Al Magazine Volume 7 Number 3 (1986) (© AAAI)

PART TWO

Blackboard Application Systems
and a Knowledge Engineering Perspective

H. Penny Nii

Blackboard Application Systems

The application systems described here are presented in
chronological order. The design of many of the systems
is similar because of similarities in the application tasks,

HEARSAY - I

o

DENDRAL

System

Scene
Understanding

ADS
Applications

TRICERO
HAN:HBAL

[Application (T Skeletal
Systems; Systems

References: Hearsay-I (Reddy et al. 1973); Production Systems
(Newell and Simon 1972, Davis and King 1977); Dendral (Lindsay
et al. 1980); Hearsay-1I (Erman et al. 1980); Scene Understanding
(Nagao and Matsuyama 1979); Vision Language (Shafer et al. 1986);
MXA and SUS (Lakin and Miles 1984); Hearsay-III (Erman et al.
1981); HASP (Nii et al. 1982); ADS applications (Spain 1983, Mc-
Cune and Drazovich 1983); AGE-I (Nii and Aiello 1979); CRYSALIS
(Terry 1983); OPM (Hayes-Roth et al. 1979); BB1 (Hayes-Roth
1985); TRICERO (Williams et al. 1984); HANNIBAL (Brown et
al. 1982); PROTEAN (Hayes-Roth et al. 1987).

Influences Among Blackboard Systems

Figure 1

H. Penny Nii is a Senior Research Associate in the Knowl-
edge Systems Laboratory, Computer Science Department, Stanford
University :

This work was supported by grants from the Advanced Research
Projects Agency (N0039-83-C-0136), the National Institutes of
Health (5P41 PR-00785), and Boeing Computer Services (W266875).

82 THE AI MAGAZINE August, 1986

propagation of ideas, or involvement of the same design-
ers. Figure 1 shows a general chronology and intellec-
tual lineage of the various application and skeletal sys-
tems. The figure includes some of the better-known and
better-documented systems. Only a few of the many ap-
plication systems are described here; they were chosen be-
cause they illustrate different designs and because they
contributed new ideas and features to the repertoire of
blackboard system architectures. For each application, the
task and domain characteristics are described. The de-
scription is followed by a summary of the system design in

Abstract

The first blackboard system was the Hearsay-II speech-
understanding system (Erman et gl. 1980), which evolved be-
tween 1971 and 1976. Subsequently, many systems have been
built that have similar system organization and run-time be-
havior. The objectives of this document (a part of a retrospec-
tive monograph on the AGE Project currently in preparation)
are (1) to define what is meant by blackboard systems and (2)
to show the richness and diversity of blackboard system de-
signs. In Part 1 we discussed the underlying concept behind all
blackboard systems—the blackboard model of problem solv-
ing. In order to bridge the gap between the model and working
systems, we introduced and discussed the blackboard frame-
work. We also traced the history of ideas and designs of some
application systems that helped shape the blackboard model.
In Part 2, we describe and contrast existing blackboard sys-
tems. Blackboard systems can generally be divided into two
categories: application systems and skeletal systems. In ap-
plication systems, the blackboard system components are inte-
grated into the domain knowledge required to solve the prob-
lem at hand. Skeletal systems are devoid of domain knowledge
and, as the name implies, consist of the essential system com-
ponents from which application systems can be built by the
addition of knowledge and the specification of control (that is,
metaknowledge). Application systems are discussed in the first
section, Blackboard Application Systems, and skeletal systems
will be discussed elsewhere. In Summary, we summarize the
features of the application systems. In Blackboard Systems
from a Knowledge Engineering Perspective, the author’s per-
spective on the utility of the blackboard approach to problem
solving and knowledge engineering is discussed.

four parts: the blackboard structure, the knowledge source
organization, the control component, and the knowledge-
application strategy employed. Unique features in the sys-
tem are pointed out and discussed within the context of
either the application task or its history.

HEARSAY-II

/“—M—\FLMH%” A e\ W

IS THE SYSTEM RUNNING?"”’

The HEARSAY-II Task
Figure 2

Most of the background information on HEARSAY-II
(Erman et al. 1980) was covered in Part 1 of this arti-
cle and is not repeated here. One additional item of his-
torical context is worth noting, however. Various contin-
uous speech understanding projects were brought under
one umbrella in the Defense Advaneed Research Projects
Agency (DARPA) Speech Understanding Project, a five-
year project that began in 1971. The goals of the Speech
Understanding Project were to design and implement sys-
tems that “accept continuous speech from many cooper-
ative speakers of the general American dialect in a quiet
room over a good-quality microphone, allowing a slight
tuning of the system per speaker, by requiring only natural
adaptation by the user, permitting a slightly selected vo-
cabulary of 1,000 words, with a highly artificial syntax ...
in a few times real time...” (Newell et al. 1973). Hearsay-
II was developed at Carnegie-Mellon University for the
Speech Understanding Project and successfully met most
of these goals.

The Task. The goal of the HEARSAY-II system was
to understand speech utterances. To prove that it under-
stood a sentence, it performed the spoken commands. In
the earlier HEARSAY-I period, the domain of discourse
was chess (for example, bishop moves to king knight five).
In the HEARSAY-II era, the task was to answer queries

about, and to retrieve documents from, a collection of com-
puter science abstracts in the area of artificial intelligence.
For example, the system understood the following types of
command:

“Which abstracts refer to the theory of com-
putation?”

“List those articles.”

“What has McCarthy written since nineteen
seventy-four?”

The HEARSAY-II system was not restricted to any
particular task domain. “Given the syntax and the vo-
cabulary of a language and the semantics of the task, it
attempts recognition of the utterance in that language.”
(Reddy, Erman, & Neely 1973b.) The vocabulary for the
document retrieval task consisted of 1,011 words in which
each extended form of a root, for example, the plural of
a “noun”, was counted separately. The grammar defining
a legal sentence was context-free and included recursion,
and imbedded semantics and pragmatic constraints. For
example, in the place of “noun” in conventional grammars,
this grammar included such nonterminals as topic, author,
year, and publisher. The grammar allowed each word to
be followed, on the average, by seventeen other words in
the vocabulary.

The problem of speech understanding is characterized
by error and variability in both the input and the knowl-
edge. “The first source of error is due to deviation between
ideal and spoken messages due to inexact production [in-
put], and the second source of error is due to imprecise
rules of comprehension [knowledge].” Because of these un-
certainties, a direct mapping between the speech signals
and a sequence of words making up the uttered sentence
is not possible. The HEARSAY designers structured the
understanding problem as a search in a space consisting
of complete and partial interpretations. These interpreta-
tions were organized within an abstraction hierarchy con-
taining signal parameters, segments, phones, phonemes,
syllables, words, phrases, and sentence levels. This ap-
proach required the use of a diverse set of knowledge that
produced large numbers. of partial solutions on the many
levels. Furthermore, the uncertainties in the knowledge
generated many competing, alternative hypothetical in-
terpretations. To avoid a combinatorial explosion, the
knowledge sources had to construct partial interpretations
by applying constraints at each level of abstraction. For
example, one kind of constraint is imposed when an adja-
cent word is predicted, and the prediction is used to limit
subsequent search. The constraints also had to be added
in such a way that their accrual reduced the uncertainty
inherent in the data and the knowledge sources.

In order to control the combinatorial explosion and
to meet the requirement for near real-time understanding,
the interpretation process had to be selective in exploiting

THE AI MAGAZINE August, 1986 83

the most promising hypotheses, both in terms of combin-
ing them (for example, combining syllables into words)
and in terms of predicting neighboring hypotheses around
them (for example, a possible adjective to precede a noun).
Thus, the need for incremental problem solving and flex-
ible, opportunistic control were inherent in HEARSAY’s
task.

The Blackboard Structure. The blackboard was par-
titioned into six to eight (depending on the configuration)
levels of analysis corresponding to the intermediate levels
of the decoding process.! These levels formed a hierarchy
in which the solution-space elements on each level could
be described loosely as forming an abstraction of informa-
tion on its adjacent lower level. One such hierarchy was
comprised of, from the lowest to the highest level: para-
metric, segmental, phonetic, phonemic, syllabic, lexical,
phrasal, and conceptual levels (see figure 3). A black-
board element represented a hypothesis. An element at
the lexical level, for example, represented a hypothesized
word whose validity was supported by a group of syllables
on the syllable level. The blackboard could be viewed as
a three-dimensional problem space with time (utterance
sequence) on the x-axis, information levels containing a
hypothesized solution on the y-axis, and alternative solu-
tions on the z-axis. (Lesser et al. 1974)

Each hypothesis, no matter which level it belonged
to, was constructed using a uniform structure of attribute-
value pairs. Some attributes, such as its level name, were
required for all levels. The attributes included a validity
rating and an estimate of the “truth” of the hypothesis
represented as some integer value. The relationships be-
tween the hypotheses on different levels were represented
by links, forming an AND/OR tree over the entire hierar-
chy. Alternative solutions were formed by expanding along
the OR paths. Because of the uncertainty of the knowledge
sources that generated the hypotheses, the blackboard had
a potential for containing a large number of alternative hy-
potheses.

The Knowledge Source Structure. Each knowledge
source had two major components: a condition part (often
referred to as a precondition) and an action part. Both
the condition and the action parts were written as arbi-
trary SAIL procedures. “The condition component pre-
scribed the situations in which the knowledge sources may
contribute to the problem solving activity, and the action
component specified what that contribution was and how
to integrate it into the current situation.” (Erman et al.
1980) When executed, the condition part searched the
blackboard for hypotheses that were of interest to its cor-
responding action part; all the relevant hypotheses found

!See Lesser & Erman [1977] for a comprehensive discussion on
the results of experiments conducted with two different blackboard
configurations.

84 THE AI MAGAZINE August, 1986

LEVELS Knowiedge Sources
PHRASAL

------ = Syntatic-Semantic Parser

- em-q~==-———- Syntatic-Semantic Hypothesizer
LEXICAL
———————— Phoneme Hypothesizer
SYLLABIC
——————————— Word Candidate Generator

SURFACE-
PHONEMIC .

—————— Phone-Phoneme Synchronizer
PHONETIC

—————————— Phone Synthesizer
------- Segment Combiner
SEGMENTAL
t —————— Segmenter-Classifier
PARAMETRIC

HEARSAY-II Blackboard and Knowledge Sources
Figure 3

during the search were passed on to the action part. Upon
activation, the action part processed all the hypotheses
passed to it. The tasks of the knowledge sources ranged
from classification (classifying acoustic segments into pho-
netic classes), to recognition (recognizing words) to gener-
ation and evaluation of predictions.

Control. The control component consisted of a black-
board monitor and a scheduler (see Figure 4). The mon-
itor kept an account of each change made to the black-
board, its primitive change type, and any new hypotheses.
Based on the change types and declarative information
provided by the condition part of the knowledge sources,
the monitor placed pointers to those condition parts that -
potentially could be executed on a scheduling queue.? In
addition to the condition parts ready for execution, the
scheduling queue held a list of pointers to any action parts
ready for execution. These actions parts were called the
invoked knowledge sources. A knowledge source became in-
voked when its condition part was satisfied. The condition
parts and the invoked knowledge sources on the schedul-
ing queue were called activities. The scheduler calculated
a priority for each activity at the start of each system cycle
and executed the activity with the highest priority in that
cycle.

In order to select the most productive activity (the
most important and promising with the least amount of
processing and memory requirements), the scheduler used

2In Figure 4 the “Focus-of-control database” contained a table of
primitive change types and the condition parts that could process
each change type. The primitive change types possible within the
system were predefined and consisted of such items as “new syllable”
and “new word created bottom up”. This paragraph is based on
discussions with Lee Erman.

experimentally derived heuristics to calculate the prior-
ity. These heuristics were represented as imbedded pro-
cedures within the scheduler. The information needed by
the scheduler was provided in part by the condition part of
each invoked knowledge source. The condition part pro-
vided a stimulus frame—a set of hypotheses that satis-
fied the condition—and a response frame-—a stylized de-
scription of the blackboard changes the knowledge source
action-part might produce upon execution. For example,
the stimulus frame might indicate a specific set of sylla-
bles, and the response frame would indicate an action that
would produce a word. The scheduler used the stimulus-
response frames and other information on the blackboard
to select the next thing to do.
The control component iteratively executed the fol-
lowing basic steps:
1. The scheduler selected from the scheduling queue
an activity to be executed.
2. If a condition part was selected and executed and if
it was satisfied, a set of stimulus-response frames
was put on the scheduling queue together with a
pointer to the‘invoked knowledge source.
3. If an action part was selected and executed, the
blackboard was modified. The blackboard mion-
itor posted pointers to the condition parts that
could follow up the change on the scheduling
queue.

The problem of focus of attention was defined, in the
context of this architecture as a problem of developing a
method which minimized the total number of knowledge
source executions and which achieved a relatively low rate
of error. The focus of attention problem was viewed as
a knowledge scheduling problem as well as a resource-
allocation problem.®> In order to control the problem-
solving behavior of the system, the scheduler needed to
know the goal of the task and the strategies for knowledge
application to be able to evaluate the next best move. Al-
though various general solutions to this problem have been
suggested (Hayes-Roth & Lesser 1977), it appears that ul-
timately one needs a knowledge-based scheduler for the
effective utilization of the knowledge sources.*

Knowledge-Application Strategy. Within the sys-
tem framework described earlier, HEARSAY-II employed
two problem-solving strategies. The first was a bottom-up
strategy whereby interpretations were synthesized directly
from the data, working up the abstraction hierarchy. For
example, a word hypothesis was synthesized from a se-
quence of phones. The second was a top-down strategy

31f we compare the HEARSAY-II control constructs with those of
the blackboard framework discussed in Part 1, they are basically the
same. Some aspects of the control in HEARSAY are emphasized
more (for example, scheduling) than others.

4The current work of Barbara Hayes-Roth [1985] on the BB1 system
elaborates this point.

Blackboard Knowledge Sources
Level n -
- —
T il -
Level 3 4t _- “r
! - |
e | [_Action |
i | e}
1 Condition Part |)
I I
Level 1 !
[
IChang € Stimulus Response
¥ ; Frame
Blackboard R Scheduling
Monitor Queue
A
. }
Y Y
Focus of Scheduler
Control |—>»
Database
{— Control flow; - -- Data flow)

Schematic of HEARSAY-II architecture
Figure 4

in which alternative sentences were produced from a sen-
tential concept, alternative sequences of words from each
sentence, alternative sequences of phones from each word,
and so on. The goal of this recursive generation process
was to produce a sequence on the parametric level that
was consistent with the input data (that is, to generate
a hypothetical solution and to test it against the data).
Both approaches have the potential for generating a vast
number of alternative hypotheses and with it a combina-
torially explosive number of knowledge source activations.
Problem-solving activity was, therefore, constrained by se-
lecting only a limited subset of invoked knowledge sources
for execution. The scheduling module thus played a crucial
role within the HEARSAY-II system.

- Orthogonal to the top-down and bottom-up ap-
proaches, HEARSAY employed a general hypothesize-and-
test strategy. A knowledge source would generate hypothe-
ses, and their validity would be evaluated by some other
knowledge source. The hypothesis could be generated by
a top-down analytic or a bottom-up synthetic approach.
Often, a knowledge source generated or tested hypothe-
ses by matching its input data against a “matching pro-
totype” in its knowledge base. For example, a sequence
of hypothesized phones on the phone level were matched
against a table containing prototypical patterns of phones

THE Al MAGAZINE August, 1986 85

for each word in the vocabulary. A word whose phones
satisfied a matching criterion became a word hypothesis
for the phones. The validation process involved assigning
credibility to the hypothesis based on the consistency of
interpretation with the hypotheses on an adjacent level.
At each problem-solving step, any one of the bottom-
up synthesis, top-down goal generation, neighborhood pre-
diction, hypothesis generation, and hypothesis evaluation
might have been initiated. The decision about whether a
knowledge source could contribute to a solution was lo-
cal to the knowledge source (precondition). The decision
about which knowledge source should be executed in which
one of many contexts was global to the solution state (the
blackboard), and the decision was made by a global sched-
uler. The scheduler was opportunistic in choosing the next
step, and the solution was created one step at a time.

Additional Notes

e The condition parts of the knowledge sources were
complex, CPU-intensive procedures that needed to
search large areas of the blackboard. Each knowl-
edge source needed to determine what changes had
been made since the last time it viewed the black-
board. To keep from firing the condition parts contin-
ually, each condition part declared a priori the kinds
of blackboard changes it was interested in. The condi-
tion part, when executed, looked at only the relevant
changes since the last cycle. All the changes that could
be processed by the action part were passed to it to
avoid repetitive executions of the action part.

e The HEARSAY-II system maintained alternative hy-
potheses. However, the maintenance and the process-
ing of alternatives are always complex and expensive,
especially when the system does not provide support
for this. In HEARSAY-II the problem was aggravated
by an inadequate network structure that did not al-
low the shared network to be viewed from different
perspectives. In the current jargon, it did not have
good mechanisms for processing multiple worlds.?

¢ The evidence to support a hypothesis at a given level
can be found on lower levels or on higher levels. For
example, given a word hypothesis, its validity could be
supported by a sequence of syllables or by grammati-
cal constraints. The evidential support is represented
by directional links from the evidence to the hypothe-
sis it supports. The link that goes from a higher-level
to a lower-level hypothesis represents a “support from
above” (that is, the justification for the hypothesis
can be found at a higher level). A link that goes in
the opposite direction represents support from below
(that is, the reason for the hypothesis can be found

5Currently, there are better techniques for processing and maintain-
ing alternative worlds. However, these techniques have yet to be
integrated into blackboard systems.

86 THE AI MAGAZINE August, 1986

at a lower level). Although the names of the support
mechanisms were first coined in HASP (Nii & Feigen-
baum 1978), the bidirectional reasoning mechanisms
were first used in the HEARSAY-II system.

e In HEARSAY-II the confidence in a hypothesis gen-
erated by a knowledge source was represented by an
integer between 1 and 100. The overall confidence
in the hypothesis was accumulated by simple addi-
tion of the confidence attached to the evidence (that
is, supporting hypotheses). When the confidence in a
hypothesis was changed, the change was propagated
up (if the support was from below) and down (if the
support was from above) the entire structure.

HASP/SIAP

o>
[J
[o
PP
L J
- ’

HASP/SIAP Task
Figure 5

The HASP project began in 1972 under the sponsorship of
(DARPA). The HASP project was terminated in 1975 but
was reinstated in 1976 under the name SIAP (Nii et al.
1982). At the time, the computational resources needed
to maintain a major ocean surveillance system of sensors
with conventional methods of statistical signal processing
seemed economically unfeasible. It was also a time when
artificial intelligence techniques were first being applied
to the problem of signal interpretation. The DENDRAL
program (Lindsay et al. 1980) was achieving significant
success and the Speech Understanding Project, of which
the HEARSAY Project was a part, was under way. The
major objectives of the HASP project were to demonstrate

that artificial intelligence techniques could contribute sig-
nificantly in addressing the surveillance problem and, fur-
ther, that the project could be accomplished with reason-
able computing resources. HASP was successful in meeting
both these objectives.

The Task. The task of the HASP/SIAP system was
to develop and maintain a situation board that reflected
the activities of platforms (surface ships and submarines)
in a region under surveillance. The situation board was
developed by interpreting multiple, continuous streams of
acoustic signals produced by objects in the region and by
integrating intelligence reports with the interpretation.

The acoustic input to the system came in the form
of digitized data from multiple hydrophone arrays, each
monitoring a part of the region.® Each array had multiple
hydrophones with some directional resolution. The ma-
jor sources of acoustic radiation were rotating shafts and
propellers and reciprocating machinery on board a plat-
form. The signature, or sound spectrum, of a platform
under steady operation contained persistent fundamental
narrow band frequencies and certain of their harmonics.
The front-end signal-processing hardware and software de-
tected energy peaks appearing at various spectral frequen-
cies, and followed these peaks over time. On an analyst’s
sonograms, the peaks appeared as a collection of dark ver-
tical stripes (see Figure 5). Under ideal conditions, a hy-
drophone picked up sound energy near its axis. In prac-
tice, the terrain of the ocean floor, water temperature, and
other platforms interfered, producing signals with very low
signal-to-noise ratios. That is, the stripes in the sonogram
appeared against a very fuzzy background.

In addition to the acoustic data, intelligence reports
were available to HASP. The reports contained informa-
tion about movements of friendly and hostile platforms
with varying degrees of confidence. Routine information
on commercial shipping activities was also included in
these reports.

As in the speech-understanding problem, the sonar—
signal-understanding problem is characterized by a large
solution space, a low signal-to-noise ratio, and uncertain
knowledge. Unlike the speech problem, the semantics and
the syntax are ill defined in the sonar problem. That is,
the targets of highest priority, the enemy submarines, are
most likely to be ill understood and, at the same time, are
trying their best to go undetected. The implications are
these: (1) There is no “legal move generator” for the so-
lution space except at the highest level of abstraction. (It
is assumed that different types of enemy submarines and
their general characteristics are known.) (2) One must

SDuring the first phase of the project, the acoustic input consisted of
segments that described signal events. For example, a piece of input
might have contained a frequency and indicated it as a beginning of a
frequency shift (called a knee). Later, five-minute segments produced
by a signal-processing front-end system were used as the input data.

rely heavily on the analysts’ methods and heuristics in de-
tecting and classifying enemy submarines. (3) In order
to find the targets, the analysts accounted for all known
entities (primarily surface platforms) and looked for the
targets of interest within the unaccounted-for data.” The
problem is somewhat akin to the following tasks: When
there are two people talking at the same time, one in En-
glish and another in a relatively unfamiliar language, try
to pick up what the non-English speaker is saying. An-
other task is the cocktail conversation problem in which -
many people are talking as they move around; the task is
to keep track of each person using data from microphones
scattered around the room.

Even given all the difficulties, there were aspects of the
problem that made it tractable. The situation unfolded
over a relatively long period of time because the platforms
moved rather slowly, but the data collection was relatively
frequent and from many different locations. This meant
that the system was given many chances to interpret the
situation with data sets containing slightly different infor-
mation. For example, two hydrophones might pick up in-
complete harmonic sets attributable to the same platform,
but they might be fractured in different ways. When com-
bined, they provided more information than from each one
separately. There also were many different kinds of knowl-
edge that could be used, bits and pieces, such as in the
Koala problem discussed in Part 1. The general strategy
employed was to accumulate both positive and negative
evidence for a hypothesis element.

The Blackboard Structure. The data structure on the
blackboard represented the best understanding of the sit-
uation at any given point in time. It was a dynamic entity
that evolved over time. Referred to as the current best hy-
pothesis (CBH), it was partitioned into an abstraction hi-
erarchy consisting of input segments, lines, harmonic sets,
acoustic sources, platforms, and fleet levels (see Figure 6).
The signal data arrived on the segments level, and the re-
port data arrived on either the fleets level or the platforms
level, depending on the content of the report.

Unlike the HEARSAY-II system in which the “an-
swer” to the problem was the hypothesized sentence on
the highest level, HASP’s “answer” was the network of
partial solutions that spanned the entire blackboard. In
other words, partial solutions were considered acceptable,
if not desirable, solutions. For example, a partial solu-
tion of the form, “There’s something out there producing
these lines,” was acceptable, even though a preferable so-
lution was, “There is a platform of type z, whose engine is

7This does not guarantee that the targets will be found. For one
thing, the targets might be very quiet, and their sound may not be
picked up by the hydrophones, or their sound might be overshadowed
by noisier platforms. The HASP system conjectured about their
existence and their whereabouts from other information.

THE AI MAGAZINE August, 1986 87

tevels Knowledge Sources
FLEET

Track Predictor
PLATFORMS Speed and Track Predictor

Platform Former

Source Classifier
SOURCES

Cross Array Correlator
Line Finder

HARMONIC SETS Special Target Former

Harmonic Set Former

LINES < g

} _______________ Line Former

HASP/SIAP Blackboard and Knowledge Sources

SEGMENTS

Figure 6

accounted for by the following harmonics and whose pro-
peller seems to be producing the following lines, and no
shaft data are currently being received.”

The nodes on the blackboard were called hypothesis el-
ementstather than hypotheses as they were in HEARSAY-
II. The hypothesis elements formed:a network, each ele-
ment representing a meaningful aggregation of lower-level
hypothesis elements. No attempt was made to maintain
uniformity of attributes across the levels. Each knowledge
source knew the relevant vocabulary (attributes) associ-
ated with those levels in which it was interested. The
lines level and the harmonic-sets level used a descriptive
vocabulary that dealt primarily with signal characteris-
tics, and the sources level used vocabulary dealing primar-
ily with machinery. Thus, the point of signal-to-symbol
transformation can be said to have occurred between the
harmonic-sets level and the sources level. Signal informa-
tion in a hypothesis element on the harmonic-sets level
was translated into machinery information in a hypothesis
element on the sources level; that is, there was an element-
for-element translation between the two levels.

In contrast to HEARSAY-II, each hypothesis element
could have alternative values for its attributes but no al-
ternative links. The hierarchy was organized as an AND
tree, with a possibility for local alternatives. Although
this approach reduced computational time and space, it
was awkward. for the system to “change its mind” about
the solution. In HEARSAY “changing its mind” might
only have involved focusing on an alternative structure. In
HASP either the affected hypothesis elements had to be
reanalyzed (which could result in reorganizing the whole
CBH), or the past analyses dealing with the elements in
question had to be forgotten and the analysis restarted
from the point of departure. The latter approach was used

88 THE AI MAGAZINE August, 1986

in HASP because the human analysts tended to behave in

a similar manner.8
In addition to the blackboard, HASP had other glob-

ally accessible information generated directly or indirectly

by the knowledge sources (refer to Figure 7). This global
information was used primarily by the control modules:

., Fvent List: All changes made to the blackboard, to-
gether with the types of these changes, were posted
on the event list. Each event had a generic “change
type” associated with it. An event also had associated
with it a particular blackboard node. An event in the
event list was selected by a control module to become
a focus of attention. The focus of attention, then, had
two implicit components: a change type and a black-
board node. (A more detailed discussion can be found
in the Control section.)

e Expectation List: The Expectation-list contained
events (event types and associated hypothesis ele-
ments) that were expected to occur in the future.
Thus, acoustic signature of platforms reported to be
in the region in the intelligence reports were posted
on the expectation list. The canonical acoustic sig-
natures of all the known platforms were stored in a
static knowledge base.® Periodically, the expectation
list was searched to see if expected data had arrived.

e Problem List: This list contained a description of the
various problems the knowledge sources encountered.
For example, when no rule fired during the execu-
tion of a knowledge source, it might have meant, “I
should know, but don’t.” Such information was use-
ful to the programmers. The most important use of
this list, however, was for posting missing or desired
information. A knowledge source could post pieces of
information, that if available, would increase the con-
fidence in-its hypothesis. For example, a knowledge
source might indicate that if the dependency relation-
ship was known for a given set of lines, it might be
able to identify the platform. In such a case, an op-
erator might provide the information if it was known,
or a goal might be set up by a control module to find
the information.

o Clock Event List: A clock event consisted of a time and
associated rules. The rules were to be executed at the
designated time. Because behaviors at various levels

 were known for some types of platforms, knowledge
sources tracked the expected and actual behavior by

8In the human system there are analysts whose task is to do offline
postanalyses. What they learn from the postanalyses is often added
to the pool of knowledge about the task. HASP had no counterpart
to this activity.

91n the entire discussion of blackboard systems, the role and the
form of the static knowledge base have been omitted. It is assumed
that taxonomies, facts, and definitions are represented in some form.
This type of knowledge is awkward to represent as rules and is usually
represented as tables, records, property lists, or frames.

e e e

s

this mechanism. The types of behavior known to the
system ranged from the temporal characteristics of the
sonograms to the physical movement of the platforms.

o History List: All the processed events and their con-
text (for example, a blackboard node and its values
and the bindings in a rule that made the change) were
kept on this list. The history list was used to recount
the knowledge-application steps that led to the gener-
ation of the CBH.10 This list was also used by the pro-
grammers to ensure that solutions were arrived at by
an expected line of reasoning. The designers wanted to
detect occurrences of right answers for wrong reasons.

The Knowledge Source Structure. Each knowledge
source consisted of a precondition part and an action part.
In contrast to the HEARSAY-II knowledge source orga-
nization, the precondition part and the action part were
contained in one module. The precondition part consisted
of a list of pairs of tokens; the pair consisted of a name
of an event type and its modifier (new, old, or modified).
The modifier indicated the status of the hypothesis ele-
ment (for example, modified hypothesis element) that was
the focus of the events. When an event became “focused,”
knowledge sources whose precondition contained the event
type of the focused event were executed. An event type
was one of several predefined categories of changes that
could be made in the system. The action part consisted of
a set of rules. In this knowledge source organization, the
precondition can be viewed as a simple trigger for a set of
rules. The detailed test for applicability of knowledge oc-
curred in the condition parts of the rules. The knowledge
source could create bindings local to the knowledge source
that remained valid for the duration of its execution. The
bindings served to “freeze” the context until all the rules
in a knowledge source were evaluated.

Control. Each of the control modules in HASP was
written in the same form as the domain knowledge sources,
that is, as a set of rules. The knowledge sources formed
a simple control hierarchy (see the “control modules” in
Figure 7). Although the control knowledge sources were
logically independent, they were executed in a predefined
order. The strategy knowledge source decided which cat-
egories of events (that is, clock, problem, expectation, or
blackboard) to process next, based on priorities as encoded
in its knowledge base. An appropriate event-management
knowledge source was executed based on this decision.
Once activated, an event manager, in turn, decided which
specific event to focus on. The basis of this decision var-
ied with the event manager. For example, the clock-event
manager selected events that needed to be processed at

10Because the program processed events in a breadth-first order, and
humans had difficulties in following this processing order, the history
list was used to construct a text that made it appear as though the
processing had been in depth-first order.

Blackboard
--------- o«
i -
M //fI//
// /,I
- // ! /’ KS
s /,I/ A
Level 3 o /‘If el
v |
d ’f s ! ks
Level 2 7y ! T
< 1
A ol
Level 1 d P
I | |
¥ - Fo===J O)
Control Clock Expectation Problems Event
Data Event List List List
List
e~ S /’ e —
T y -
Strategy
KS
Control
Modules N
Clock Event
Event YY) Manager
Manager
T T
{— Control flow; --- Data flow)

HASP/SIAP System Organization
Figure 7

a given time, and within those events the priority rested
with events dealing with enemy platforms. The knowledge
sources associated with the focused event were then exe-
cuted. The node associateéd with the focused event served
as the context for the knowledge source’s execution. For
example, the strategy knowledge source might have de-
cided that it was time to process a blackboard event. It
would activate the blackboard-event manager. The event
manager in turn looked through the event list and selected
an appropriate event as the focus of attention. Finally, one
or more knowledge sources whose precondition contained
the blackboard change type of the focused event were ex-
ecuted. The node associated with the event (that is, the
blackboard node containing a change) served as the con-
text for the knowledge sources.

It was mentioned in Part 1 that the scheduling mod-
ule and the focus-of-attention mechanisms were simpler in
HASP than in HEARSAY-II. This is true in view of the
following: Because it was known what blackboard changes
were significant for making progress toward a solution, the
HASP programmer decided what blackboard changes were
to be called “events.” That is, only certain changes to
the blackboard were called events. For each such change,
it was also known what knowledge sources were available
for following up on the new information. By making the
precondition of a knowledge source be the occurrence of

THE AI MAGAZINE August, 1986 89

specific types of events, the selection of knowledge sources

for a given event became a very simple matter. For ex- -

ample, a table of event types and applicable knowledge
sources could be used.!! In this scheme, however, the pro-
cess of selecting the most promising event became a major
issue. The selection of an event is really the selection of
a node, which, in turn, is really a selection of a solution
island. Thus, the focus-of-attention problem in HASP was
primarily a problem of determining which solution island
to work on next, rather than a problem of which knowl-
edge source to apply next, as in HEARSAY-II. In HASP
the hierarchical control knowledge sources were all biased
toward the selection of a solution island to be pursued
that would have the highest payoff in subsequent process-
ing cycles. Once the focus-of-attention event was selected
the relevant knowledge sources were easily selected and all

the knowledge sources were executed in a predetermined ‘

but interchangeable order.

The basic actions of the control component were iter-
ations of the following: (1) The strategy knowledge source
decided which event category to focus on, that is, clock
events, expectations, problems, or blackboard events. (2)
The manager of the chosen event category selected a spe-
cific event from that category to process next. The event
information contained the name of a node to which a
change was made and change type associated with that
change. The node name and the change type constituted
the focus of attention. (3) Based on the change type of
the focus-of-attention node, knowledge sources associated
with the change type were executed. The node associated
with the focus of attention served as the context for the
activation of the knowledge sources. (4) The executing
knowledge sources produced changes to the blackboard,
and the changes were recorded.

To summarize, in HASP there were four categories
of events: expectation, clock, problem, and blackboard.
Each category of events contained a predetermined set of
event types (that is, a set of expectation event types, a set
of blackboard event types, and so on). For each event type,
the knowledge sources that could process an instance of
the event type were also predetermined. The system was
openended in that new event types and new knowledge
sources could be added without perturbing the existing
ones. The major task for the control mechanism was to
select the next solution island to be investigated.

Knowledge Application Strategy. Asin HEARSAY-
II, HASP used several problem solving approaches. A ba-
sic generate-and-test method was used to generate hypoth-
esis elements and to test their credibility. Instead of using
a legal move generator as was the case in HEARSAY-II,
where the space of legal solutions was known from the

111n HASP a set of simple rules was used. The condition side con-
tained event types and a few other simple conditions, and the action
side contained a sequence of knowledge sources to be executed.

90 THE AI MAGAZINE August, 1986

grammar and vocabulary, HASP used a plausible move
generator based on the heuristics used by the analysts.
The construction of higher-level partial solutions from
lower-level partial solutions, the determination of their
properties, the generation of expectations, and so on, were
driven by empirical association rules obtained from an an-
alyst.

Most of the forty to fifty knowledge sources in HASP
were engaged in bottom-up processing. Several pieces of
data from a lower level were combined to form or update
information on a higher level (for example, lines into har-
monic sets). Similarly, information on one level was trans-
lated into a different vocabulary on another level (for ex-
ample, harmonic sets into mechanical parts). The data
were processed breadth first. That is, all the harmonic
sets were formed from lines, and all sources were assigned
to harmonic sets, and so on, in a pipeline fashion up the
hierarchy.

The most powerful reasoning strategy used in HASP
was the top-down, model-driven strategy. The assump-
tion underlying model-driven reasoning is the following:
In the interpretation of data, the amount of processing
can be reduced by matching carefully selected pieces of
data with discriminating or important features of a model
(a frame or a script). A successful match tends to confirm
the model as an explanatory hypothesis for the data. In a
continuous-data interpretation task, the model, combined
with periodic confirmatory matches, serves as the “cog-
nitive flywheel” that maintains the ongoing “understand-
ing.” In driving a car, for example, our model of the road
situation (prototypical highway characteristics, shapes of
cars, their range of speed, their normal behavior, and so
forth) saves us from having to continually process every
bit of data within our visual range. Therefore, we don’t
“notice” the color of the upholstery of the car in front
of us even though that piece of information is often avail-
able. The danger with this approach is that data can often
match a wrong model for a long time, especially when the
discriminating features are not carefully chosen.1?

With this caveat, a model-driven approach is a very
powerful device in interpreting noisy data. In HASP a
model-driven approach was used quite extensively and suc-
cessfully. For example, it was used in determining which
lines formed a harmonic set. In fact, the CBH served as a
situation model from one time frame to the next. There
was an implicit assumption that the current state of affairs
was not significantly different from the state a few minutes

12How often have you listened to a person and thought that person
was talking about a particular topic before suddenly realizing it was a
different topic all the time? (See Aiello 1983 for a simple experiment
relevant to this topic.) The same pieces of knowledge from the PUFF
(Kunz et al. 1978) program were used in data-driven, goal-driven,
and model-driven approaches. Although the model-driven approach
ran the fastest, extra knowledge had to be added to keep it from
making the wrong diagnoses.

earlier. To make this assumption work, HASP focused on
finding counterevidence for a hypothesis as much as on
finding supporting evidence.

Within an abstraction hierarchy, model-driven reason-
ing is usually a top-down process. For example, if a plat-
form type is “known” with support from above (for ex-
ample, reports) or with support from below (for example,
data), then the facts about the platform type can serve as
a model. From this model, we can hypothesize the plat-
form’s range of speed, its sound-producing machinery and
the machinery’s acoustic signature, the platform’s travel
patterns, @nd so on. Pieces of data that can support the
model-based hypothesis are sought in the signal data. As
more supporting evidence is found, confidence in pursuing
the model is increased. In this sense, the model serves as
a constraint in the search process.

Additional Notes

e Major differences in the design of the HEARSAY-II
and HASP systems are summarized below:

— A knowledge source was written as a set of two
procedures in HEARSAY and as a set of rules in
HASP.

— Each knowledge source in HEARSAY consisted of
two procedures: the condition part and the action
part. In HASP the precondition part was a list of
tokens, and the precondition and the action parts
were in one module.

— In selecting a focus of attention, HEARSAY
was concerned with selecting the next knowledge
source to execute, and HASP was concerned with
selecting the next solution island to pursue.

— HEARSAY used a central scheduler to select its
focus of attention; HASP partitioned the schedul-
ing task and used a hierarchy of control knowledge
sources to select the focus of attention.

— In HEARSAY, a subset of knowledge sources was
chosen for execution from a list of all applicable
(invoked) knowledge sources. HASP executed all
knowledge sources applicable to a focused event.
However, not all the changes to the blackboard
became focused events.

— HASP was designed to interpret continuous, mul-
tiple streams of data. HEARSAY interpreted
single-speech utterance.

e The hierarchical control in HASP was an attempt to
separate the domain-specific. knowledge from knowl-
edge about the application of that knowledge. It was
the first attempt at such an organization and was
rather simplistic. In the CRYSALIS system (described
next), the hierarchy of control knowledge sources was
organized differently.

o In HASP the control-related information was made
globally accessible. It was also decided to repre-
sent control functions in rule form. The grouping

of control-related rules into control knowledge sources
was an obvious next step. However, by not integrating
the control information into the blackboard structure,
the control rules had to be expressed and processed
differently from the domain knowledge sources. The
BBI1 system (Hayes-Roth 1985) corrects this awkward
representation problem.

CRYSALIS

7=
ﬁ

ga /

The CRYSALIS Task

}¢

Figure 8

The CRYSALIS system (Terry 1983) contributed to the
repertoire of blackboard system designs in two ways.
First, it introduced the use of multiple hierarchies on the
blackboard—the blackboard panels. Second, it addressed
the control problem from the perspective of rule-based
systems.13

The CRYSALIS project began in the spring of 1976
under the sponsorship of the National Science Foundation.
It was a joint project between protein crystallographers at
the University of California at San Diego and computer
scientists in the Heuristic Programming Project at Stan-
ford University. It was undertaken because the computer
scientist thought that a blackboard approach “appeared to
be appropriate” for this difficult task. The objective of the
project was to build a system that determined the struc-
tures of proteins given their amino acid sequence and X-ray
diffraction data for the protein crystals. The project did
not reach its goal of building a system to construct com-
plete stereo models of proteins. It did, however, succeed

in a few cases in mapping more than 75% of the amino

131n this sense, the intellectual lineage of the control component of
the CRYSALIS system is closely tied to MYCIN-like systems and
applications written in OPS. One of the the major control issues in
rule-based systems is to separate control information from domain
rules and thus to make explicit the implied or built-in sequence of
rule executions.

THE Al MAGAZINE August, 1986 91

" acid residues in the data. (As is seen later, this is equiv-
alent to finding partial solutions on the middle level of
the blackboard hierarchy.) Basically, this was a problem
that usually took crystallographers months to solve and
proved to be too difficult to solve completely. In retro-
spect, one can argue that this problem violated many of
the criteria for choosing appropriate application problems:
lack of experts from whom knowledge could be extracted
and tested, almost no theoretical knowledge about the re-
lation between the structures and the functions of proteins,
and an impoverished state of knowledge about reasoning
in three-space. Nonetheless, the CRYSALIS system did
solve a significant part of the application problem and did
contribute to the evolution of blackboard systems.

The Task. The task of the CRYSALIS system was to
infer the three-dimensional structure of protein molecules.
A protein structure was derived from an interpretation of
the electron density map of the protein, which, in turn,
is derived from X-ray diffraction data gathered from the
crystallized protein. Traditionally, the protein crystallog-
rapher represents the explanation of the electron density
map in a ball-and-stick molecular model fashioned from
metal parts. These parts are strung together to form a
model that conforms to the density map and is also con-
sistent with protein chemistry and stereo Chemlcal con-
straints.

The electron density map is derived from diffraction
patterns produced by placing a protein crystal in an X-
ray beam. It records the density of electrons in the protein

. molecule sampled at various points on a three-dimensional
lattice. The resolution of the electron density map is typ-
ically poor, and the locations of individual atoms are gen-
erally not identifiable.

In addition to the electron density map, CRYSALIS
was provided with the amino acid sequence of the protein.
These data could also be errorful, with the sequence being
incomplete or out of order. Nevertheless, given the amino
acid sequence, the problem is narrowed to a task of de-
termining the folding of the chain of amino acid residues
and peptide bonds consistent with the distribution of the
electron density.

Other data were available to CRYSALIS which wwere
not used directly by human model builders. They were
produced by mathematical algorithms that abstracted (or
reduced) the electron density data by keying in on dif-
ferent features of the density data (the equivalent of the
low-level-signal processing algorithms used in the speech-
and other signal-understanding tasks). One reduced data
set consisted of density peaks above some threshold and
their locations; another consisted of connected peaks and
regions called skeletons; and a third consisted of segments
of the molecular skeleton. In some sense, these data were
pieces of solutions produced by three different knowledge
sources and were useful as intermediate solutions on the

92 THE AI MAGAZINE August, 1986

blackboard. However, the initial attempt to construct a hi-
erarchy that included the various data and a target molec-
ular model proved unsatisfactory. First, the data repre-
sentation did not integrate well with the abstraction hier-
archy of the molecular model, which consisted of atoms,
superatoms, and secondary-structures levels. Second, the
algorithms to generate the intermediate data were not de-
signed to be used incrementally; that is, they could only
work on the data for the entire molecule, not on small re-
gions of the data. In order to organize all the data in a
rational way, two hierarchical data structures were created
for the blackboard: one to represent the bits and pieces of
stereo structures conjectured during problem solving and
the other to hold the data produced by the mathematical
algorithms (see Figure 9).

Stereotypes
Superatoms
Atoms

Hypothesis panel l ' , ‘

\

_L [Segments

Skeletal nodes

Peaks

EDM points

Density panel

The CRYSALIS Blackboard Panels
Figure 9

The Blackboard Structure. The blackboard con-
tained two abstraction hierarchies called blackboard pan-
els. The density panel contained four levels: the raw elec-
tron density map, the peaks, the skeleton, and segments.
The information on this panel was produced by signal-
processing algorithms prior to the interpretation process.
The hypothesis panel contained atom, superatoms {(amino
acid residues and peptides), and stereotype (for example,
alpha-helixes) levels. The objective was to place each atom
of the protein molecule in the three-space represented on
the hypothesis panel. The solutions were built by generat-
ing partial solutions on the hypothesis panel derived from
data at any level in the density panel.

The Knowledge Source Structure. Each knowledge
source consisted of a set of rules. Unlike the knowledge
sources we have seen thus far, there were no preconditions
associated with the knowledge sources. A precondition of
a knowledge source served to inform the control module
when it had something to contribute during the problem-
solving process. The knowledge sources in. CRYSALIS
were not designed to be self-selecting.

Control. The CRYSALIS system used a three-tiered
control structure. All the control modules were uniformly
represented as knowledge sources. The overall control of
the system was assigned to the strategy-level knowledge
source. A set of strategy rules governed the choice of
the next task to be performed on particular regions of the
blackboard. A task was represented as a task-level knowl-
edge source. Rules in the task knowledge source decided
which object-level knowledge sources to execute within the
context of a given strategy.

The strategy knowledge source had access to a sum-
mary of the solution state called a feature list, which
recorded the state of the solution by regions. The strategy
knowledge source decided upon which region to work and,
based on the characteristic features of that region, selected
and executed a task-level knowledge source. The selected
task knowledge source executed a sequence of object-level
knowledge sources based on the recent changes in the cho-
sen region as recorded on the event list. The event list
contained a list of changes made on the hypothesis panel
(see Figure 10). After the execution of the object-level
knowledge sources, control returned to the task knowledge
source. The task knowledge source updated the feature list
at this point and executed another sequence of object-level
knowledge sources if the situation warranted. After the
task-level knowledge source was finished, it returned con-
trol to the strategy knowledge source. The strategy knowl-
edge source selected the next region on which to work and
the appropriate task-level knowledge sources to reinitiate
the processing. Only the object-level knowledge sources
were allowed to modify the hypothesis panel, and no mod-
ifications were made to the density panel.

One can view the organization of the control compo-
nent in one of two ways: (1) as a nested activation of
the knowledge sources or (2) as an organization in which
the precondition of each knowledge source was held within
its immediate higher-level knowledge source. The higher-
level knowledge source acted as the manager of the lower-
level knowledge sources. In either case, the opportunistic
application of the knowledge sources was less evident in
CRYSALIS than in other systems. First, a large region
was selected (by strategy), then a series of specific nodes
within that region were selected (by task). Finally, a series
of predetermined knowledge sources were executed to pro-
cess each selected node. A task knowledge source remained
in control until all the possible processing in a given re-

Blackboard
List of Features
T——» Strategy
Hypothesis Rule Set
i1 Panel A
\ 1
: : List of Events
“““ > Task

: :‘ -~ ™ Rule Set
! !
' |
! Data .) _
1 Panel [Object-level
] : pil S I — Rule Set
|
1 1 o
b |AminoAcid | "7 1777 [~~~
I | Sequence [
| \ Actions
1 Global | T
| Variables T
1 +
' |
l |
| New Hypothesis d
___________ Elements - T

{ Control flow; — — -~ Data flow)

CRYSALIS System Organization
Figure 10

gion was exhausted. Once processed, a region was never

‘revisited. The focus of attention consisted of subdividing

a given region to find a- solution island to process next.

In summary, the basic actions of the control compo-

nent were the following:

1. The strategy knowledge source focused on a re-
gion of the blackboard based on information in
the feature list and executed the appropriate task
knowledge source.

2. The task knowledge source selected a specific place
in the region and used it as a context for a se-
quence of object-level knowledge sources. The
task knowledge source updated the feature list be-
fore returning control to the strategy knowledge
source.

3. An object knowledge source modified the black-
board and returned control back to the task
knowledge source.

Knowledge Application Strategy. The behavior of
the CRYSALIS system was strongly island driven, or, more
specifically, was directed at region growing on the black-
board. The following is a possible problem-solving sce-
nario: Look for an electron-dense region that might indi-
cate the presence of a tryptophan element (a large, ring-
containing amino acid). Look in the amino acid sequence

THE Al MAGAZINE August, 1986 93

for the occurrences of tryptophan. Look to see if an adja-
cent region might be one of the neighbors of a tryptophan
element in the the sequence. If the amino acid adjacent to
the tryptophan matches the region in the close proximity
of the tryptophan data, continue growing the region us-
ing the sequence as a guideline. When unable to continue
with the region-growing process, look for another region
to grow.

Given this problem-solving scenario, one can see the
appropriateness of the CRYSALIS control scheme. The
task-level knowledge sources, with names such as point-to-
point trace, outward trace, split-group toehold, and so on,
knew which object-level knowledge sources to call in order
to accomplish their goals (in the scenario, the goal of the
task is to extend the hypothesized region). The strategy
knowledge source moved from one region to another, with
each region demanding possibly different task goals. This
type of nested processing was reflected in the hierarchy of
the 'knowledge sources.

Within a region of interest, the selection of which node
to process next was opportunistic. This was the only
place that opportunism was exercised. The region selec-
tion followed the shape of the skeleton. The selection of
the knowledge sources, both the task knowledge sources
and object knowledge sources within each task knowledge
source, was built in.

Additional Notes

e The quality of the density map affected the reliabil-
ity of the knowledge sources. Each knowledge source
had associated with it weights that could be adjusted
to reflect the data quality. Furthermore, the rules
were weighted according to an importance criterion.
The weight on a hypothesis was a combination of the
weights that reflected the data quality and the impor-
tance of the rule which generated the hypothesis.

e In HEARSAY-II and HASP, knowledge sources were
self-selecting. That is, the precondition of knowledge
sources determined whether the knowledge sources
were appropriate in a given solution state. In
CRYSALIS there was no counterpart to the precon-
dition of knowledge sources.*

e As in HASP, the hypothesis panel in CRYSALIS was
called the Current Best Hypothesis, and the nodes
in the panel were called the hypothesis elements. In

140One wonders if CRYSALIS is truly a blackboard system in a strict
sense, because it violates one part of the definitions of the blackboard
model—knowledge sources respond to changes on the blackboard. As
mentioned earlier, the control component of blackboard systems has
disparate designs. However, the knowledge sources should, in order
to maintain their indépendence, indicate the condition under which
they can contribute to the problem-solving process. Because the
knowledge sources in the CRYSALIS system were not designed so,
I feel that the CRYSALIS control is a hybrid between a blackboard
system and a rule-based system. It is a blackboardlike systern. ‘

94 THE AI MAGAZINE August, 1986

HASP, the CBH represented the situation board cre-
ated, updated, and used by the analysts for further
interpretation of the signal data. In CRYSALIS, the
CBH represented the partial protein model built up to
any given point in the model-building process. The hy-
pothesis network on the blackboard represents a net-
work of partial solutions, which is not necessarily the
same as intermediate results. Whereas intermediate
results often cannot stand on their own in the middle
of a problem-solving process, partial solutions are of-
ten meaningful and useful on their own. Thus, if the
CRYSALIS processing were to be interrupted and the
Hypothesis panel examined, there would be solution
islands that are acceptable solutions.

TRICERO

W
GOTCHA

The TRICERO Task
Figure 11

The TRICERO system (Williams, Brown, & Barnes 1984;
Williams 1985) represents an extension of the blackboard
system into the area of distributed computing.!® There are
rnany possible ways to design a blackboard system that
utilize multiple, communicating computers. To design a
multiprocessor blackboard system, either the blackboard
model or the blackboard framework can be used as a design
foundation. What is chosen as the starting point will have
a significant effect on the nature of the concurrency in the
resulting system.6

15The TRICERO system was designed by Harold Brown of the
Knowledge Systems Laboratory, Stanford University. It was built
by programmers at ESL and Teknowledge. The TRICERO system
was written using the AGE skeletal system (Nii & Aiello 1979). The
distributed-system aspects of TRICERO were simulated.

16Two parallel blackboard systems are currently being built at the
Heuristic Programming Project. The design of one system is based
on a fresh interpretation of the blackboard model. The system is de-
signed to work within the context of a large number (100s to 1000s) of

Several possible ways exist for using multiple proces-
sors. The first is to partition the solution space on the
blackboard into loosely coupled regions (for example, sub-
regions of the ocean, parts of a sentence, pieces of the
protein structure, and so on). For each of these parti-
tions, create a copy of a blackboard system. For example,
in HASP one might have a complete blackboard system
for each sensor array. Because the arrays have overlap-
ping coverage, the systems would have to coordinate their
problem-solving activities. A system will notify an “ad-
jacent” system if a platform is moving into that system’s
area, for example. In other words, the application prob-
lem can be partitioned into loosely coupled subproblems
that need coordination. Research on this type of system is
being conducted at the University of Massachusetts under
the direction of Victor Lesser (Lesser & Corkill 1983).

A second way to use multiple processors is to place
the blackboard data in a shared memory and distribute
the knowledge sources on different processors (see Aiello
[1986] and Ensor and Gabbe [1985] for examples). This
distribution results in the parallel execution of the knowl-
edge sources. If the knowledge sources are represented as
rules, their condition parts can be evaluated in parallel.
The action parts can also be executed concurrently with
the evaluation of the condition parts in a pipeline fash-
ion. The PSM project at Carnegie-Mellon University is
targeted as a parallel rule execution system (Forgy et al.
1984).

Third, a more direct use of multiple processors can be
accomplished by partitioning the problem into indepen-
dent subproblems, where each subproblem is solved on a
separate processor. For example, in the interpretation and
fusion of multiple types of data, each type of data might
be interpreted on different systems. Each system will have
a different set of knowledge sources and different black-
board organization. The results from the data analysis
systems will be fused by another blackboard system. The
TRICERO system is an example of this type of system.!”

The Task. The objective of the TRICERO system
is to monitor a region of airspace for aircraft activities.
The system consists of three subsystems organized in a
hierarchy (two levels at this point), much like the human

processor-memory pairs with high-bandwidth communication (Rice
1986). In the other system, designed as an extension to a serial skele-
tal system, parallel constructs are made available to the user. The
design of this system is targeted for multiprocessor, shared-memory
systems (Aiello 1986).

17The problems of designing and building blackboard systems capa-
ble of concurrent problem solving, distributed problem solving, and
parallel computations are distinct from those of serial blackboard
systems and are not discussed in this document. The TRICERO
system is discussed here, because it does not fall into any of the ear-
lier categories. It is a variant of a distributed computing system that
_can be considered a direct extension of the serial systems. See Lesser
& Corkill [1983] for distinctions between distributed processing sys-
tems and distributed problem-solving systems.

management organization for which the system was built
(see Figure 12). On the lower level are the ELINT and
COMINT subsystems that respectively interpret passive
radar and voice communication data. The correlation sys-
tem that integrates the reports from ELINT and COMINT
and other data resides at a higher level. This hierarchical
organization of blackboard systems emulates the various
activities involved in signal understanding. These activi-
ties are signal detection, parameter estimation, collection
analysis, correlation, and overall interpretation. As one
progresses from one activity to another, information in the
data is abstracted and reduced. TRICERO analyzed two
types of collection data and correlated the analyzed data.
Each data type was analyzed independently using differ-
ent blackboard data organizations and different knowledge
sources (see Figure 12).

COMINT
collection —uf "~ -
report COMINT Blue

activities
%
" board o,
tasking w— s

Losy;

.Y
£
(4

SFS
R

CORRELATION
Thru}

Situation

o board
ELINT - past
collection — 1e€ .
report ELINT epo® T

Static data
{geography
units
bases, etc.)

Situation
. board
tasking w—

(~ data ‘messages)

A Distributed Blackboard System, the TRICERO Control
Figure 12

The Blackboard Structure. The ELINT blackboard
consisted of three levels: observation, emitter, and cluster.
The input data arrived at the observation level. These
data were tagged with the collection time and the site at
which they were collected. Each node on the emitter level
kept a history of detections from a site having the same
identification tag. The history represented radar emissions
believed to be emanating from one source. The identifica-
tion tag could be in error, whereby different sources could
have the same identification tag, or one source could have
multiple tags. The radar emissions detected at different
sites were merged into a hypothetical platform (or a num-
ber of platforms “seen” as one platform) on the cluster
level. Each level used descriptive vocabulary appropriate
to that level: the platform types and speed history on the
cluster level and the collection site and signal quality on
the observation level, for example. The blackboard data

THE Al MAGAZINE August, 1986 95

structure in the COMINT and correlation subsystems were
structured in similar fashions using abstraction levels ap-
propriate to interpreting their data.

The Knowledge Source Structure. The knowledge
sources were structured according to the specification in
the AGE (Nii & Aiello 1979) skeletal system. Each knowl-
edge source had a precondition part and an action part.
The precondition part was a list of tokens, each represent-
ing a type of change that could be made on the blackboard.
The action part consisted of a set of rules. The rules in
each knowledge source could be processed as a multiple
hit, in which all rules whose condition sides were satis-
fied were executed, or as a single hit, in which only the
first rule whose condition side was satisfied was executed.
There was no conflict-resolution process of the type found
in OPS systems. '

Control. Each of the independent subsystems in the
TRICERO system used a subset of control components
available in AGE. A globally accessible event list recorded
the changes to the blackboard. At each control cycle, one
event on an event list was chosen as a focus of attention.
The choice of the event on which to focus was based on
a predetermined priority of event types. Once an event
(an event type and a node) was selected, it was matched
against the event-type tokens in the precondition of the
knowledge sources. Those knowledge sources whose pre-
conditions contained the event-type token matching the
focused event type were executed according to a predeter-
mined priority of knowledge sources.

The TRICERQO system augmented the AGE control
component to handle the communication among the sub-

systems. Each subsystem could send messages to desig-

nated subsystems. The receipt of a message by a subsys-
tem was treated as an event focused on a special node on
the blackboard. This construct allowed the subsystems
to treat reports from other subsystems just like any other
event.
The basic actions of the control component can be
described in two parts:
1. Between subsystems
a. The simulation of the distributed computation
consisted of round-robin execution of the three
subsystems — ELINT, COMINT, and Correlation.
b. Each subsystem sent report messages to desig-
nated subsystems. The receipt of a message was
treated as an event with appropriate modification
of the recipient’s blackboard and event list.
2. Within a subsystem
a. A control module selected a focus event using a
list of event priorities. An event contained infor-
mation about the event type of the change made
.to the blackboard, that is, the node on which the
change was made, the knowledge source and the

96 THE AI MAGAZINE August, 1986

specific rule that made the change, and the actual
change.

b. Based on the focused event, knowledge sources
whose precondition list contained the event were
chosen for execution.

c. The rules in the activated knowledge sources were
evaluated and executed according to the rule-
processing method associated with the knowledge
source. Modifications to the blackboard by the
rules were events and caused the event to be put
on the event list.

Knowledge-Application Strategy. Most of the knowl-
edge sources engaged in bottom-up processing. They com-
bined information on one level to generate a hypothesis on
a higher level. The reports from the correlation subsystem
to ELINT and COMINT dealt primarily with information
on the higher level (for example, platform identification)
that overrode the analysis done by the lower-level subsys-
tem. In such cases, the processing in these subsystems be-
came top down. The reports from ELINT and COMINT
were treated as input to the higher-level Correlation sub-
system.

Additional Notes

o The partitioning of the overall task into subsystems in
TRICERO was accomplished by assigning the analy-
sis of the more abstract information to the correlation
subsystem and the analysis of information closer to
signal data to ELINT and COMINT. As mentioned in
Part 1, the knowledge sources that span the various
levels of the blackboard hierarchy are logically inde-
pendent. Thus, the need for coordination among the
subsystems is substantially reduced when the problem
is partitioned into subsystems along carefully chosen
levels of analysis.

e As with the other systems described, the TRICERO
data were noisy and the knowledge sources uncertain.
The radar data, for example, contained “ghosts,” de-
tections of nonexisting objects. The ELINT subsys-
tem handled the existence of this type of error by de-
laying the analysis until several contiguous detections
had occurred. By doing so, it avoided the creation of
hypothesis nodes that later needed to be deleted.

The issues relating to the deletions of nodes on the
blackboard are quite complex. Suppose in TRICERO
that a node on the cluster level (an object that rep-
resents a platform or a group of platforms) is to be
deleted. What does it mean? Has the platform disap-
peared? Unless it somehow disintegrated, a platform
cannot disappear into thin air. Was there an error
in interpreting the radar data to begin with? Often,
there are “ghost tracks,” a characteristic of which is
that the tracks disappear after a short duration. How-
ever, suppose the platform disappearance was not due

to ghost tracks but to an error in reasoning. Unravel-
ing the reasoning steps that led to the hypothesis—or
backtracking—and retrying often do not help. The
system does not know any more than it did when
the erroneous hypothesis was generated. Suppose the
platform node is just deleted. What do we do about
the network of evidence that supports the existence
of the platform? Unfortunately, there is no system-
atic way of handling node deletions. In HASP the
nodes were never deleted. The nodes in error were ig-
nored, and analysis continued ignoring past errors. In
TRICERO node creation was delayed until there was
strong supporting evidence for the existence of an ob-
ject represented by the node. When an error occurred,
the hypothesis network was restructured according to
domain heuristics.

e In TRICERO the confidence assigned to the hypothe-
sis elements was expressed in symbolic form. The vo-
cabulary expressing the confidence consisted of “possi-
ble,” “probable,” “positive,” and “was positive.” The
confidence level was changed according to heuristic cri-
teria.

e TRICERO was one of the first blackboard systems
implemented on a computer system with a bit-map
display (see Figure 11 for a display output). The sit-
uation board, symbolically represented on the black-
board of the Correlation subsystem, was displayed in
terms of objects in an airspace and the objects’ past
behavior. The graphic-display routines were written
as procedural knowledge sources and were executed
when certain events (changes on the blackboard) oc-
curred that warranted display updates. There might
be some argument about the conceptual consistency
of this approach, because interfacing is usually not
considered a part of problem solving. However, this
engineering solution that integrated the display rou-
tines with the problem-solving components worked
very well. An effective display interface requires
knowledge about what is appropriate to display when.
A knowledge-based control of displays and display
updates is easily implemented using the knowledge
source organization.

Other Blackboard Systems

The four application systems discussed thus far trans-
formed signal data into symbolic forms “natural” to the
task domain. The signal-to-symbol transformation oc-
curred for the purposes of understanding the context in
which the signals were present. There are other blackboard
systems that deal with similar application problems. Un-
fortunately, many of these systems are either proprietary
or classified. The descriptions of these systems lack tech-
nical details, and we were not able to include them for dis-
cussion. We have included references to articles describing

- some of these systems (Lakin & Miles 1984; McCune &

Drazovich 1983; Spain 1983).

We now turn our attention to two blackboard appli-
cation systems that have been built to address different
types of tasks. A brief description of the task is followed
by some notable features of these systems.

OPM

The OPM system (Hayes-Roth et al. 1979) differs from
the systems described so far in that it is a simulation of a
model of human cognitive processes in planning. The cog-
nitive model was reflected in the architecture of the OPM
system. Instead of generating a new plan, it replicated
the planning process of human subjects. The fact that
the system seemed to successfully model many subjects’
planning processes indicated the validity of the model. It
also attested “to the utility of the blackboard model as a
general model of cognition.” (Hayes-Roth et al. 1979)

In addition to the cognitive-modeling aspect, OPM
demonstrated the generality of the blackboard model in
the kinds of tasks it could address. The applications we
have discussed so far dealt with interpretation tasks that
are basically analytic in nature. The processing is primar-
ily bottom up. The planning task is primarily generative
in nature. It starts at the top with a goal to be achieved,
and the planning process then produces lower-level se-
quences of actions to be performed. As we saw in both
HEARSAY-II and HASP, top-down strategies were com-
bined with bottom-up strategies to interpret noisy data,
but nonetheless, the interpretation process was strongly
data driven. The utility of the blackboard model for plan-
ning tasks opened up the possibility of building blackboard
systems for many different classes of application problems.

The Task. The objective of OPM was to simulate hu-
man errand-planning protocols. “The planner begins with
a list of desired errands and a map of a town in which she or
he must perform the errands. The errands differ implicitly
in importance and the amount of time required to perform
them. The planner also has prescribed starting and finish-
ing times and locations. Ordinarily, the available time
does not permit performance of all of the errands. Given
these requirements, the planner decides which errands to
perform, how much time to allocate for each errand, in
what order to perform the errands, and by what routes
to travel between successive errands.” (Hayes-Roth et al.
1979)

The Blackboard Structure. The blackboard was par-
titioned into five planning panels, called planes containing,
conceptually different categories of decisions. Each panel
contained several levels of abstraction found in the plan-
ning space. The five panels were (see Figure 13).

e Metaplan: Decisions on this panel indicated what the
planner intended to do during the planning process.

THE AI MAGAZINE August, 1986 97

EXECUTIVE META-PLAN
Direcmrr.Pnomw—s-:’ Administration Problem Definition
Middle Model
Focus Top
Management ManagementL_:n o

Referee

Compromiser
Evaluation Criteria

L»Schedule
Policy Analyst

PLAN ABSTRACTION KNOWLEDGE BASE PLAN
Goal Setter
~eintentions Errandse Outcomes
Architect Schemer
LS eh ol i
= eLayout: Designs «——
Strategig . Inventor PR:IcIs;,/:/zel Designer
o Strategiese-! NeightSrs Procedures ®”
Tactician Proximity Wanderer
Tactics Routesel Detector Operations

OPM Blackboard and Knowledge Sources
Figure 13

For example, on the policies level, a knowledge source
specified general criteria to impose on the problem so-
lution, such as “the plan must be efficient” or “mini-
mize certain risks.”

e Plan Abstraction: Decisions on this panel character-
ized desired attributes of potential plans. These ab-
stract decisions served as heuristic aids to the planning
process, suggesting potentially useful qualities of the
planned actions.

e Knowledge Base: This panel recorded observations
and computations about relationships in the world,
that the planner generated while planning. This
knowledge supported two types of planning func-
tions—the analysis of the current state of affairs and
the analysis of the likely consequences of hypothesized
actions. For example, at the errand level, the planner
might have computed the time required to perform
all of the currently intended errands in order that the
planner might evaluate the plan’s gross feasibility.

e Plan: Decisions on this panel indicated actions that
the planner actually intended to take. Decisions at
each level within this panel specified a more refined
plan than those at the adjacent higher level. For ex-
ample, the outcomes level indicated what the plan-
ner intended to accomplish by executing the final
plan, whereas the procedures level specified specific
sequences of actions (errands).

o Ezxecutive: This panel contained information related to
control. The knowledge sources on this panel decided
which of the invoked specialists were to be executed.
The decisions were based on information on the dif-
ferent levels representing different types of “executive
decisions.” For example, priority decisions indicated a
preference for allocating processing activity to certain

98 THE AI MAGAZINE August, 1986

areas of the planning blackboard before others. Sched-
ule decisions indicated which of the invoked specialists
satisfying higher-level decisions to execute next.

The Knowledge Source Structure. The knowledge
sources were called specialists. Each specialist consisted of
two components, condition and action, as in HEARSAY-II.
The condition part consisted of a trigger and a test. The
trigger provided a quick preliminary test of a specialist’s
relevance for any focused node. The test specified all other
prerequisites of applicability. For a given focus node, the
triggers of all specialists were checked. Test parts were
evaluated for those specialists whose triggers were satis-
fied. A specialist became “invoked,” as in HEARSAY-II,
when both the trigger and the test parts of the condition
were satisfied.

The specialists in OPM were written as procedures,
as in HEARSAY-II. However, the procedures were much
smaller and represented a smaller grain of knowledge.

Control. The OPM system had four global data struc-
tures: a map on which the errands occurred, the black-
board that contained the partial solutions, an agenda that
held a list of invoked specialists which needed to be sched-
uled for execution; and an event list that recorded the
history of changes to the blackboard.

The basic actions of the control component consisted
of three phases that were repeated:

1. During the invocation phase. the test part of the
specialists was evaluated. Specialists whose tests
were satisfied became “invoked.” The program
terminated when there were no invoked special-
ists.

2. In the scheduling phase, one of the invoked spe-
cialists was recommended for execution. The basis
of the recommendation was recency of invocation
and current focus. The focus node was the most
recently added or modified node on the black-
board. A specialist was chosen whose action, if
executed, would occur in the region of the focused
node.

3. In the execution phase the scheduled specialist was
executed. The program immediately evaluated
the trigger of all specialists against the focus node
(the one just changed) and added those specialists
whose triggers were satisfied on the agenda.

Knowledge-Application Strategy. The objective
of the system was to enable the simulation of diverse
problem-solving behavior exhibited by human subjects
while planning (Hayes-Roth et al. 1979). As can been seen
from the design of the control modules, however, the ba-
sic strategy was, for psychological reasons, to follow up on
the most recent actions and in the geographic proximity of
those actions. The psychological reason is not explained.

g

— __V____i_fA_,.._____.«ﬁ

However, one can surmise that at least for the errands task
if a person decides to do an errand in one place, then that
person will do all the errands in the same area.

Additional Notes

o The OPM design reflects the first step taken to sepa-
rate and make independent the problem of control. A
scheduler of the HEARSAY-II variety was encoded as
knowledge sources. Each of these control knowledge
sources had a specialized scheduling policy; for exam-
ple, go to the next closest place, or do the next most
important errand. The information needed and gen-
erated by the control knowledge sources was stored on
a special blackboard panel—the erecutive panel. The
executive panel was isolated from the other panels in
that changes on the executive panel were not treated
as events which affected the triggering of other knowl-
edge sources; changes only affected the selection of the
knowledge sources to be executed.

e The map data resided outside of the blackboard data
structure. It might have been interesting to organize
the map on a blackboard panel in a similar manner to
the CRYSALIS’ density panel. One could then have
modeled the generation of abstract plans and strate-
gies from abstracted maps.

Scene Understanding.

The Task. Given a large aerial photograph of a complex
suburban area taken at low altitude, the program is to
identify and label objects in the photograph (see Figure
14). The variety of objects to be identified includes, among

_ other things, cars, houses, rivers, and roads.

The Blackboard Structure. The blackboard was
organized into an abstraction hierarchy consisting of el-
ementary regions, characteristic regions, and object lev-
els (see Figure 15). The lowest level, the elementary re-
gions level, contained regions segmented according to mul-
tispectral properties. The attributes of each elementary
region were its average grey level, size, location, and basic
shape, together with pointers to the digitized picture indi-
cating its relative position. A combination of elementary
regions formed an object on the characteristic regions level.
On this level, seven characteristic features were extracted:
large homogeneous regions, elongated regions, shadow re-
gions, shadow-making regions, water, vegetation, and high
contrast-texture regions. The objects from this level were
classified into one of the domain objects the system knew
about—cars, houses, rivers, roads, crop fields, and so on.

"0
\ HOUSES™®

. 2

The Scene Understanding Task

Figure 14

CATEGORY OF OBJECT House Forest Crop Field Bare Soil Road Car
/ CONTRADICT
OBJECT gepenﬁon dependjon

,’ depend on
I
|

CHARACTERISTIC REGION

]
t

{

|

|

i
\
1

Blackboard and Knowledge Sources
Figure 15

As mentioned in Part 1, one stimulus for the HEARSAY
project was a desire to integrate syntactic and semantic
information into the understanding of speech utterances.
The notion of semantically driven vision programs had
also existed for some time. A program to interpret com-
plex aerial photographs developed by Makoto Nagao and
Takashi Mastuyama (Nagao, Matsuyama, & Mori 1977),
was the first to address this problem using the blackboard
approach.

The Knowledge Source Structure. A knowledge
source was represented as a single rule. Thus, the condi-
tion part of the rule served as the precondition of knowl-
edge sources. Each rule held enough knowledge to recog-
nize one object. Because there are many different ways to
recognize an object, there were multiple rules (knowledge
sources) for the recognition of a specific type of object.

Control. All knowledge sources whose condition sides
were satisfied by the data in the blackboard were executed,
as in HASP. Thus, no complex scheduling module was
needed. However, because knowledge sources might in-
terpret a region differently (for example, as a crop field
or grassland), the system incorporated a mechanism to

THE AI MAGAZINE August, 1986 99

resolve this type of contradiction. Called the conflict res-
olution mechanism, it calculated the “reliability value” of
each region interpretation and retained only the most re-
liable interpretations.

Because applying each object-detection knowledge
source to every region would be computationally expen-
sive, the knowledge sources were applied only to those
regions with certain characteristics. These characteris-
tics were precisely the attributes of the objects on the
characteristic-region level. Thus, the preconditions of the
knowledge sources served as a filter that kept the knowl-
edge sources from processing each region. . The authors
called this process the focusing mechanism. It emulates
the way in which a human first globally surveys a scene to
find prominent features that attract interest before doing
detailed analysis.

Knowledge-Application Strategy. Each object cat-
egory in the system was specified a priori and had as-
sociated with it knowledge sources that could recognize
or reject an object in the category. For example, there
was a “house expert” that, given a region, could recognize
it as a house or could reject the possibility of'it being a
house. The knowledge sources were further specialized into
data-driven knowledge sources and model-driven knowl-
edge sources. Data-driven knowledge sources were capable
of combining objects on the characteristic-region level into
identifiable domain objects. The model-driven knowledge
sources interpreted regions on the characteristic-region
level based on already identified objects. For example, cars
could be easily identified once a road had been identified.

The object-recognition process thus worked both bot-
tom up and top down. Aside from the model-driven as-
pect, the system employed another form of top-down pro-
cessing not found in the systems discussed thus far. If the
object-detection knowledge sources were unable to detect
an object (that is, unable to label a region as an object),
the system reapplied segmentation subsystems in order to
split the region or to merge it with adjoining regions. The
newly formed region was then processed agaln by object-
detection knowledge sources.

Additional Notes. The integration of symbolic reason-
ing and numeric (or algorithmic) computation is known to
be important, especially the feedback of information from
the symbolic side to the numeric side. A push from the
symbolic side basically amounts to top-down processing,
whether it be for a model-driven analysis or for a goal-
directed analysis. Nagao and Matsuyama’s system is the
first documented system we could find that actually ac-
complished the integration. In blackboard systems, the
integration of symbolic and numeric processes would ap-
pear simple—one only needs to treat a numeric algorithm
as another knowledge source. One reason for more sys-
tems not having this integration, for example in HASP or

100 THE AI MAGAZINE August, 1986

CRYSALIS, is that the integration must be planned from
the beginning and the mathematical algorithms written
to fit the plan. Neither usually happens.!'® For example,
the algorithms that would have been useful in CRYSALIS
were not written to serve as knowledge sources. One re-
quirement for a knowledge source is its ability to deal with
partial solutions or data. Most algorithms are designed to
process the whole data. In addition, for the algorithms
to be used effectively, other knowledge sources must be
able to set parameters in the algorithm. For example, a
knowledge source might ask an algorithm to increase the
data-sampling rate to see if the information content in the
algorithms’ output can be increased or improved. The
effective utilization of numeric algorithms within a black-
board system is a knowledge-based task.

Summary

A definition of the blackboard model and a summary of
blackboard system designs, in the form of the blackboard
framework, were provided in Part 1. The first part of this
article reviewed some of the older application systems. Al-
though a problem-solving model can help in the general
organization of domain knowledge and reasoning strategy,
the blueprint of the architecture is drawn by the charac-
teristics of the specific task at hand. Details of the task
determine the specific choice of knowledge representation
and reasoning methods. It is possible, therefore, that there
are as many blackboard architectures as there are applica-
tions. Figure 16, which summarizes a small set of black-
board systems, indicates variations in the characteristics of
signal-understanding problems and variations in the black-
board systems designed to solve the problems. To what de-
gree the differences in the design, especially in the design
of the control component, can be attributed to the differ-
ences in the problem is hard to determine at this point.
At the same time, the figure indicates that complex prob-
lems can be solved using the blackboard problem-solving
organization and that the basic organization allows for a
wide range of variations in system designs.

Blackboard Systems from a
Knowledge Engineering Perspective

There are many blackboard or blackboardlike systems be-
ing developed that still need to be analyzed.'® Instead of a
conclusion, this section contains one knowledge engineer’s
observations about the advantages and drawbacks of using
a blackboard approach for building expert systems.

18This is not surprising. There is a “cultural” gap between people
who build numeric algorithms and those involved in symbolic reason-
ing. Each group would like to solve a given problem within their own
discipline. However, there is a great deal to be gained by combining
the strength of both sides.

1%We solicit builders of blackboard systems to provide data so this
table can be expanded.

i
=
HEARSAY-II HASP CRYSALIS TRICERO OPM ACAP* —
©
0
Application Characteristics S
Task speech understanding sonar signal electron-density map military signal errand planning image ..m
understanding and interpretation understanding and understanding 80
) information fusion information fusion M
Continuous data? no yes. no yes no no
(evolutionary solution) : W
Signal-to-noise ratio moderate/high low/moderate low moderate/high N.A. moderate/high =]
Uses solution-space generator? yes 'no no no : no no <
Data reliability moderate moderate high moderate high moderate mnq
Partial solution evaluation? yes no yes no yes no =
Belief revision? no yes no yes yes yes M
Muiltiple hypotheses? yes no no no no no nnmu
All the application tasks have (1) big factorable solution space, (2) interactive subproblems, (3) multiple lines of reasoning, (4) :msmSom:mo:m domain vocabulary, &
(5) no fixed sequence of subproblems to be sofved. (Expert-system characteristics from Hayes-Roth, et al., 1983, p. 97)
System Characteristics
Number of paneis and levels 17 1/6 : 213 ant siat 1/5
Knowledge source condition (form) procedure event name none list of event names procedure condition part of a
(imbedded in control rule
modules) .
Knowledge source body (form) procedure set of rules set of rules set of rules procedure action part of a rule
What determines an event? monitor each KS control KS each KS monitor monitor
Focus of attention a KS a blackboard node a blackboard node a blackboard node a KS a KS and
and a KS blackboard data
What determines the focus of scheduler event manager controt KS priority manager scheduler [predetermined]
attention?
Primary processing strategy generate and test inductive synthesis model-guided inductive synthesis ~ generate and test feature extraction
with constraints combined with model- synthesis and region and correlation with refinement and model-driven
derived expectations growing feature match
bottom-up generation bottom-up synthesis top-down plan -
and test; top-down bottom-up synthesis model generation and high level generation and bottom-up feature
and middle-out con- and top-down expec- from auxiliary data correlation bottom-up refinement extraction and
straint generation tation generation and middie-out region top-down match
growing
*Analysis of complex aerial photograph
+><m$mm number of levels
Figure 16. Summary Characteristics of the Application Systems
[This table was developed by Harold Brown, Bob Engelmore, and Penny Nii]

When should the use of a blackboard model be consid-
ered by a knowledge engineer? A general guideline is that
a blackboard approach is useful for complex, ill-structured
problems.

Complex Problems. Simon (1969) defines a complex
system as “one made up of a large numbers of parts that
interact in a nonsimple way. In such systems, the whole is
more than the sum of the parts, [in the sense that] given
the properties of parts and the laws of their interaction, it
is not a trivial matter to infer the properties of the whole.”
In order to understand complexity, we describe complex
systems in terms of subsystems and relationships between
the subsystems that are less complex. Often, this descrip-
tion takes the form of a hierarchy.

In software engineering, there are techniques and
methodologies that foster hierarchic problem decomposi-
tion, and most complex programs are organized according
to some form of hierarchy. Usually, the hierarchy is or-
ganized along functional decompositions of the task to be
performed. This organization has the advantage of allow-
ing common functions to be shared by many subsystems.
In blackboard systems, a problem is decomposed to max-
imize the independence of the subsystems. Functionally,
subsystems that generate and fill the solution space are
separated from subsystems which determine their utility.
All of these subsystems (knowledge sources) can be or-
ganized into a control hierarchy, but the emphasis is on
limited interactions between the subsystems. This allows
for maximal flexibility in the software development phases
as well as during the problem-solving phase.

The medium of interactions among the subsystems
(the blackboard) is also organized hierarchically. The hi-
erarchical organization of the solution space on the black-
board has pragmatic advantages in designing a solution
to a problem. First, the hierarchical structure allows for
the integration of diverse concepts and associated vocab-
ularies. For example, in HASP the concept of a “plat-
form” was defined with properties such as type, speed, and
location; the concept of “signal” was defined with prop-
erties such as frequency, intensity, and bandwidth. Sec-
ond, the abstraction of information reduces the computa-
tional need in two ways: (1) The manipulations of abstract
entities involve manipulation of smaller numbers of enti-
ties than manipulations of their detailed counterparts and
(2) abstractions can store information ‘that would oth-
erwise need to be recomputed from the detailed coun-
terparts. Put another way, the hierarchical structure
of the blackboard provides a favorable trade-off between
storage space and computational time. For example, in
CRYSALIS, reasoning with an amino acid as an object
in its own right is easier and faster than reasoning at the
level of its atomic constituents, even though extra storage
is needed to represent the amino-acid object.

102 THE AI MAGAZINE August, 1986

Hi-Structured Problems. Ill-structured problems
(Newell 1969) are characterized by poorly defined goals
and an absence of a predetermined decision path from the
initial state to a goal. Often, there is a lack of well-defined
criteria for determining whether a solution is acceptable.??
Being ill structured is sometimes intrinsic to a problem; for
example, sculpt a masterpiece. At other times, a problem
is ill structured because it is ill defined or ill-understood—
for example, assess the merits of one’s financial invest-
ments in the light of the proposed tax reforms.?! Although
Newell’s discussions about ill structuredness occur within
the context of weak problem-solving methods, he notes
that a human’s ability to solve an ill-structured problem
might be due to the problem solver’s ability to “recognize
the essential connection or form of the solution” or due
to the fact that “the problem solver always [has] available
some distinctions that apply to every situation (Newell
1969).” In short, many ill-structured problems might be
solved by applying knowledge, especially knowledge in the
form of empirical associations, or expertise.

Many of the current expert systems deal quite well
with ill-structured problems. What further aid can the
blackboard approach provide? First, the blackboard ap-
proach requires no a priori determined reasoning path.
Because ill-structured problems often do not have a prede-
termined decision path to a solution, the selection of what
to do next must be made while the problem is in the pro-
cess. of being solved. The incremental and opportunistic
problem-solving approach in blackboard systems provides
the capability to do precisely that. Second, from a knowl-
edge engineering viewpoint, vague information and knowl-
edge, which characterize ill-structured problems, need to
be made concrete in the process of finding a solution to
the problem. The blackboard model is an excellent tool
for this knowledge engineering activity. (The blackboard
model as a problem-formulation tool is discussed in the
next section.) The blackboard approach is also an excel-
lent tool for exploratory programming, a useful technique
for developing complex and ill-structured problems and is
discussed in the section on the use of the blackboard model
as a development tool.

Although useful for many complex, ill-structured
problems, blackboard systems are generally expensive to
build and to run. It would be foolish to apply the black-
board approach when lower-cost methods will suffice. For
example, classification problems (Clancey 1985) can in
principle be solved using the blackboard method, but there

20In many expert systems, the acceptability of a solution is de-
termined by a panel of human experts who might disagree among
themselves.

211t appears that some problems are more ill structured than others.
Art making has traditionally been considered a very ill-structured
task. However, the AARON program makes “freehand” drawings.
(Cohen 1979) It’s interesting that AARON is a blackboard-like
system.

are lower-cost approaches to the problem. Determining the
appropriate problem-solving methodology for an applica-
tion problem is itself a difficult problem and is not one of
the topics of this paper. The reader is referred to Hayes-
Roth, Waterman, & Lenat (1983); Weiss & Kulikowski

(1984); and Kline & Davis (1985) for some guidance. Gen-

erally, the occurrence of some combination of the following
characteristics in a problem makes it an appropriate can-
didate for the blackboard approach:

e A large solution space

e Noisy and unreliable data

e A variety of input data and a need to integrate diverse
information

e The need for many independent or semi-independent
pieces of knowledge to cooperate in forming a solution

e the need to use multiple reasoning methods (for ex-
ample, backward and forward reasoning)

e The need for multiple lines of reasoning
¢ the need for an evolutionary solution

The Blackboard Model
As a Problem Formulation Tool

During the preliminary knowledge engineering phase, the
goal of the knowledge engineer is to understand the task
domain and the objectives of the proposed system. A
knowledge engineer needs a set of conceptual models for
organizing knowledge and reasoning. During the initial
interactions with an expert, a knowledge engineer tries to
find an appropriate conceptual model for the task while
trying to understand the domain and the nature of the
task. Often, the understanding of the task occurs with the
help of a conceptual model. Because the information pro-
vided by the expert is rarely organized to fit a particular
problem-solving model, the knowledge engineer initially
needs a model with flexible methods for representing and
applying pieces of knowledge.?? Many of the issues faced
by a knowledge engineer are the same as those faced by a
traditional software engineer. As a knowledge engineering
tool, the blackboard approach is useful because it provides
some organizational principles that are both powerful and
flexible.

Partitioning the Knowledge. To make complex prob-
lems manageable, they often need to be decomposed into
loosely coupled subproblems. - As mentioned earlier, one
useful decomposition tool is the partitioning of the solu-
tion space into a hierarchy. Hypothesizing the objects and
their relationships is accomplished by applying knowledge.
If the blackboard hierarchy is organized correctly, then the

220ften, it is useful to use the blackboard model as a conceptual
tool for understanding the task. Once the task is well understood, it
can be reformulated for a simpler and less expensive problem-solving
method.

knowledge sources that operate between the levels in the
hierarchy should be more or less self-contained. That is,
a knowledge source should function much like a specialist,
requiring little information from levels other than the one
in which it is expert. For example, a lexicographer should
not need much information from a phoneticist. Put an-
other way, the system should have the behavioral charac-
teristics of a nearly decomposable system, as described by
Simon (1977)—there should be less communication among
the subsystems (knowledge sources in this case) than com-
munication within each subsystem.

Separating Knowledge and the Uses of Knowledge.
A piece of knowledge can be used for many purposes. For
example, knowledge about statistical methods can be used
for processing speech, sonar, X-ray, radar, and visual sig-
nals. Whether a particular method, for example a least
squares method, is useful depends on what it is to be used
for, on the goals of the application problem, and on the
specific situation that arises while solving the problem.
Thus, it is useful for a knowledge engineer to have a model
that explicitly separates knowledge and the when, where,
and how of applying the knowledge. The blackboard or-
ganization encourages the designer to make these separa-
tions. In addition, in a blackboard system decisions as to
when, where, and how a piece of knowledge is to be applied
are made dynamically. The knowledge engineer can thus
design a problem-solving strategy or set of strategies that
best exploits the state of the solution. The separation also
allows the knowledge to be expressed, at least in principle,
in a “pure” form, unencumbered by information on how
or when or where it is to be used. If the application of
knowledge is in itself a complex task, then the blackboard
model allows for the control to be encoded as knowledge
sources that specialize in reasoning about knowledge ap-
plication. This capability provides another dimension of
organizational flexibility. -

Errorful Data. Both noisy input data and unreli-
able knowledge can result in erroneous partial solutions on
the blackboard. Traditionally, uncertainty in the knowl-
edge has been solved by assigning credibility weights to
the knowledge and to the information it generates. The
blackboard approach provides an additional methodology
for coping with errorful data. The basic idea is to estab-
lish independent evidential support and reasoning paths
to a solution. Many different kinds of data can be used
to generate a hypothesis; for example, both intelligence
reports and signal data were used in HASP. In addition,
both HASP. and TRICERO, whose input data were fre-
quent observations of the same scene, exploited informa-
tion redundancy in the data. In addition to the use of
diverse sources of information, different expertise (compet-
ing knowledge sources) can be used. In HEARSAY-II both
the syntactic-semantic hypothesizer and word-candidate

THE AI MAGAZINE " August, 1986 103

generator were experts in generating the next word in a
sentence. In HEARSAY-II, HASP, and other blackboard
systems, hypothesized partial solutions had reasoned sup-
ports from above and supports from below to compensate
for erroneous data and uncertain knowledge. The ability
to use different resources, whether they be additional data
or knowledge, to address the data error problem is impor-
tant. The advantage of the blackboard approach is that
organizationally, at least, it does not preclude the use of
any of these resources.

The Blackboard Model
as a System Development Tool

In traditional programming practices, system building
consists of determining the requirements, designing a sys-
tem, and implementing and testing a program. A pro-
grammer works from detailed system specifications. Al-
most all current software engineering techniques (for ex-
ample, structured programming) are designed to ensure
that the implementation strictly follows the specifications.
The test phase consists of checking that the program per-
forms according to the specifications. One aspect of deal-
ing with complex and ill-structured problems is that there
is often no a priori specification for a system. An addi-
tional difficulty with designing and implementing expert
systems is that at least two parties are constantly shifting
their points of view: the domain expert and the knowl-
edge engineer. As the knowledge in the program accu-
mulates and the problem becomes clearer, the knowledge
engineer might find better ways to represent and process
the knowledge. The resulting behavior of the program may
inspire the expert to shift his view of the problem, creat-
ing further problems for the knowledge engineer to solve.
Consequently, a knowledge engineer needs to engage in ex-
ploratory programming. FEzploratory programming as de-
fined by Beau Sheil, is “a conscious intertwining of system
design and implementation.”?® (Sheil 1983).

Waterman (1985) notes that expert system building
is accomplished in developmental stages ranging from re-
search prototype to demonstration prototype to field pro-
totype and so on until a fielded system is evolved. That is,
expert systems are also developed incrementally. At each
development stage, each of the system building phases (de-
sign, implement, and test) is repeated. The test phase is
different from the traditional approach in that what is be-
ing tested is the overall acceptability of the behavior of the
system, and not the adherence to specification. At each
development phase, the expert system might have to be
redesigned and rebuilt.

In light of a need for exploratory and incremental sys-
tem development, what is desired is a robust system or-
ganization that allows for modifications and additions at

238heil’s article contains an excellent discussion on the necessity and
the dimensions of exploratory programming.

104 THE AI MAGAZINE August, 1986

each development stage with minimum perturbation to ex-
tant structures and code. The HEARSAY-II and HASP
systems went through various changes without major over-
hauls. In HEARSAY-II, various configurations of knowl-
edge sources and blackboard levels were tried, parallel con-
structs were added to run on multiprocessors; and various
scheduling schemes were experimented with. The HASP
system was converted from an interpreted system to a com-
piled system, the sonar data were changed from one form
to another; and new levels on the blackboard and knowl-
edge sources were added to extend the scope of the task.
Each change in these systems required very little work rel-
ative to the magnitude of the changes. The robustness of
blackboard systems lies primarily in the organization of
the systems which tends to localize changes. Appropri-
ate modularization of the solution space and knowledge
into modules that require little intermodule communica-
tion ensures that changes are locally confined. Changes
in the problem-solving behavior (knowledge-application
strategy) are confined to the control component. Addi-
tions and modifications to the knowledge base involve ad-
ditions of new knowledge sources or are confined to ad-
ditions and modifications within the existing knowledge
sources.

The blackboard organization is also being used as a
development tool for many programs for several closely re-
lated reasons.? First, the blackboard is used primarily as
a means of communication between disparate processing
modules. The information being communicated is based
on the task semantics. Thus, if a signal processor produces
a radar track in terms of a vector and a covariance, the
information is placed on the blackboard in terms of coor-
dinates, a heading, a speed, and an error estimate. This
form of information is process and data-structure indepen-
dent and can be used by other knowledge sources.

Second, the blackboard approach allows the postpone-
ment of design decisions. For example, in developing a
complex, robot navigation system with multiple sensors,
a system is needed that allows experimentation with dif-
ferent sensors which interact differently with each other.
Until an appropriate combination of sensors is found, the
system needs to be open ended.

Third, the blackboard approach provides freedom
from message-passing constraints. The message-passing
paradigm requires a recipient of a message as well as a
sender. Often, the recipient is not known, or the recipi-
ent might have been deleted. In the blackboard approach,
the message-sending module places the information on the
blackboard, and the developer of the module is freed from

24This is a partial summary of discussions held at the Blackboard
Workshop on 12-13 June 1986 at Carnegie-Mellon University. The
attendees were primarily representatives from vision and robotics
projects. It appears that for these projects at this point in time the
blackboard approach is being used primarily as a software engineer-
ing tool.

worrying about other modules.

Not all of this is good news. If the initial organization
of the blackboard data (and indirectly the organization of
-the knowledge sources) is wrong, then modifications result
in a rapid deterioration of the system structure. Where
can things go wrong? Given a task domain, there are
many ways to partition its solution space into a hierarchy.
If the task (a goal to be accomplished within the domain)
is misunderstood, then one can end up with an inappro-
priate hierarchy on the blackboard. A knowledge engineer
will be building a system with a wrong model of the world.
Unfortunately, it often takes a long time to discover that
one’s perspective on-the problem is wrong. To aggravate
the situation, a clever programmer can go a long way to
make things work,; even knowing that things will get pro-
gressively worse as more knowledge is added. In such a
situation, changes occur too late, making a major over-
haul inevitable. This type of headache can sometimes be
avoided by employing an incremental development strat-
egy, which is easily accomplished with the blackboard sys-
tem organization.

Blackboard systems can be built in a top-down fash-
ion similar to a standard software engineering technique.
A small amount of knowledge can be encoded for each
knowledge source, and a simple control component can be
constructed to test the overall behavior of the system. This
is particularly easy to do if the knowledge sources contain
rules because it is easy to implement a few rules for each
knowledge source. This approach is in contrast to an ap-
proach in which one knowledge source is completed before
the next knowledge source is developed.?® An advantage
of this top-down approach is that gross errors, misunder-
standings, or inadequacies in the implementation can be
discovered quite early. The approach is analogous to the
progression of prototypes leading to a fieldable system that
was discussed earlier. The increments of development are
much smaller, and it permits better internal control of the
development process.

The Blackboard Model as a Research Tool

The blackboard model can be a useful tool for conduct-
ing research in applied artificial intelligence. The solution
space of the application problem and the domain knewl-
edge can be partitioned in many ways and a variety of
reasoning strategies can be experimented with. The black-
board model itself is also the focus of some current research
projects: : Ce
e BBI1: The work on the BB1 skeletal system addresses
the problem of rationalizing the control component.

251 have often seen development of a knowledge source that proved
unnecessary or unimportant when it was used in conjunction with
other knowledge sources. One might argue that a wrong system de-
composition was chosen or that the interactions among the subsys-
tems were not fully explored. More often than not, however, the per-
spective on the problem and on the problem-solving strategy change
once all the knowledge sources are in place.

The problem of when and how to apply domain knowl-
edge is viewed as a separate task. This control task is
organized as a separate blackboard system. To solve
a problem, BB1 alternates between formulating and
executing the problem-solving strategy on one black-
board system and applying the domain knowledge in
another (Hayes-Roth 1985).

e Distributed Problem Solving: This research addresses
the problems of obtaining a solution and maintaining
coherent problem-solving behavior in distributed sys-
tems that have a common goal. One of the major re-
search issues in distributed knowledge-based systems
is the distribution of control-—how much and what
kinds of global control are required, and how much
control can remain local. This and other issues are
explored within the context of three application do-
mains: distributed interpretation, distributed network
traffic-light control, and distributed planning (Lesser
& Corkill 1983).

e Concurrent Problem Solving: This research explores
the feasibility of using the blackboard model as a
basis for developing frameworks for concurrent prob-
lem solving. Two experimental frameworks are be-
ing developed to explore parallel constructs, one for
shared-memory, multiprocessor systems and one for
distributed-memory, multi- processor systems.. Major
issues are: finding and expressing parallelism in appli-
cation problems, determining the optimal grain size
of data and knowledge for maximal processing speed;
and, as in the distributed problem-solving problem,
determining the balance between local and global con-
trols (Nii 1986).

In addition to this research, it might be interesting and
useful to explore the utility of the blackboard model in the
area of design and machine learning. Designing, whether
designing a piece of jewelry or a very large scale integration
circuit, is an opportunistic process and is accomplished at
various levels of abstraction. Design problems also have
large solution spaces and require many, diverse cooperat-
ing sources of knowledge. Design seems a good candidate
for a blackboard application. The major difficulty with
design problems might lie in our limited understanding of
how to represent and reason about spatial relationships.

In the case of machine learning, the blackboard model
might serve as a model of learning. The learning process
can be viewed as incremental (acquiring a piece of knowl-
edge at a time), opportunistic (recognizing when some-

~ thing is worth remembering), and hierarchical (knowledge

ranging from detailed empirical association rules to general
rules). A learning system might consist of two blackboard
systems. One system, which solves a problem, would con-
sist of the standard blackboard configuration. The second
system, which learns from the behavior of the first sys-
tem, would consist of a blackboard containing a hypothe-

THE Al MAGAZINE August, 1986 105

sis about how the problem is being solved, and its knowl-
edge sources would consist of diverse methods of learn-
ing. Whether the learning subsystem performed well or
not can be tested by executing the acquired knowledge on
the problem-solving blackboard. This particular approach
would require extensions to the current blackboard orga-
nization. These extentions pose little difficulty, however,
because the power of the blackboard system organization
lies in its modularity, flexibility, and robustness.

Acknowledgements

I have been waiting a long time for someone to write a com-
prehensive article on blackboard systems. I finally decided
to give it a try, and it turned out to be a bigger job than
I expected. The skeletal blackboard systems still need to be
reviewed. Without the help of many friends and colleagues,
this article would not be, and I would like to thank them all
here. Ed Feigenbaum has been supporting a variety of research
related to blackboard systems for many years. Without his
support, many of the systems mentioned in this paper would
not have been built. Bob Engelmore appeared every Tuesday
morning at 8:30 to check on my progress in writing, to comment
on my approach, and to discuss various aspects of blackboard
systems. The many hours of discussion with Harold Brown
on wide-ranging topics clarified my thoughts about the black-
board model and blackboard systems. In addition to Bob and
Harold, James Rice, John Delaney, and Peter Friedland helped
make the article readable. I also want to thank Herbert Simon,
who gave me pointers to the earlier work, and Lee Erman, who
patiently explained the details of the HEARSAY-II design. Al-
though I have tried to be neutral with respect to the many
aspects of blackboard systems, sometimes this was a difficult
goal to achieve. Any biases, misrepresentations, and associated
blame are mine alone.

References

Aiello, N. 1983. “A Comparative Study of Control Strategies for
Expert System: AGE Implementation of Three Variations of
PUFF.” In Proceedings of the National Conference on Artificial
Intelligence. Menlo. Park, California: American Association for
Artificial Intelligence, 1-4,

Aiello, N. 1986. User-Directed Control of Parallelism: The CAGE
System. Tech. Rep. KSL Report 86-31, Knowledge Systems
Laboratory, Computer Science Department, Stanford University.

Brown, H. & J. Buckman. 1982. Final Report on HANNIBAL. Tech.
Rep., ESL, Inc.

Clancey, W. J. 1985. Heuristic Classification. Tech. Rep. KSL-85-5,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University.)

Davis, R. Davis & J. King. 1977.- “An Overview of Production Sys-
tems.” In E. W. Elcock & D. Michie eds., Machine Intelligence 8:
Machine Representation of Knowledge. New York: John Wiley.

Ensor, J. R. & J. D. Gabbe. 1985. “Transactional Blackboards.”
Proceedings of the 9th International Joint Conference on Artifi-
cial Intelligence. Los Altos, California: William Kaufmann, Inc.,
340-344. .

Erman, L. D., F. Hayes-Roth, V. R. Lesser, & D. Raj Reddy.
1980. “The Hearsay-II Speech Understanding System: Integrat-
ing Knowledge to Resolve Uncertainty.” ACM Computing Survey
12: 213-253.

Erman, L. D., P. E. London, & S. F. Fickas. 1981. “The Design
and an Example Use of HEARSAY-IIL.” In Proceedings of the

106 THE AI MAGAZINE August, 1986

7th International Joint Conference on Artificial Intelligence. Los
Altos, California: William Kaufmann, Inc., 409-415.

Forgy, C., A. Gupta, A. Newell & R. Wedig. 1984. “Initial Assess-
ment of Architectures for Production Systems.” Proceedings of
the National Conference on Artificial Intelligence. Menlo Park,
California: American Association for Artificial Intelligence, 116-
119.

Hayes-Roth, F., & V. R. Lesser. 1976. Focus of Attention in a
Distributed Logic Speech Understanding System. Tech. Rep.,
Computer Science Department, Carnegie-Mellon University.

Hayes-Roth, F., D. Waterman, & D. Lenat eds. 1983. Building
Ezxpert Systems. Reading, Massachusetts: Addison-Wesley.

Hayes-Roth, B. 1985. “Blackboard Architecture for Control.” Jour-
nal of Artificial Intelligence 26: 251-321.

Hayes-Roth, B. et al. 1987. “Elucidating Protein Structure from
Constraints in PROTEAN.” In R. Engelmore & A. Morgan eds.
Blackboard Systems: Applications and Frameworks. Addison-
Wesley Publishers, Ltd., in preparation.

Hayes-Roth, B., F. Hayes-Roth, F. Rosenschein, & S. Cammarata.
1979. “Modelling Planning as an Incremental, Opportunistic Pro-
cess.” Proceedings of the 6th International Joint Conference on
Artificial Intelligence. Los Altos, California: William Kaufmann,
Inc., 375-383.

Kunz J, R. Fallat, D. McClung, J. Osborn, B. Votteri, H. P. Nii, J.
S. Aikins, L. Fagan, & E. A. Feigenbaum. 1978. A Physiological
Rules Based System for Interpreting Pulmonary Function Test
Results. Tech. Rep. HPP-78-19, Knowledge Systems Laboratory,
Computer Science Department, Stanford University.

Lakin, W. L., & J. A. H. Miles. 1984. A Blackboard System
for Multi-Sensor Fusion. Tech. Rep., ASWE, Portsdown,
Portsmouth, England.

Lesser, V. R., R. D. Fennell, L D. Erman, & D. Raj Reddy. 1974.
“Organization of the HEARSAY-II Speech Understanding Sys-
tem.” In IEEE Symposium on Speech Recognition, Contributed
Papers. Computer Science Department, Carnegie-Mellon Univer-
sity: IEEE Group on Acoustics, Speech and Signal Processing,
11-M2-21-M2.

Lesser, V. R., & L. D. Erman. 1977. “The Retrospective View of the
HEARSAY-II Architecture.” Proceedings of the 5th International
Joint Conference on Artificial Intelligence. Los Altos, California:
William Kaufmann, Inc., 790-800.

Lesser, V. R., & D. D. Corkill. 1983." “The Distributed Vehicle
Monitoring Testbed: A Tool for Investigation Distributed Prob-
lem Solving Networks.” AI Magazine 4 (3): 15-33.

Lindsay, R., B. G. Buchanan, E. A. Feigenbaum, & J. Lederberg.
1980. Applications of Artificial Intelligence for Organic Chem-
istry: The Dendral Project. McGraw-Hill, New York.

McCune, Brian P., & R. J. Drazovich. 1983. Radar with Sight and
Knowledge. Defense Electronics. August.

Nagao M., T. Matsuyama, & H. Mori. 1979. Structured Analysis
of Complex Photographs. Proceedings of the 5th International
Joint Conference on Artificial Intelligence. 790-800.

Nagao M., & T. Matsuyama. 1980. A Structural Analysis of Com-
plex Aerial Photographs. Plenum Press, New York.

Newell, A., 1969. Heuristic Programming: Ill-Structured Problems.
In J. Aronofsky (editor), Progress in Operations Research. New
York: John Wiley, 360-414.

Newell, A., & H. A. Simon. 1972. Human Problem Solving. Prentice
Hall, Englewood Cliffs, N.J.

Newell, A., J. Barnett, C. Green, D. Klatt, J. C. R. Licklider, J.
Munson, R. Reddy, & W. Woods. 1973. Speech Understanding
System: A Final Report of a Study Group. North-Holland.

Nii, H. P., & E. A. Feigenbaum. 1978. “Rule-Based Understanding of
Signals.” In D. A. Waterman and R. Hayes-Roth eds., Pattern-
Directed Inference Systems. New York: Academic Press, 483—
501.

Nii, H. Penny., & N. Aiello. 1979. “AGE: A Knowledge-based Pro-
gram for Building Knowledge-based Programs.” Proceedings of
the 6th International Joint Conference on Artificial Intelligence.
Los Altos, California: William Kaufmann, Inc., 645-655.

Nii, H. P, E. A. Feigenbaum, J. J. Anton, & A. J. Rockmore. 1982.
“Signal-to-Symbol Transformation: HASP/SIAP Case Study.”
Al Magazine 3 (2): 23-35.

Nii, H. P., 1986. CAGE and POLIGON: Two Frameworks for
Blackboard-Based Concurrent Problem Solving. Tech. Rep.
KSL-86-41, Knowledge Systems Laboratory, Computer Science
Department, Stanford University.

Reddy, D. R., L. D. Erman, & R. B. Neely. June, 1973. “A Model
and a System for Machine Recognition of Speech.” IEEE Trans-
actions on Audio and Electroacoustics AU-21: 229-238.

Reddy, D. R., L. D. Erman, & R. B. Neely. 1973. “The HEARSAY
Speech Understanding System: An Example of the Recognition
Process.” Proceedings of the 3rd International Joint Conference
on Artificial Intelligence. Los Altos, California: William Kauf-
mann, Inc., 185-193.

Rice, J. 1986. Poligon: A System for Parallel Problem Solving.
Tech. Rep. KSL-86-19, Knowledge Systems Laboratory, Com-
puter Science Department, Stanford University.

Shafer, S. A., A. Stentz, & C. Thorpe. 1986. “An Architecture for
Sensor Fusion in a Mobile Robot.” Proceedings of the 1986 IEEE
International Conference on Robotics and Automation. (Forth-
coming.)

Sheil, B. 1983. “Power Tools for Programmers.” Datamation, Febru-
ary 1983, 131-144.

Simon, Herbert A. 1969. The Sciences of the Artificial. Cambridge,
Massachusetts: MIT Press.

Simon, Herbert A. 1977 “Scientific Discovery and the Psychology
of Problem Solving.” In Models of Discovery. Boston, Mas-
sachusetts: D. Reidel Publishing Company.

Spain, D. 8. 1983. “Application of Artificial Intelligence to Tactical
Situation Assessment.” Proceedings of the 16th EASCON 83,
457-464. :

Terry, A. 1983. The CRYSALIS Project: Hierarchical Control of
Production Systems. Tech. Rep. HPP-83-19, Stanford Univer-
sity, Heuristic Programming Project.

Waterman, D. A. 1985. A Guide to Ezpert Systems. Reading, Mas-
sachusetts: Addison-Wesley.

Weiss, S., & C. Kulikowski. 1984. A Practical Guide to Building
Ezxpert Systems. New Jersey: Rowman & Allanheld.

Williams M., H. Brown, & T. Barnes. May, 1984. TRICERO Design
Description. Tech. Rep. ESL-NS539, ESL, Inc.

Williams, M. A. 1985. “Distributed, Cooperating Expert Systems
for Signal Understanding.” In Proceedings of Seminar on AI
Applications to Battlefield, 3.4-1-3.4-6

THE AI MAGAZINE August, 1986 107

