initial 50 percent 
of the common sense knowledge-the parts that we are 
doing ourselves-will be coded at a much slower rate than 
the final parts, not only because the system will eventu- 
ally help the knowledge enterers, but also because as we 
progress we are constantly exercising our representation 
language and must occasionally add new capabilities to 
it. If we fail to encode the entire encyclopedia, but come 
close, that will be fine; if we are not going to even get 
close by the end of our time horizon (roughly one decade), 
that will call for serious replanning. Perhaps we will sim- 
ply need more knowledge enterers, if milestone 6 has been 
reached successfully. Or, if milestone 8 is within sight, 
perhaps accelerating work on tying our system to a natu- 
ral language understanding program will be useful, so that 
it can “read” some of the remaining articles on its own. 
If milestone 3 is a success, accelerating the reliance upon 
analogy may rapidly get us at least a “first pass” over the 
breadth of the encyclopedia. 
8. Asymptotic Goal: As this project proceeds, test out the 
system by hooking it to various particular AI programs: 
expert systems, natural language understanders, and prob- 

lem solvers. The measure of performance for this would be 
the gain in performance in the hooked-up programs and, 
to a lesser extent, CYC itself. If we fail to boost their 
performance, we may have to wait until the CYC program 
approaches its final size, i.e., we may not have passed the 
“knee of the curve” yet. Another possibility is that these 
performance programs would have to be written within 
CYC, rather than merely being loosely hooked up to it. 

To close on a more positive note, we consider finally 
the case that we succeed in reaching these milestones and 
approaching these asymptotic goals. At that time, many 
more expert systems (and other performance programs) 
would “hook in”; meanwhile CYC would be adapted into 
products: knowledge utilities akin to electric utilities, ad- 
vanced entertainment and art tools, autonomous design- 
discovery engines, and the next generation of ICAI sys- 
tems. 
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A 
Call for Workshop Program 

Sponsored by 
The American Association 

for Artificial Intelligence 

The AAAI has supported small workshops for the last sev- 
sral years. This support includes publicity, printing, office 
help, and subsidies for other expenses. $5,000.00 is a typi- 
:a1 subsidy, but up to $lO,OOO.OO may be considered. Any 
topic in AI science or technology is appropriate. Anyone 
may volunteer to organize a workshop on any topic. The 
organizer(s) should determine the topic, the date, the site, 
and the procedure for selecting papers and attendees. S/he 
should also decide whether preprints should be distributed. 

Proposals for scientific workshops should be made to: 

Professor John McCarthy 
Computer Science Department 

Stanford, CA 94305 
(415) 497-4430, 
jmc@su-ai.arpa 

For workshops on applied topics, applications should 
be made to: 

Dr. Peter Hart 
Syntelligence 

P.O. Box J620 
Sunnyvale, CA 94088 

(408) 745-6666 
hart@sri-ai 

AAAI proposes that program committees give special 
consideration to papers that have been presented at work- 
shops in choosing invited speakers for national conferences. 

REQUEST FOR PROPOSALS 

Future AAAI Conference Sites 

The AAAI’s Conference Committee (Jay M. Tenen- 
baum, Chair; Ronald Brachman, and Michael Genesereth) 
requests proposals from the membership for conference 
sites for 1988, 1990, and 1991. 

The proposal should be structured around the new 
five day format described elsewhere in this issue of the AI 
Magazine. Based on a predictive attendance of 6,500, the 
proposals should include the following information: 

1. Description of the local AI community and its willing- 
ness to support the conference. 

2. Description of the variety of available housing ranging 
from first class hotel rooms to dormitories. 

3. Description of the University and/or Convention Cen- 
ter’s large meeting rooms (ranging from 300 to 3,500 
theater seating) for a minimum of three parallel ses- 
sions. Description of another set of three, parallel 
meeting rooms (used for tutorials) that can accomo- 
date from 200 to 500 schoolroom seating each. 

4. Description of available exhibit space (minimum re- 
quirement of 80,000 net square feet) and service con- 
tractors. 

5. Description of local regulations (e.g., labor union laws, 
liquor licenses, and local tax structure). 

6. Description of local housing and convention support 
services from the city’s Convention and Visitors Bu- 
reau. Description of procedures for processing univer- 
sity housing reservations. 

7. Description of site’s accessibility by air and ground 
transportation and local ground support transporta- 
tion. 
Ideally, the Conference Committee would prefer to 

rold the science sessions on a university campus and the 
mgineering sessions at the larger convention facility. 

For further details about this RFP, please contact: 

Ms. Lorraine Cooper 
AAAI 

445 Burgess Drive 
Menlo Park, CA 94025-3496 

Submit all proposals to: 

Jay M. Tenenbaum, Chair 
AAAI Conference Committee 

445 Burgess Drive 
Menlo Park, CA 94025-3496 

THE AI MAGAZINE 85 




