
KBEmacs: Where’s the AI?
Richard C. Waters

MIT Artificial Intelligence laboratory, 545 Technology Square, Cambridge, Massachusetts 02139

The Programmer’s Apprentice project uses the do-
main of programming as a vehicle for studying (and at-
tempting to duplicate) human problem solving behavior.
Recognizing that it will be a long time before it is pos-
sible to fully duplicate an expert programmer’s abilities,
the project seeks to develop an intelligent assistant sys-
tem, the Programmer’s Apprentice (PA), which will help
a programmer in various phases of the programming task.
The Knowledge-Based Editor in Emacs (KBEmacs) is an
initial step in the direction of the PA.

A question that has been asked about KBEmacs is,
“Where’s the AI?” This article answers this question by
describing the key AI ideas that underly the system. Going
beyond this, the article uses the development of KBEmacs
as an example that illustrates a number of general features
of the process of developing an applied AI system. As part
of this, the article compares the way AI ideas are used
in KBEmacs with the way they were used in the initial
proposal for the PA.

An Example of Using KBEmacs

In order to give a feeling for the capabilities of KBE-
mats, this section presents a condensed summary of the
scenario in Waters (1985). In that scenario, a program-
mer uses KBEmacs to construct an Ada program in the
domain of business data processing. It is assumed that
there is a data base which contains information about var-
ious machines (referred to as units) sold by a company and
about the repairs performed on each of these units. In
the scenario, the programmer constructs a program called
UNIT-REPAIR-REPORT, which prints out a report of all
of the repairs performed on a given unit. The directions
in Figure 1 might be given to a human assistant who was
asked to write this program.

A key feature of these directions is that they refer to
a significant amount of knowledge that the assistant is as-
sumed to possess. First, they refer to a number of standard
programming algorithms: “simple report,” “enumerating
the records in a chain,” and “querying the user for a key.”

This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research
contract N00014-80-C-0505, in part by National Science Foundation
grants MCS-7912179 and MCS-8117633, and in part by the Interna-
tional Business Machines Corporation

I would particularly like to acknowledge the assistance of my partner
Charles Rich, who has made important contributions to every aspect
of my work for a decade

KBEmacs is the result of a group effort that began with the origi-
nal Programmer’s Apprentice proposal of Charles Rich and Howard
Shrobe Over the years, many other people have contributed to this
effort Gerald Sussman has been an inspiration and a mentor for
us all Kent Pitman implemented the user interface for KBEmacs
and assisted with many other aspects of the system Daniel Brot-
sky, David Chapman, David Cyphers, Roger Duffey, Gregory Faust,
Daniel Shapiro, Peter Sterpe, and Linda Zelinka contributed ideas
to KBEmacs, while working on related parts of the Programmer’s
Apprentice project. Special thanks are due to Crisse Ciro, for her
assistance with the illustrations, and to Roger Racine (of the C S.
Draper Laboratory), for his assistance with regard to Ada

Abstract
The Knowledge-Based Editor in Emacs (KBEmacs) is the

current demonstration system implemented as part of the Pro-
grammer’s Apprentice project KBEmacs is capable of acting
as a semiexpert assistant to a person who is writing a program,
taking over some parts of the programming task. The abilities
of KBEmacs stem directly from a few key AI ideas. However,
in many ways KBEmacs does not appear to be an AI system,
because its abilities are limited and because (like many applied
AI systems) the AI ideas are buried in a large volume of code
that has little relevance to AI. The primary goal of this arti-
cle is to present the AI ideas behind KBEmacs. In addition,
the construction of applied AI systems is discussed, in general,
using the development of KBEmacs as a case history.

THE AI MAGAZINE 47

AI Magazine Volume 7 Number 1 (1986) (© AAAI)

(“Reporl of Repairs on Unit” & UNIT-KEY).

Do not print a sarrlmary.

Hypothetical Directions for a Human Assistant.
Figure 1.

Second, the directions assume that the assistant under-
stands the structure of the database of units and repairs.
Another feature of the directions is that, given that the
assistant has a precise understanding of the algorithms to
be used and of the database, little is left to the assistant’s
imagination. Essentially every detail of the algorithm is
spelled out, including the exact Ada code to use when
printing the title.

The commands shown in Figure 2 can be used to con-
struct the program UNIT-REPAIR-REPORT using KBE-
mats. The Ada program that results from these commands
is shown in Figure 3.

.-_________----- ____.______---- ______.
&fine a simpl,o-report procedure

UNIT-REPAIR-REPORT.
Fill the enumerator with a chain-enumeration of

UNITS and REPAXRS.
Fill the main-file-key with a query-user-for-key

of UNITS.
Fill the title with (“Report of Repairs on

Unit’ ’ & UNIT-KEY).
Remove the summary,

KBEmacs Commands.
Figure 2.

A key feature of the commands in Figure 2 is that
they refer to a number of standard algorithms known
to KBEmacs: “simple-report, ” “chain-enumeration,” and
“query-user-for-key.” In addition, the commands assume
an understanding of the structure of the database. The
“Fill” commands specify how to fill in the parts of the
simple-report algorithm.

Without discussing in any detail either the commands
or the program produced, two important observations can
be made. First, the commands used are similar to the hy-
pothetical directions for a human assistant. Second, a set
of five commands produces a 56-line program. (The pro-
gram would be even longer if it did not make extensive use
of data declarations and functions defined in the packages
FUNCTIONS and MAINTENANCE-FILES)

The KBEmacs commands and the hypothetical direc-
tions differ in grammatical form but not in semantic con-
tent. This is not surprising in light of the fact that the hy-
pothetical directions were, in actuality, created by restat-
ing the knowledge-based commands in more free-flowing
English.

The purpose of this translation was to demonstrate
that although the KBEmacs commands may be syn-
tactically awkward, they are not semantically awkward.
The commands are neither redundant nor overly detailed.
They specify only the basic design decisions that underly
the program. There is no reason to believe that any auto-
matic system (or, for that matter, a person) could be told
how to construct the program UNIT-REPAIR-REPORT

without being told at least most of the information in the
commands shown.

The leverage that KBEmacs applies to the program-
construction task is illustrated by the order of magnitude
difference between the size of the set of commands and the
size of the program. A given programmer seems to be able
to produce more or less a constant number of lines of code
each day, independent of the programming language being
used. As a result, there is reason to believe that the or-
der of magnitude size reduction provided by the KBEmacs
commands would translate into an order of magnitude re-
duction in the time required to construct the program. It
should be noted that since program construction is only
a small part (around 10%) of the programming life cycle,
this does not translate into an order of magnitude savings
in the life cycle as a whole.

Another important advantage of KBEmacs is that
using standard algorithms (such as simple-report and
chain_enumeration) enhances the reliability of the pro-
grams produced. Because the standard algorithms known
to KBEmacs are intended to be used many times, it is eco-
nomically justifiable to lavish a great deal of time on them
in order to ensure that they are general purpose and bug
free. This reliability is inherited by the programs that use
the standard algorithms.

When using an ordinary program editor, programmers
typically make two kinds of errors: picking the wrong al-
gorithms to use and incorrectly instantiating these algo-
rithms (that is, combining the algorithms together and
rendering them as appropriate program code). KBEmacs
eliminates the second kind of error.

Four Key Al ideas

Three basic AI ideas-the assistant approach, clich&, and
plans-underlie the PA project as a whole and KBEmacs
in particular. These ideas define the approach taken and
are the basis for the capabilities of the system. A fourth
idea-general-purpose automated deduction-is an impor-
tant aspect of the project as a whole but is not used by
KBEmacs.

48 THE AI MAGAZINE

with CALENDAR, FUNCTIONS, HAINTENANCE-FILES, TEXT-IO;
use CALEKDAR, FUHCTIONS, HAINTENANCESILES. TEXT-IO;
procedure UNIT-REPAIR-REPORT is

use DEFECT-IO, REPAIR-IO, UNIT-IO, INT-IO;
CURRENT-DATE: constant STRING := FORMATJ)ATE(CLOCK);
DEFECT: DEFECT-TYPE;
REPAIR: REPAIR-TYPE;
REPAIR-INDEX: REPAIR-INDEX-TYPE;
REPORT: TEXT-IO.FILE-TYPE;
TITLE: STRING(I..33);
UNIT: UNIT-TYPE;
UNIT-KEY: UNIT-KEY-TYPE;
procedure CLEAN-UP is

begin
SET-OUTPUT(STANDARD-OUTPUT);
CLOSE(DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);

exception
when STATUS-ERROR 3 return;

end CLEAN-UP;
begin

OPEN(DEFECTS, IN-FILE, DEFECTS-NAME); OPEN(REPAIRS, IN-FILE. REPAIRS-NAME);
OPEN(UNITS, IN-FILE, UNITS-NAME); CREATE(REPORT. OUT-FILE, "report.txt");
loop

begin
NEW-LINE; PUT("Enter UNIT Key: "); GET(UNITJ(EY);
READ(UNITS, UNIT, UNIT-KEY);
exit;

exception
when END-ERROR j PUT("Invalid UNIT Key”); NEW-LINE;

end;
end loop;
TITLE := “Report of Repairs on Unit " At UNIT-KEY;
SET-OUTPUT(REPORT);
NEW-LINE(4); SET-COL(20); PUT(CURRENTJ)ATE);
NEW-LINE(S); SET-COL(l3); PUT(TITLE); NEW-LINE(60);
READ(UNITS, UNIT, UNIT-KEY);
REPAIR-INDEX := UNIT.REPAIR;
while not NULL-INDEX(REPAIR-INDEX) loop

READ(REPAIRS, REPAIR, REPAIR-INDEX);
if LINE > 64 then

NEW-PAGE; NEW-LINE; PUT("Page: ">; PUT(INTEGER(PAGE-I). 3);
SET-COL(l3); PUT(TITLE); SET-COL(61); PUT(CURRENT-DATE); HEW-LINE(2);
PUT(" Date Defect Description/Comment"); NEW-LINE(2);

end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMATJ)ATE(REPAIR.DATE)); SET-COL(l3); PUT(REPAIR.DEFECT);
SET-COL(20); PUT(DEFECT.NAEE); NEW-LINE;
SET-COL(22); PUT(REPAIR.COMMENT); NEW-LINE;
REPAIR-INDEX := REPAIR.NEXT;

end loop;
CLEAN-UP;

exception
when DEVICE-ERROR (END-ERROR (NAME-ERROR (STATUS-ERROR =>

CLEAN-UP; PUT("Data Base Inconsistent");
when others => CLEAN-UP; raise;

end UNIT-REPAIR-REPORT;

The Ada program UNIT-REPAIR-REPORT.

Figure 3.

THE AI MAGAZINE Spring, 1986 49

The Assistant Approach
When it is not possible to construct a fully automatic sys-
tem for a task, it is, nevertheless, often possible to con-
struct a system that can assist an expert in the task. In
addition to being pragmatically useful, the assistant ap-
proach can lead to important insights into how to construct
a fully automatic system.

Figure 4 shows a programmer and an assistant inter-
acting with a programming environment. Though presum-
ably less knowledgeable, the assistant interacts with the
tools in the environment (for example, editors, compilers,
and debuggers) in the same way as the programmer and
is capable of helping the programmer do what needs to be
done. It is assumed that the programmer will not be able
to delegate to the assistant all of the work which needs to
be done and therefore will have to interact directly with
the programming environment from time to time in order
to do things that the assistant is not capable of doing.

PROQRAMMINQ ENVIRONMENT

A Programming Assistant.

Figure 4.

The key issue in using an assistant effectively is di-
vision of labor. Because the programmer is more capa-
ble, the programmer will have to make the hard decisions
about what should be done and what algorithms should

be used. However, much of programming is quite mun-
dane and can easily be done by an assistant. The key to
cooperation between the programmer and the assistant is
effective two-way communication, whose key, in turn, is
shared knowledge. It would be unbearably tedious for the
programmer to explain each decision to the assistant from
first principles. Rather, the programmer needs to be able
to rely on a body of intermediate-level shared knowledge
in order to communicate decisions easily.

The previous discussion applies equally well to human
assistants and automated assistants. KBEmacs is intended
to interact with a programmer in the same way that a hu-
man assistant might. The long-range goal of the PA is to
create a “chief programmer team,” wherein the program-
mer is the chief, and the PA is the team.

An important benefit of the assistant approach is that
it is nonintrusive in nature. The assistant is available for
the programmer to use, but the programmer is not forced
to use it. Note that this contrasts sharply, for example,
with program generators, which completely take over large
parts of the programming task and do not allow the pro-
grammer to have any control over them. A key goal of
KBEmacs is to provide assistance to the programmer with-
out preventing the programmer from doing simple things
in the ordinary way. The intent is for the programmer
to use standard programming tools whenever that makes
things easy and to use KBEmacs only when doing so de-
livers real benefit.

A key part of the assistant approach as described here
is the assumption that the assistant is significantly less
knowledgeable than the programmer. There are situa-
tions where one might want an assistant system that was
more knowledgeable than the programmer (for example, a
system that assists end users or neophyte programmers).
However, KBEmacs does not attack these kinds of prob-
lems. The goal of KBEmacs is to make expert program-
mers super-productive, rather than to make bad program-
mers good.

Clichks

The term cliche’ is used in this article to refer to a standard
method for dealing with a task, for example, a lemma or
a partial solution. In normal usage, the word cliche has
a pejorative sound that connotes overuse and a lack of
creativity. However, it is not practical to be creative all of
the time. For example, when constructing a program, it is
usually better to construct a reasonable program rapidly
than to construct a perfect program slowly.

A cliche consists of a set of roles embedded in an un-
derlying matrix. The roles represent parts of the cliche
which vary from one use of the cliche to the next but which
have well-defined purposes. The matrix specifies how the
roles interact in order to achieve the goal of the cliche as
a whole.

50 THE AI MAGAZINE

As an example of a cliche in the domain of program-
ming, consider the cliched algorithm simple-report used in
the example. This cliche enumerates a sequence of items
and prints them out.

The cliche simple-report has five main roles. The ti-
tle is printed on a title page and, along with the page
number, at the top of each succeeding page of the report.
The enumerator enumerates some sequence of items. The
print-item prints out informat,ion about each of the enu-
merated items. The coZumnPheadings are printed at the
top of each page of the report in order to explain the out-
put of the print-item. The summary prints out some sum-
mary information at the end of the report.

The matrix of the cliche specifies several different
kinds of information. First, it specifies pieces of fixed com-
putation that do not vary from one use of the cliche to the
next, for example, how to print out a title page including
the title, date, and time.

Second, the matrix specifies the control flow and data
flow that connect the roles with each other and with the
fixed computation. For example, data flow connects the
output of the enumerator with the input of the print-item,
and control flow specifies that the summary will not
be printed until all of the enumerated items have been
printed.

Third, the matrix specifies various constraints on the
roles. For example, the print-item is constrained to con-
tain a computation that is appropriate for printing out the
type of item which is enumerated by the enumerator. Sim-
ilarly, the columnheadings are constrained to correspond
to the print-item.

When a cliche is used, it is instantiated by filling in
the roles with computations that are appropriate to the
task at hand. This creates an instance of the cliche that
is specialized to the task. In Figure 2 we see that in
order to construct the program UNIT-REPAIR-REPORT,

the enumerator of the cliche simple-report is filled in
with a chain-enumeration, the title is filled in with the
specified title, and the summary is removed. The con-
straints described earlier operate to fill in the print-item
and column-headings with computation appropriate for
printing out repair records. (The role mainfile-key is part
of the cliche chain-enumeration.)

Given a particular domain, cliches provide a vocab-
ulary of relevant intermediate- and high-level concepts.
Having such a vocabulary is essential for effective reason-
ing and communication in the context of the domain. It is
important to note that this is just as important for human
thought as it is for machine-based thought.

Both men and machines are limited in the complexity
of the lines of reasoning they can develop and understand.
In order to deal with more complex lines of reasoning,
intermediate-level vocabulary that summarizes parts of the
line of reasoning must be introduced. Once this interme-
diate vocabulary is fully understood, it can be used to

express the full line of reasoning in a sufficiently straight-
forward way.

Men and machines are similarly limited in the com-
plexity of the descriptions they can communicate. Just
as it is, in general, never practical to reason about some-
thing from first principles, it is in general never practical to
describe something in full detail from first principles. Ef-
fective communication depends on the shared knowledge
of an appropriate vocabulary between speaker and hearer.

An essential part of the cliche concept is reuse. Once
something has been thought out (or communicated) and
given a name, it can then be reused as a component in
future thinking (communication). There is an overhead
in that something must be thought out very carefully in
order for it to serve as a truly reusable component. How-
ever, if successful, this effort can be amortized over many
instances of reuse.

A corollary of the cliche idea is that a library of cliches
is often the most important part of an AI system. In KBE-
mats, a large portion of the knowledge that is shared be-
tween man and machine is in the form of a library of al-
gorithmic cliches. This library can be viewed as being a
machine-understandable definition of the vocabulary pro-
grammers use when talking about programs.

Plans

Selecting an appropriate knowledge representation is the
key to applying AI to any task. As a practical mat-
ter, the only way to perform a complex (as opposed to
merely large) operation is to find a knowledge represen-
tation in which the operation can be performed in a rela-
tively straightforward way. To this end, many AI systems
make use of the idea of a plan-a representation which
is abstract in that it deliberately ignores some aspects of
a problem in order to make it easier to reason about the
remaining aspects of the problem.

To be useful, a knowledge representation must express
all of the information relevant to the problem at hand. The
plan formalism used by KBEmacs is designed to represent
two basic kinds of information: the structure of particular
programs and knowledge about cliches. The structure of a
program is expressed essentially as a hierarchical flowchart
where data flow, as well as control flow, is represented by
explicit arcs. In order to represent cliches, added support
is provided for representing roles and constraints.

Equally important, a knowledge representation must
facilitate the operations to be performed. The two key
operations performed by KBEmacs are simple reasoning
about programs (for example, determining the source of a
data flow) and combining cliches together to create pro-
grams. The plan formalism is specifically designed to sup-
port these operations. For example, the fact that data flow
is expressed by explicit arcs makes it easy to determine the
source of a given data flow.

THE AI MAGAZINE 51

Figure 5 is a diagram of a simple example plan, the
plan for the cliche absolute-value. The basic unit of a plan
is a segment (drawn as a box in a plan diagram). A seg-
ment corresponds to a unit of computation. It has a num-
ber of input ports and output ports that specify the input
values it receives and the output values it produces. It
has a name that indicates the operation performed. A
segment can either correspond to a primitive computation
(for example, the segment “-“) or contain a subplan that
describes the computation performed by the segment (for
example, the segment ABS). All of the computation corre-
sponding to a single program or cliche is grouped together
into o’;e outermost segment. The roles of a cliche are rep-
resented as specially-marked segments (for example, the
segment NUMBER).

msOLuTE-VALUE

RESULT

A Plan for the Cliche Absolute-Value.

Figure 5.

As in a flowchart, control flow from one segment to
another is represented by an explicit arc from the first
segment to the second (drawn as a dashed arrow). Simi-
larly, data flow is represented by an explicit arc from the
appropriate output port of the source segment to the ap-
propriate input port of the destination segment (drawn as
a solid arrow). It should be noted that, like a data flow
diagram and unlike an ordinary flowchart, data flow is the

dominant concept in a plan. Control flow arcs are only
used where they are absolutely necessary. In Figure 5 con-
trol flow arcs are necessary in order to specify that the
operation “-” is performed only when the input number
is less than zero.

A key feature of the plan formalism is that it ab-
stracts away from the syntactic features of programming
languages and directly represents the semantic features of
a program. Whenever possible, it eliminates features that
stem from the way things must be expressed in a particular
programming language, keeping only those features which
are essential to the actual algorithm. For example, a plan
does not represent data flow in terms of the way it could
be implemented in any particular programming language,
for example, with variables, nesting of expressions, or pa-
rameter passing. Rather, it just records what the net data
flow is. Similarly, no information is represented about how
control flow is implemented.

Abstracting away from the syntactic features of a pro-
gram has several advantages. One advantage is that it
makes the internal operations of KBEmacs substantially
programming language independent. Another advantage
is that plans are much more canonical than program text.
Programs (even in different languages) that differ only in
the way their data flow and control flow are implemented
correspond to the same plan.

A second important feature of the plan formalism is
that it tries to make information as local as possible. For
example, each data flow arc represents a specific commu-
nication of data from one place to another, and, by the
definition of what a data flow arc is, the other data flow
arcs in the plan cannot have any effect on this. The same
is true for control flow arcs. This locality makes it possible
to determine what the data flow or control flow is in a par-
ticular situation by simply querying a small local portion
of the plan.

The key benefit of the locality of data flow and control
flow is that it gives plans the property of additivity. It is
always permissible to put two plans side by side without
there being any interference between them. This makes it
easy for KBEmacs to create a program by combining the
plans for cliches. All KBEmacs has to do is paste the pieces
together. It does not have to worry about issues such as
variable name conflicts, because there are no variables.

A third important feature of plans is that the inter-
mediate segmentation breaks a plan up into regions which
can be manipulated separately. In order to ensure this sep-
arability, the plan formalism is designed so that nothing
outside a segment can depend on anything inside that seg-
ment. For example, all of the data flow between segments
outside an intermediate segment and segments inside an
intermediate segment is channeled through input and out-
put ports attached to the intermediate segment. As a re-
sult of this and other restrictions, when modifying the plan
inside a segment, one can be secure in the knowledge that

52 THE AI MAGAZINE

these changes cannot effect any of the plan outside the
segment.

One of the most powerful ideas underlying AI systems
is the idea of a representation shift-shifting from a rep-
resentation where a problem is easy to state but hard to
solve to a representation that may be less obvious but in
which the problem is easy to solve. Much of the power of
KBEmacs is derived directly from the representation shift
from program text to the plan formalism.

General-Purpose Automated Deduction

General-purpose automated deduction is best understood
in contrast to reasoning performed by special-purpose pro-
cedures. In a general-purpose automated deduction sys-
tem, not only the facts being reasoned about but also
various theorems and other reasoning methods are repre-
sented as data objects. Only a few basic reasoning meth-
ods (for example, reasoning about equality) are built into
the system. This makes it possible for a general-purpose
automated deduction system to reason about a wide range
of problems and to flexibly use a wide range of knowledge
when doing so. In addition, such a system can be straight-
forwardly extended by adding new theorems and new kinds
of knowledge.

In contrast, special-purpose reasoning systems typi-
cally embed theorems in procedures. Such procedures are
fundamentally restricted in that each one solves a narrowly
defined problem using a limited amount of knowledge. In
order to attack a new problem or use additional knowledge,
a new procedure has to be written.

The Programmer’s Apprentice

Before looking at how these AI ideas are used in KBEmacs,
it is instructive to look at how these ideas are used in the
design for the PA initially proposed by Rich and Shrobe.
Figure 6, reproduced from Rich and Shrobe (1978), shows
the architecture initially proposed for the PA. The dia-
gram shows four knowledge representations (in squares)
and three processing modules (in ellipses) that mediate
between them.

In addition to program code, the PA maintains two
kinds of plans for a program. Surface plans represent the
primitive operations in a program along with the data flow
and the control flow. (They are somewhat simpler than the
plans described in the last section that are used by KBE-
mats.) Deep plans add information about specifications,
the logical relationships between the parts of a program,
and the design of a program. (They contain somewhat
more information than the plans used by KBEmacs.)

The surface analysis module translates between pro-
gram text and surface plans. The programming knowledge
base contains a library of algorithmic cliches represented
as plans. The recognition module analyzes a surface plan
in terms of the cliches in this library and constructs a

corresponding deep plan. The verification module verifies
that a given deep plan satisfies its specifications. In doing
so, it relies on preproven lemmas about the correctness of
various cliches in the programming knowledge base. Both
the recognition and verification modules are intended to
be based on a general-purpose automated deduction sub-
system operating in the domain of plans.

In Rich and Shrobe, the diagram in Figure 6 is ac-
companied by a scenario showing what the character of
the interaction between the PA and a programmer might
be like. This scenario uses free-form English dialog be-
tween the PA and the programmer in order to illustrate
the assistantlike nature of the interaction and to suggest
what kind of assistance might be possible.

The initial PA proposal focuses on describing the ba-
sic AI ideas behind the system (the assistant approach,
cliches, plans, and general-purpose automated deduction
in the domain of plans) and explaining why they provide
important leverage on various programming tasks. How-
ever, the proposal is weak when it comes to specifics.

The lack of specificity in the initial PA proposal is
probably due to the fact that, at the time the proposal
was written, little attempt had yet been made to actually
implement the PA. The only aspect of the system that
was at all well developed was the plan representation. Ini-
tial exploratory efforts had been made to implement the
surface analysis and verification modules. However, no at-
tempt had been made to implement either the recognition
module or the programming knowledge base.

In particular, no attempt had been made to implement
a system that actually interacted with a programmer. In
consequence, the proposal contained very little indication
of what a practical user interface might be like or what ex-
actly the PA would do for a programmer. (It was always
clear that the interaction between the PA and a program-
mer would have to be more restricted in both form and
content than what was shown in the scenario.)

KBEmacs

The KBEmacs system is the culmination of a multiyear
effort to produce a running system that exhibits some of
the capabilities of the PA. KBEmacs is written in Zetalisp
(1984) on the Symbolics Lisp Machine. Figure 7 shows an
architectural diagram for the system.

KBEmacs maintains two representations for a pro-
gram: program text and a plan. At any moment, the
programmer can either directly modify the program text
with a text editor or request that KBEmacs make a change
to the plan by issuing a command to the knowledge-based
editor phrased in terms of algorithmic cliches. An inter-
face unifies these two modification modes so that they can
both be conveniently accessed through a standard Emacs-
style text editor. The analyzer is used to create a new plan
whenever the program text is changed. The coder module

THE AI MAGAZINE 53

RECOGNITION VERIFICATION

I
SURFACE

I
PLANS

i

CODING I
a--0-------00 ---a I

- Fix. I _ _ _ - .
I YLIllY3

I

KNOWLEDGE
BASE I :

I

Ds y/'- .I
----------------- -(

The Initial Architecture Proposed for the PA.

Figure 6.

is used to create new program text whenever the plan is
changed.

The major value of KBEmacs stems from the fact that
it has a knowledge base of algorithmic cliches (the cliche
library) and a significant amount of knowledge (procedu-
rally embedded in the knowledge-based editor) about how
to combine them. A user can build up a program rapidly
and reliably by selecting various algorithms to use and del-
egating to the system the task of combining them together
to construct a program. However, the system is nonintru-
sive because the user can fall back on ordinary text editing
at any time.

The first thing to notice about KBEmacs is that it
shares a great deal with the initial PA proposal. The over-
all nature of the system is based on the assistant approach.
A modified version of the plan representation initially de-

INTERFACE

The Architecture of KBEmacs.

signed for the PA forms the backbone of the system. Most
of the power of the system comes from the ability to shift
back and forth at will between the textual representation
for a program (which makes some operations easy) and the
plan representation (which makes other operations easy).
The major source of knowledge in the system is the library
of algorithmic cliches.

The second thing to notice about KBEmacs is that
it omits several features of the initial PA proposal. Ex-
cept for a few isolated capabilities that are intended to be
suggestive of the wider range of abilities intended for the
full PA, KBEmacs focuses on the narrow task of program

54 THE AI MAGAZINE

construction (constructing a program once the algorithms
to use have been chosen). Given the narrowing of focus,
several other simplifications follow. Because neither de-
sign nor verification is supported, no verification module
is needed, and information about specifications and logi-
cal dependencies is omitted from the plan representation.
In addition, KBEmacs does not use general-purpose auto-
mated deduction. Rather, the reasoning that is required
is implemented by special-purpose procedures.

The third thing to notice about KBEmacs is that it
contains several components not present in the initial PA
design, that is, the coder, the knowledge-based editor, the
text editor, and the interface. These components fill gaps
in the initial design of the PA, providing a user interface
that supports program construction.

The simplifications made during the implementation
of KBEmacs were not made because the ideas involved
were judged to be unnecessary for the PA as a whole but
rather in the interest of getting an initial system running
as soon as possible. The intention was to take a few of the
most important ideas behind the PA and wring as much
capability as possible out of them. This approach proved
quite successful both in demonstrating the power of these
ideas and in discovering more about what a usable PA
should be like.

Current Status
KBEmacs is a research experiment. Rapid prototyping
and rapid evolution have been the only goals of the current
implementation. As a result, it is hardly surprising that
KBEmacs is not fast enough, robust enough, or complete
enough to be used as a practical tool.

Knowledge-based operations on large programs can
take longer than 5 minutes. (A processing time of less than
2 seconds would be desirable.) KBEmacs has not been ex-
tensively tested, and there has been no visible diminution
in the rate at which bugs have been discovered during this
testing. This suggests that many bugs remain to be found.
KBEmacs is incomplete in two primary ways. First, the
system handles only about 50% of Ada. (It handles 90% of
Lisp.) Second, KBEmacs knows only a few dozen cliches.
(At the very least, a practical tool would need to know
many hundreds of cliches.)

Although these problems are quite serious, it appears
that they could be overcome by reimplementing KBEmacs
from scratch, with efficiency, robustness, and completeness
as primary goals. However, because KBEmacs is quite
large (some 407000 lines of Lisp code), reimplementation
would be an arduous task. As a result, it has been de-
cided that within the Programmer’s Apprentice project,
no attempt will be made to turn KBEmacs into a prac-
tical tool. Rather, the project will continue to focus on
the fundamental research issues associated with the PA. It
is hoped that some other group will eventually produce a
practical tool based on the concepts behind KBEmacs.

From a research perspective, work on KBEmacs has
reached a point of diminishing returns, where the re-
stricted set of fundamental ideas it is based on has been
used for essentially all it is worth. As a result, KBEmacs
has been mothballed. Work has already begun on a new
system that will combine the features of KBEmacs and
the initial PA proposal. The principal improvements in
this new system will be an extended plan representation,
Rich (1981), and a general-purpose automated deduction
module, Rich (1985).

Where’s the Al?

Returning to the original question, KBEmacs is based on
three AI ideas: the assistant approach, cliches, and plans.
These ideas are the source of essentially all its power.

In addition, several of the individual modules in KBE-
mats use AI techniques. The knowledge-based editor per-
forms a considerable amount of reasoning about plans (al-
beit procedurally embedded). A simple constraint system
is used in conjunction with the algorithmic cliches in the
cliche library in order to propagate some of the effects
of design decisions. The coder uses simple planning and
constraint propagation in order to balance competing sug-
gestions of what variables to use in a program and other
aesthetic considerations.

Building an Applied Al System

It is interesting to look at the development of KBEmacs
as a case study in the building of applied AI systems. The
work on KBEmacs can be divided into three (somewhat in-
termixed) phases: thought experiments, implementation,
and concrete experiments. The thought experiment phase
investigated the basic AI ideas that were needed and laid
out a tentative design for the system. This phase culmi-
nated in the production of the initial PA proposal.

Once the decision was made to implement a system
that actually did something, a shift of focus occurred away
from pursuing particular AI ideas to achieving at least part
of the goal by any means. Throughout the implementa-
tion phase, pragmatic non-AI problems tended to swamp
all other considerations. For example, well over half of
all the effort expended on KBEmacs went into implement-
ing an analyzer and coder that would make it possible
for KBEmacs to operate on programs of realistic size and
complexity. The implementation phase was typified by the
deliberate suppression of details in the interest of trying
to get directly at the heart of the problem.

Once parts of KBEmacs started to work and concrete
experiments began, it was again possible to focus on larger
issues. As an example of the kind of changes that occurred
during the experimentation phase, it is interesting to note
that there was a significant evolution in the way the sys-
tem interacted with the programmer. Probably due to
their importance to the internal operation of the system,

THE AI MAGAZINE 55

plans were initially assigned a prominent position in the
user interface. However, experimentation revealed that
programmers were much happier thinking in terms of pro-
gram text and were somewhat confused by plans. As a
result, the interface was modified so that, as much as pos-
sible, everything appears to be happening in terms of pro-
gram text.

In retrospect, the development of KBEmacs was a
valuable research experiment. However, mundane imple-
mentation absorbed much more effort than anyone would
have liked. Looking at other systems that have success-
fully applied AI techniques, the development of KBEmacs
does not appear atypical with regard to either point. In
particular, it seems to be an unfortunate fact of life that
most of the effort expended on almost any full-scale system
is directed toward the solution of relatively uninteresting
pragmatic problems.

References

Rich, C (1981) A formal representation for plans in the program-
mer’s apprentice. IJCAI 7, 10441052

Rich, C (1985) The layered architecture of a system for reasoning
about programs. IJCAI 9, 540-546.

Rich, C. and Shrobe, H (1978) Initial report on a lisp programmer’s
apprentice IEEE Transactions on Software Engineering 4:456-
466

Waters, R C. (1985) The programmer’s apprentice: A session
with KBEmacs IEEE, Transactions on Software Engineering
11:1296-1320.

Zetalisp (1984) Lisp machine documentation (release 4) Cambridge,
Mass.: Symbolics, Inc.

AAAI Membership Benefits:
l Subscription to the AI Magazine
l AAAI Membership Directory
l Reduced subscription rate to the AI Journal
l Reduced registration fee at IJCAI Conference
l Early announcement of AAAI-sponsored activities
l Affiliation with the principal AI association

____ _____

Now AvaIlable

+oceedittga from the hbn-ibionoloaic Reusonir&g IVovk&o~
October 17-19, 1984

Sponsored by
The Awcrican Association for Artificial Xutell@ncc

$4 x 11, 406 pp, $20.00 postpaid.
2’0 or&r, please send cheek OS lnoney order to:

Publications Dept.
AAAI

+I5 Burgess Wve
Menlo Park, CA 94025-3496

REQUEST FOR PROPOSALS

Future AAAI Conference Sites

The AAAI’s Conference Committee (Jay M. Tenen-
baum, Chair; Ronald Brachman, and Michael Genesereth)
requests proposals from the membership for conference
sites for 1988, 1990, and 1991.

The proposal should be structured around the new
five day format described elsewhere in this issue of the AI
Magazine. Based on a predictive attendance of 6,500, the
proposals should include the following information:

1. Description of the local AI community and its willing-
ness to support the conference.

2. Description of the variety of available housing ranging
from first class hotel rooms to dormitories.

3. Description of the University and/or Convention Cen-
ter’s large meeting rooms (ranging from 300 to 3,500
theater seating) for a minimum of three parallel ses-
sions. Description of another set of three, parallel
meeting rooms (used for tutorials) that can accomo-
date from 200 to 500 schoolroom seating each.

4. Description of available exhibit space (minimum re-
quirement of 80,000 net square feet) and local service
contractors.

5. Description of local regulations (e.g., labor union laws,
liquor licenses, and local tax structure).

6. Description of local housing and convention support
services from the city’s Convention and Visitors Bu-
reau. Description of procedures for processing univer-
sity housing reservations.

7. Description of site’s accessibility by air and ground
transportation and local ground support transporta-
tion.
Ideally, the Conference Committee would prefer to

hold the science sessions on a university campus and the
engineering sessions at the larger convention facility.

For further details about this RFP, please contact:

Ms. Lorraine Cooper
AAAI

445 Burgess Drive
Menlo Park, CA 94025-3496

Submit all proposals to:

Jay M. Tenenbaum, Chair
AAAI Conference Committee

445 Burgess Drive
Menlo Park. CA 94025-3496

56 THE AI MAGAZINE

