
The first step in the development of an 
expert system is the extraction and charac- 
terization of the knowledge and skills of an 

expert. This step is widely regarded as the 
major bottleneck in the system develop- 
ment process To assist knowledge engi- 

neers and others who might be interested 
in the development of an expert system, I 
offer (1) a working classification of meth- 
ods for extracting an expert’s knowledge, 

(2) some ideas about the types of data that 
the methods yield, and (3) a set of criteria 

by which the methods can be compared 
relative to the needs of the system develop- 
er The discussion highlights certain issues, 
including the contrast between the empiri- 

cal approach taken by experimental psy- 
chologists and the formalism-oriented 

approach that is generally taken by 
cognitive scientists 
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or perceptual and conceptual 
problems requiring the skills of 
an expert, expertise is rare, the 

expert’s knowledge is extremely 
detailed and interconnected, and our 
scientific understanding of the 
expert’s perceptual and conceptual 
processes is limited. Research on the 
skills of experts in any domain affords 
an excellent opportunity for both 
basic and practical experimentation. 
My investigations fall on the experi- 
mental psychology side of expert sys- 
tem engineering, specifically the prob- 
lem of generating methods for extract- 
ing the knowledge of experts. I do not 
review the relevant literature on the 
cognition of experts.l I want to share 
a few ideas about research methods 
that I found worthwhile as I worked 
with expert interpreters of aerial pho- 
tographs and other remotely sensed 
data [Hoffman 1984) and on a project 
involving expert planners of airlift 
operations (Hoffman 1986). These 
ideas should be useful to knowledge 
engineers and others who might be 
interested in developing an expert sys- 
tem. 

TheBottleneck 
In generating expert systems, one 
must begin by characterizing the 
knowledge of an expert. As far as I can 
tell from the literature on expert sys- 
tems, getting this characterization is 
the significant bottleneck in the sys- 
tem development process. For exam- 
ple, from their experience in the 
development of PROSPECTOR, Duda 
and Gasbnig (1981) concluded that ‘I... 
something must be done to shorten 
the time needed to interview experts 

and represent their special knowledge 
. . . [It] may take several months of the 
expert’s time and even more of the 
system builder’s” (p. 264). Three years 
later, Duda and Shortliffe (1983) 
echoed this lament: “The identifica- 
tion and encoding of knowledge is one 
of the most complex and arduous 
tasks encountered in the construction 
of an expert system” (p. 265). 

Some common phrases that occur 
in the literature are “knowledge acqui- 
sition is the time-critical component” 
(Freiling et al. 1985), and “extracting 
and articulating the knowledge is the 
most important phase” (Gevarter 
I984), and “the process of extracting 
knowledge can be laborious” (Quinlan 
1984). I encountered passages of this 
type in every major review article or 
textbook on expert systems that has 
come to my attention (for example, 
Bramer 1982; Denning 1986; Hayes- 
Roth, Waterman, and Lenat 1983; Mit- 
tal and Dym 1985; Raulefs 1985; 
Weiss and Kulikowski 1984). Such 
articles dutifully assert that “the first 
step is to get the knowledge” (Freiling 
et al. 1985, p. 152). What follows, 
however, is typically a discussion of 
abstract inference strategies, details of 
Lisp code, and descriptions of system 
architecture rather than an answer to 
the question of exactly how to get the 
knowledge. 

Some papers have titles that explic- 
itly suggest they deal with the nuts 
and bolts of how to extract an expert’s 
knowledge (for example, “Acquisition 
of Knowledge from Domain Experts,” 
Friedland 1981; see also Nii and Aiello 
1979; Politakis and Weiss 1984). How- 
ever, such papers deal mostly with the 

SUMMER 1987 53 

AI Magazine Volume 8 Number 2 (1987) (© AAAI)



Table 1. Types of Methods That Can Be Used to Extract the 
Knowledge of an Expert. 

representation of knowledge. III short, 
apparently little or no systematic 
research has been conducted on the 
question of how to elicit an expert’s 
knowledge and inference strategies 
(Duda and Shortliffe 1983; Hartley 
1981).2 How can one find good tasks 
for extracting the knowledge of an 
expert? How can various tasks be 
compared? Can tasks be tailored to 
extract specific subdomains of knowl- 
edge within the expert’s broader 
domains of knowledge? My research 
has addressed these questions. 

Methods for extracting expert 
knowledge seem to fall neatly into a 
handful of categories, as shown in 
table 1. One obvious methodological 
category involves observing the perfor- 
mance of the expert at the kinds of 
tasks the expert is familiar with or 
usually engages in. A second category 
of methods is the interview. Artificial 
tasks can be devised that depart from 
what the expert usually does by limit- 
ing the information that is available to 
the expert or by constraining the prob- 
lem the expert is to work on. Another 

type of method involves studying the 
expert’s performance on the “tough 
cases” that sometimes occur. The cate- 
gorization shown in table 1 forms the 
topical organization of this paper. Fol- 
lowing a brief discussion of each of 
these method types is an examination 
of some ways in which the data they 
yield can be analyzed and the various 
methods compared. 

The Method of Familiar Tasks 
The method of familiar tasks involves 
studying the expert while he or she is 
engaged in the kinds of tasks that are 
usually or typically engaged in. Look- 
ing across a set of experts’ specific tac- 
tics and procedures, one should see 
commonalities in terms of goals, the 
information the experts like to have 
available, and the data or records that 
are produced (Mittal and Dym 1985). 
In a number of reviews (for example, 
Duda and Shortliffe 1983; Stefik et al. 
1982), the various tasks that experts 
engage in have been analyzed and cate- 
gorized into basic types, such as diag- 

nosing (interpretation of data), plan- 
ning, designing, and explaining. 

Psychologically, the tasks that an 
expert typically performs involve at 
least the following: (1) the analysis of 
complex stimuli into relevant features 
or cues based on a process psycholo- 
gists call “perceptual learning,” (2) the 
analysis of conceptual categories in 
terms of the relevant features (the per- 
ception of similarities and differences), 
(3) the analysis of the features and the 
categories in terms of relevant under- 
lying causal laws (involving “concept- 
formation processes”), and (4) abilities 
to infer and test hypotheses. 

Although these (and probably other) 
psychological factors are involved, the 
products that result from familiar 
tasks bear on these tasks and might 
not actually be very informative about 
the expert’s reasoning. For example, 
the standard method of aerial-photo 
interpretation (terrain analysis) pro- 
vides lots of information about the 
land that appears in an aerial photo but 
says precious little about how the 
expert arrived at the description (cf. 
Mintzer and Messmore 1984; Way 
1978). Such is also probably true for 
the kinds of diagnostic notations made 
by radiologists when they interpret X 
rays (Feltovich 1981). Nevertheless, an 
analysis of familiar tasks can be very 
beneficial because it can give the 
knowledge engineer a feel for the kinds 
of knowledge and skill involved in the 
domain. 

An analysis of familiar tasks (includ- 
ing an analysis of available texts and 
technical manuals) can be used to gen- 
erate a “first pass” at a data base. What 
the expert knows is represented as a 
categorized listing of statements cast 
in some sort of formal language (such 
as propositions) using terms and cate- 
gories that are meaningful and related 
to the domain at hand (Freiling et al. 
1985). Such propositions can express 
observation statements or facts as well 
as implications or potential if-then 
rules of inference.3 Table 2 presents 
example excerpts from the data base of 
the aerial-photo-interpretation project. 

The Unstructured Interview 
As far as I can tell, the development of 
most existing expert systems started 
with unstructured interviews of the 
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ROCK FORMS #3--DOME 
Raised circular, linear or ellipsoid rock 
Can be small, compound, or clustered 
Can have radiating fractures 
Can be salt, gypsum, or intrusive bedrock 
Radial drainage pattern, annular pattern at base of the slope 

ROCK TYPE # 1 --FLAT SHALE 
Gently rolling, irregular plain 
Symmetrical finger ridges 
Branching rounded hills with saddle ridges 
Scalloped hill bases 
V- and U-shaped stream gullies 
Uniform slope gradients imply homogeneous rock 
Compound slope gradients imply thick bedding 
Escarpments, very sharp ridges, steep slopes, and steep 
pinnacles imply sandy soils 

HUMID CLIMATE 
Implies rounded hills 
Implies fine dendritic drainage pattern 

ARID CLIMATE 
ImP lies steep, rounded hills and ridges with asymmetrical slopes 
Implies intermittent drainage ’ - 
Implies barren land or shrub land 
Implies light or mottled soil tones 

FLUVIAL LANDFORMS # 17--PLAYAS 
Dry, very low relief lakebeds in arid regions 
Can include beach ridges 
Few drainage features 
Irris iation and intense cultivation 
Scrabbled surface implies alkaline deposits 

SOIL TYPE #Z--SILT 
Light tones 
U-shaped stream gullies 

DRAINAGE PATTERNS #5--THERMOKARST 
Stream gullies form polygons and hexagons, linked by meandering 

Table 2. An Example Set of Excerpts from the Aerial-Photo-Interpretation 
Data Base (Hoffman 1984). Within each category and subcategory there can 

appear potential if-then rules (“X implies Y”), as well as facts (observation state- 
ments). Stream gully shapes refer to their cross sections. 

experts. Indeed, most system develop- 
ers have apparently relied exclusively 
on the unstructured interview method. 
Some developers have even apparently 
taken it for granted that an unstruc- 
tured interview is the only way to 
extract expert knowledge (for example, 
Weiss and Kulikowski 1984, p. 105). 

In an unstructured interview, the 
knowledge engineer asks more-or-less 
spontaneous questions of the expert 
while the expert is performing (or talk- 
ing about) a familiar task [see Freiling 
et al. 1985). For instance, the inter- 
viewer might ask the expert a question 
such as “How do you know that?” 
whenever the expert seems to tap into 
knowledge or make an inference, or 
“Do you want a cup of coffee?” when- 
ever they get tired. 

Presumably, the knowledge engi- 
neer’s prior analysis of the familiar 
tasks has turned the engineer from a 
novice into an apprentice (or even a 
master). Thus, the engineer is trained 
in what to look for during the inter- 
view. Should the training or prepara- 
tion proceed so far as to turn the 
knowledge engineer into an expert? I 
do not know if there can be any princi- 
pled answer to this question. It has 
been claimed (Davis 1986) that the 
novice interviewer might be better 
able to ask questions about ideas or 
procedures which an expert tends to 
leave implicit or take for granted (see 
also Hartley 198 1). 

Table 3 presents an example excerpt 
from an unstructured interview con- 
ducted during the airlift-planning pro- 
ject (Hoffman 1986). This excerpt is 
prototypical in that there are inquiries 
from the interviewer, speech pauses 
and hesitations, ungrammatical seg- 
ments, and unintelligible segments. 
The expert’s monologues in this 
excerpt are brief. Occasionally, they 
can be much longer. 

Knowledge engineers sometimes 
make an audiotape of the expert’s 
ruminations; this recording is called a 
verbal protocol (Ericcson and Simon 
1984). The trick is to train the expert 
into thinking out loud, which requires 
practice because the act of speaking 
one’s thoughts can actually interfere 
with or inhibit trains of thought for 
some individuals. Other individuals, 
those who habitually think out loud, 
might not actually leave a very good 
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record of their reasoning. 
Audiotapes are necessarily a partial 

representation of the key information. 
An expert’s facial expressions and ges- 
tures can also reveal inference-making 
processes (McNeil1 and Levy 1982). 
For instance, in the analysis of 10 
hours of unstructured interviews 
(Hoffman 1986), I found that a majori- 
ty of the 957 questions asked by the 
interviewer were not marked by clear- 
ly rising intonation. Typically, the 
interviewer was repeating some bit of 
knowledge that had just been asserted 
by the expert. The intention was that 
the expert would either confirm, deny, 
or qualify the interviewer’s statement. 
The pragmatics of such utterances as 
“ah” and “urn” (and their gestural 
counterparts) are only4 captured as 
ephemera on audiotape. 

The moral here is that the inter- 
viewer should always take copious 
notes and not rely passively on audio- 
tapes. Furthermore, it is prudent to 
distinguish between interviews, which 
are one-on-one, and discussion groups. 
In general, discussion group sessions 
need not be recorded. An important 
exception to this rule is the recording 
of the discussions of teams of experts 
who are working on tough cases (to be 
discussed later). 

The Structured Interview 
A powerful and yet conceptually sim- 
ple alternative to unstructured inter- 
views is the structured interview. In a 
sense, the structured interview com- 
bines an analysis of familiar tasks 
with an unstructured interview. In 
order to add structure to an interview, 
the knowledge engineer initially 
makes a first pass at a data base by 
analyzing the available texts and tech- 
nical manuals, or by conducting an 
unstructured interview. The expert 
then goes over the first-pass data base 
one entry at a time, making com- 
ments on each one. Recording this 
process is not necessary because the 
knowledge engineer can write changes 
and notes on a copy of the printout of 
the first-pass data base. 

A structured interview in one way 
or another forces the expert to system- 
atically go back over the knowledge. 
Any given comment can have a num- 
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Table 3. Example Excerpt from an Unstructured Interview. 

ber of effects on the data base. It can 
lead to (I) the addition or deletion of 
entries, (2) the qualification of entries, 
(3) the reorganization of the hierarchi- 
cal or categorical structure of the data 
base, or (4) the addition or deletion of 
categories. The result is a second pass 
at the data base. 

Limited- 
Information Tasks 

Limited-information tasks represent 
the application of basic scientific 
method: to understand how something 
works in nature, we tinker with it. 
Limited-information tasks are similar 
to the familiar tasks, but the amount 
or kind of information that is available 
to the expert is somehow restricted. 
For example, an expert radiologist 
might like to have available all sorts of 
information about a patient’s medical 
history before interpreting an X ray. 
Many expert aerial-photo interpreters 
like to have all sorts of maps available 

during the interpretation of photos. In 
the limited-information task, such 
contextual information can be with- 
held, forcing the expert to rely heavily 
upon (and hence provide additional 
evidence about) their knowledge and 
reasoning skills. 

In general, experts do not like it 
when you limit the information that is 
available to them. It is commonly 
assumed in familiar tasks that all the 
relevant information is available and 
that the expert’s judgments are cor- 
rect. Some experts would rather give 
no judgment at all than give one that 
is based on incomplete information. It 
is important when instructing the 
expert to drive home the point that the 
limited-information task is not a chal- 
lenge of their ego or of their expertise: 
The goal of the task is not to deter- 
mine how “clever” the expert is. 

Once adapted to the task, experts 
can provide a wealth of information. 
The limited-information task is espe- 
cially useful for revealing an expert’s 



strategies (as opposed to factual 
knowledge). The incompleteness of 
the information affords the formula- 
tion of hypotheses (rather than final 
judgments), strategic thinking (What if 
. . . ?), and the use of heuristics [rules 
of thumb). 

The limited-information task can be 
used to provide information about sub- 
domains of the expert’s knowledge, to 
fill in any gaps in the data base or a set 
of inference rules. For example, in the 
aerial-photo-interpretation project, the 
structured interview with one particu- 
lar expert did not yield much informa- 
tion about certain geological forms. 
Hence, other experts could be run 
through a limited-information task 
that involved photos of precisely these 
geological forms. 

Constmined- 
Processing Tasks 

Constrained-processing tasks are like 
limited-information tasks in that both 
involve tinkering with the familiar 
task. Constrained-processing tasks 
involve deliberate attempts to con- 
strain or alter the reasoning strategies 
that the expert uses. One simple way 
to achieve this goal is to limit the 
amount of time that the expert has in 
which to absorb information or make 
judgments. For example, the interpre- 
tation of aerial photos typically takes 
hours, but in a constrained-processing 
task the expert might be allowed, say, 
two minutes to inspect a photo and 
fiv; minutes to make judgments about 
it. 

Another way to constrain the pro- 
cessing is to ask the expert a specific 
question rather than to require the full 
analysis that is conducted during the 
familiar task. Two subtypes of a con- 
strained-processing task that involve 
this single-question processing are 
what can be called the method of sim- 
ulated familiar tasks and the method 
of scenarios. 

The Method of 
Simulated Familiar Tasks 
Here, a familiar task is performed 
using archival data. The best example 
of this method I’ve seen is used in 
probing the knowledge of expert 

weather forecasters (Moninger and 
Stewart 1987). The experts have to do 
a forecast but in displaced real time. In 
this simulated familiar task, the clock 
can be stopped at any point and the 
expert queried with regard to reason- 
ing strategies or subdomains of knowl- 
edge as incoming data are monitored 
and predictions are made. 

The Method of Scenarios 
While analyzing cases, experts often 
draw analogies to previously encoun- 
tered situations or cases. A given case 
is explored in terms of any relevant or 
salient similarities and differences (at 
either perceptual or conceptual levels) 
relative to a previously encountered 
case. For example, Klein (1987) exam- 
ined how expert mechanical and elec- 
trical engineers design new compo- 
nents by analogy to other components 
that perform similar functions. 
Moninger and Stewart (1987) docu- 
mented how expert weather forecast- 
ers make predictions about the growth 
of storms based on analogies to previ- 
ously experienced storms6 

One type of constrained-processing 
task involves having the interviewer 
deliberately encourage the use of sce- 
narios during the performance of a 
familiar task. Such a practice should 
evoke evidence about the expert’s rea- 
soning for the kinds of scenarios 
involved in the data at hand. 

Combined Constraints 
A task can involve combining limited- 
information constraints with process- 
ing constraints. For example, the 
expert aerial-photo interpreter could 
be asked to interpret a photograph 
without the benefit of maps and with 
only two minutes in which to view 
the photo [Hoffman 1984). 

If an expert does not like limited- 
information tasks, chances are the 
opinion will be the same about con- 
strained-processing tasks. In general, 
the more constrained the task--or the 
more altered it is relative to the famil- 
iar tasks--the more uncomfortable the 
expert is doing the task. However, in 
my experience, once an expert begins 
to open up and becomes less hesitant 
about giving uncertain or qualified 

judgments, the limited or constrained 
tasks can be good sources of informa- 
tion about the expert’s reasoning 
strategies. 

The Method of 
Tough Cases 

Research on an expert’s reasoning 
encounters special difficulty during its 
later phases when some of the expert’s 
knowledge and methods of reasoning 
have already been described. The task 
that now confronts the knowledge 
engineer is to get evidence about the 
subtle or refined aspects of the expert’s 
reasoning. One needs to know some- 
thing about the expert’s reasoning that 
is not already known. 

Subtle or refined aspects of an 
expert’s reasoning are often manifest- 
ed when an expert encounters a tough 
case, a case with unusual, unfamiliar, 
or challenging features. It is usually 
intuitively obvious to an expert when 
a case is a tough one. Almost by defi- 
nition, such cases are rare. As a conse- 
quence, the knowledge engineer must 
adopt special methods of study. The 
limited-information and constrained- 
processing tasks work by making rou- 
tine cases challenging; they do not 
turn routine cases into tough cases. 

Methodologically, the method of 
tough cases is quite simple. The 
knowledge engineer is not likely to be 
present when an expert encounters a 
tough case; so, the expert is equipped 
with a small tape recorder and is 
instructed how to make a verbal proto- 
col of personal ruminations when 
encountering a tough case. 

It seems to me that for all important 
domains of expertise--those which 
take years of practice--all experts and 
teams of experts should routinely 
make recordings of their tough cases. 
Expertise should never be wasted. 
Although the analysis of protocols can 
be time consuming (more on this 
point later), benefits will no doubt 
accrue from recording the knowledge 
that took someone a lifetime to 
acquire. Ultimately, recording of 
knowledge might be the crowning 
achievement of the modem work on 
expert systems. As Doyle (1984) put it, 
“It may be fruitful to separate training 
in articulate apprenticeship from 
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Table 4. Some Salient Advantages and Disadvantages of the Various Methods for Extracting an Expert’s Knowledge. 

training in current computer systems, 
for the’former will be useful today and 
tomorrow, while the latter will con- 
tinually become obsolete” (p. 61). 

Comparison of the Methods 
For an independent example of how all 
these various methods crop up in work 
on expert systems, see the section 
“Step by Step” in a review article by 
Patton (1985). Looking through her 
discussion, one can ferret out an 
example of a structured interview, an 
analysis of tough cases, a simulated 
familiar task, and a constrained-pro- 
cessing task. Given all these various 
tasks, how can they be compared? One 
way to compare them is in terms of 
their relative advantages and disadvan- 
tages, some of which I have already 
alluded to for the various tasks. Table 
4 summarizes these points. 

Apart from the qualitative advantages 
and disadvantages, the experimentalist 
would like to have some quantifiable 
criteria for use in a comparative analy- 
sis. Some possible criteria are present- 
ed in table 5. 

Task and Material Simplicity 
The method of familiar tasks and the 
method of tough cases are essentially 
equal in terms of the simplicity of the 
tasks and the materials, as are the lim- 
ited-information and constrained-pro- 
cessing tasks. For all these methods, 
the instructions involved are about a 
page or so long, and the materials will 
be one or a few pages of information, 
displays, graphs, and so on. The struc- 
tured interview stands out because it 
requires a first-pass data base, which 
can itself consist of a relatively large 
and complex set of materials. 

Task Brevity 
Ideally, one wants to disclose the 
expert’s reasoning as quickly as possi- 
ble. Familiar tasks can take anywhere 
from a few minutes (X-ray diagnosis) 
to an hour [weather forecasting] to an 
entire day (aerial-photo interpretation). 
Interviews take on the order of days or 
even weeks. Although a time-consum- 
ing process, interviews can yield a 
great deal of information, especially 
when used in the initial phase of 
developing a data base. Limited-infor- 

mation and constrained-processing 
tasks can be intensive and should be 
designed to take somewhere between 
15 and 45 minutes. Although they are 
not very time consuming, these tasks 
do require time for transcribing and 
coding the audiotapes (more on this 
point later). 

Task Flexibility 
Ideally, the task should be flexible: it 
should work with different sets of 
materials and with variations in 
instructions. For some experts, abun- 
dant information about reasoning can 
be evoked by the simplest of ques- 
tions. For other experts, the verbaliza- 
tions might be less discursive. For 
some experts, a tape recorder might be 
absolutely necessary; for others, short- 
hand notes might suffice. 

Task Artificiality 
The task should not depart too much 
from the familiar tasks. After all, one 
does not want to build a model of rea- 
soning based on research evidence 
gained from tasks that never occur in 
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the expert’s experience. The further 
the task departs from the usual prob- 
lem-solving situation, the less it tells 
the knowledge engineer about the 
usual sequences of mental operations 
and judgments. However, deliberate 
violations of the constraints that are 
involved in the familiar tasks (that is, 
tinkering with the familiar tasks) can 
be used to systematically expose the 
expert’s reasoning. 

None of the tasks that I have 
described in this paper depart radically 
from the familiar tasks. They do differ 
in the degree to which they relax the 
constraints that are involved in the 
familiar tasks in order to evoke 
instances of reasoning. 

Data Format 
Ideally, the data that result from any 
method should be in a format ready to 
be input into the data base. Only the 
structured interview has this charac- 
teristic. The other methods can result 
in verbal protocol data, which need to 
be transcribed and analyzed. ’ 

Data Validity 
The data that result from any method 
should contain valid information, 
valid in that it discloses truths about 
the expert’s perceptions and observa- 
tions, the expert’s knowledge and rea- 
soning, and the methods of testing 
hypotheses. In addition to validity in 
the sense of truth value, one would 
like to feel that a data base is com- 
plete--that it covers all the relevant 
subdomains of knowledge. One would 
also like to know that different 
experts agree about the facts. This 
agreement is validity in the sense of 
reliability or consensus across experts. 
Finally, one would like to have some 
assurance that a set of facts includes 
the most important ones. 

Without such valid information, an 
expert system cannot be built. HOW 
can one be sure that a data base repre- 
sents valid information? 

Validity: The Importance of the Data 
Some of an expert’s statements will 
obviously be irrelevant (Do you want a 
cup of coffee?). Excepting these state- 
ments, the knowledge engineer gener- 
ally takes it for granted that a given 
statement by the expert is relevant to 

Table 5. Some Criteria by Which Methods Can Be Analyzed and Compared. 

the domain of expertise being studied. 
However, just because a given state- 
ment (or datum) is relevant does not 
mean that it is at all important. 

Validity in the sense of the relative 
importance of a given fact or rule can 
be assessed in a number of ways. One 
way is the direct approach--ask the 
experts some more-or-less structured 
questions to get their judgments of the 
relative importance of a data-base 
entry. Another way to assess impor- 
tance is to see how early or how often 
a given fact crops up in the data from 
various experts. 

Validity: Reliability or Consensus The 
running of additional experts in a 
knowledge-extraction task presumably 
has as its major effect the generation of 
lots of information which is redundant 
in that it repeats data which are 
already in the data base (having come 

from earlier studies of some other 
expert). This redundancy can be taken 
as evidence of the validity of the data, 
validity in the sense of agreement or 
reliability across different experts. 

How many experts is enough? I am 
not sure there can be a principled 
answer to this question. Some 
domains have only one expert, leaving 
one with little choice. At the other 
extreme is the “shotgun” approach of 
interviewing as many different experts 
as possible (for example, Mittal and 
Dym 1985) in order to get a complete 
data base. 

Validity: The Completeness of the 
Data Base Having more than one 
expert perform various tasks can also 
help assure validity--in the sense of the 
completeness of the data base. Indeed, 
a good rule of thumb is to “pick the 
brains” of more than one expert for any 
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Table 6. A Matrix for Classifying the Data Generated by a Task That Is Intend- 
ed to Extract the Knowledge of an Expert. The frequency of propositions of each 
of two types (facts or observation statements, and inferences or potential if-then 
rules) can be used to assess the relative difficulty of extracting the two types of 

knowledge. “old” or “new” relative to the current data base. 

domain in which different experts 
have widely different degrees of expe- 
rience with different subdomains. In 
addition to their idiosyncratic knowl- 
edge, they might have idiosyncratic 
strategies (Mittal and Dym 1985). 
Thus, having more than one expert go 
through the various knowledge-extrac- 
tion tasks should have the effect of 
“pushing” the data base toward com- 
pleteness by filling in the gaps, which 
occurred in the aerial-photo-interpre- 
tation project. One expert knew a lot 
about desert forms, another expert 
knew a lot about glacial and arctic 
forms. 

Validity: The Truth Value of the Data 
The question of how many experts is 
enough cuts two ways. The study of 
more than one expert is bound to gen- 
erate some disagreements, and dis- 
agreements are indigestible contradic- 
tions as far as any logic-based machine 
system is concerned. Nevertheless, it 
might become inevitable that contra- 
dictions arise as one refines a data 
base, adds details, and fleshes out the 
experience-dependent subdomains of 
knowledge. 

It has been proposed that expert sys- 
tem development projects should only 
use one expert precisely in order to 
avoid contradictions (for example, Pre- 
rau 1985). This strategy assumes that 
disagreements are pervasive, but it 
also seems to assume an underlying 
reason for the pervasiveness--it is the 
expert knowledge itself that is plagued 
by uncertainty. If this statement is 
true in a given domain, one obviously 
runs the risk of generating a system 
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that is wholly idiosyncratic at best and 
based on trivial knowledge at worst. In 
any event, it could be that the domain 
at hand is not really well-suited to the 
application of expert system tools. The 
advice of trying to avoid contradictions 
seems to the experimental psycholo- 
gist to miss the point of expert system 
work. Disagreements should be used 
as clues about the basic research that 
might be needed to fill in the knowl- 
edge gaps, perhaps even before any 
expert system work can be done. 

Less extreme than the assumption 
of pervasive uncertainty and disagree- 
ment is the assumption that experts in 
a given domain agree about most of 
the basic facts and relevant causal 
laws, but might disagree about how to 
go about applying them. An example is 
the project on the effects of sunspots 
on the weather (McIntosh 1986). 
Although the relevant laws are known 
(that is, electromagnetism, particle 
physics, and so on], the dynamics of 
the sun’s atmosphere are only partially 
understood. Thus, the solar weather 
experts sometimes disagree on how to 
go about predicting solar phenomena. 

Another realistic possibility is the 
experts agreeing on the relevant laws 
and about how to go about applying 
these laws but disagreeing about 
hypotheses for some specific cases. 
Such occurrences routinely happen in 
knowledge-extraction tasks that 
involve more than one expert at a 
time. For example, weather forecasters 
can be paired in the simulated familiar 
task (Moninger and Stewart 1987) and 
they often enter into debates as 
hypotheses are hashed about. Aerial- 

photo interpreters sometimes work in 
teams of research groups. For cases 
such as these team efforts, the experts’ 
discussions, debates, and exchanges of 
hypotheses can be very informative, 
especially when the team encounters a 
tough case. 

Whether disagreements among 
experts are pervasive, are due to uncer- 
tainty in the application of relevant 
knowledge, or are due to uncertainty 
about specific hypotheses, it is ulti- 
mately the responsibility of the knowl- 
edge engineer to resolve any unreliable 
or contradictory rules or facts. Suppose 
that each of a set of expert aerial-photo 
interpreters produces a rule about the 
identification of limestone sinkholes 
but that the rules are somehow mutu- 
ally incompatible. The knowledge 
engineer really has only two choices: 
either combine the rules into a new 
logically coherent rule, or select one of 
them for use. In any event, only one 
rule for identifying limestone sink- 
holes can appear in the expert system 
[that is, there can be no contradictions 
in its logic). Formally, the machine can 
only model one expert at a time. 

Method Efficiency 
Perhaps the most important criterion 
in a practical sense is overall efficien- 
cy. For the sake of people out there “in 
the trenches,” I thought I’d try to apply 
some efficiency metrics to the various 
methods. In the case of knowledge 
acquisition, efficiency involves the 
number of propositions generated per 
unit of time. Time is expressed as total 
task time, that is, the time it takes the 
knowledge engineer to prepare to run 
the expert at the task plus the time it 
takes to run the task plus the time it 
takes to analyze the data. 

One can assess the production rates 
of propositions of different types. One 
seeks not only facts [predications or 
observation statements), one also 
seeks information about potential if- 
then rules (the expert’s inference 
strategies and heuristics). Further- 
more, one seeks not just propositions 
of these types but new ones, informa- 
tive ones because they are not already 
in the data base. Table 6 presents this 
classification of propositional data. 

Table 7 presents some efficiency 



analyses for the projects I’ve been 
involved with. I present these analyses 
not to imply that knowledge engineers 
should routinely perform such analy- 
ses, but hopefully to save them the 
trouble. I suspect that the rate statis- 
tics presented here are representative 
of what people can expect in work on 
expert systems. 

Let me focus on unstructured inter- 
views because this knowledge-acquisi- 
tion method is the most commonly 
used. For unstructured interviews, one 
can assess efficiency in a number of 
ways. Total time can be divided into 
the number of propositions obtained 
(for both observation statements and 
potential if-then rules). Also, the num- 
ber of propositions obtained can be 
divided into the number of questions 
asked by the interviewer (or the num- 
ber of pages of transcript]. 

For the project on expert airlift plan- 
ners (Hoffman 1986), the analysis of 
the 10 hours of taped unstructured 
interviews yielded a total task time of 
100 hours, a total of 957 questions 
asked by the interviewer, and a total of 
753 propositions (including both 
observation statements and potential 
if-then rules). Thus, the unstructured 
interview generated only approximate- 
ly 0.13 propositions per task minute 
and approximately 0.8 propositions for 
each question asked by the knowledge 
engineer. 

The unstructured interview pro- 
duced lots of propositions in the first 
hours of the interview (over 5 proposi- 
tions per page of transcript or over 200 
propositions per hour), but the rate 
trailed off rapidly (to less than 1 propo- 
sition per page of transcript or about 
40 propositions per hour). In part, this 
result was due to the fact that in the 
later sessions, the interviewer and 
expert spent time sitting at a comput- 
er terminal and informally discussed 
user needs and system design. In just 
the first 5 of the 10 hours, the unstruc- 
tured interview yielded approximately 
1.6 propositions per task minute. 

In general, if a knowledge engineer 
finds that knowledge is being extract- 
ed at a rate of about two new proposi- 
tions per task minute, the engineer 
can be assured of probably being on 
the right track. If the rate is closer to 
one proposition per task minute, 
chances are there is some inefficiency 

Table 7. A Comparison of the Results for Four Methods in Terms of Some Mea- 
sures of Efficiency The unstructured interview results are from the project on 
expert airlift planners (Hoffman 1986). The other results are from the aerial 
photo interpretation project (Hoffman 1984) The third task listed here is one 
that combined limited information with processing constraints. All rate com- 
putations are based on total task time. 

somewhere. If the rate is closer to 
three per minute, the knowledge engi- 
neer is golden. 

Recommendations 

Overall, the unstructured interview is 
not too terribly efficient. This finding 
deserves emphasis because most 
expert systems have apparently been 
developed using unstructured inter- 
views Preliminary unstructured inter- 
views can be critical for obtaining 
information on three key questions: (1) 
Who are the experts? (2) Is this prob- 
lem well-suited to the expert system 
approach? and (3) What are the needs 
of the people who will use the system? 
However, if the knowledge engineer 
needs to become familiar with the 
domain, then an analysis of familiar 

tasks should be conducted and a first- 
pass data base gleaned from this analy- 
sis. Once a first-pass data base has 
been produced, then unstructured 
interviews (using note taking rather 
than tape recording) can be used to 
determine user needs. If the knowl- 
edge engineer wishes to build a refined 
or second-pass data base, structured 
interviews are more efficient. In fact, 
they can be many times more efficient 
overall, according to my results. 

As data bases become very large, it 
becomes necessary to use special 
tasks. Limited-information or con- 
strained-processing tasks or the 
method of tough cases can be used in 
order to focus on specific subdomains 
of knowledge or to disclose aspects of 
reasoning that the data base might 
lack. Otherwise, the knowledge engi- 
neer might spend hours working at an 
inefficient task, inefficient in that it 
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produces lots of propositions which 
happen to already reside in the data 
base. 

All experts differ, and all domains of 
expertise differ; so, too, will all expert 
system-development projects differ. 
Some methods for extracting an 
expert’s knowledge will fit some pro- 
jects and not others. For example, an 
analysis of familiar tasks might not be 
very fruitful for domains in which 
there are no texts or in which the 
available technical manuals provide 
little information about what the 
experts actually do. Such was the case 
for the airlift-planning project (Hoff- 
man 1986). It made sense in that pro- 
ject to begin with an unstructured 
interview to learn not only about user 
needs but to simultaneously get some 
very basic information about what air- 
lift planners actually do in their plan- 
ning tasks (that is, the familiar task). 

Despite such domain specificity, I 
can propose a generalized series of 
steps for extracting the knowledge of 
experts, as shown in table 8. Situa- 
tions probably exist for which my rec- 
ommended series of steps is not quite 
fitting. However, I’d wager that one or 
another slight variation on this theme 
would fit. 

The figures in table 8 for “Effort 
Required” are approximate ranges 
based on my experience. According to 
my estimates, it can take at least three 
months to get to the point of having a 
refined or second-pass data base. How 
does this time frame compare with the 
experiences of other artificial intelli- 
gence [AI) researchers? Actually, it is 
impossible to tell from reading the 
expert system literature exactly how 
much effort went into building the 
data base in any expert system project. 
(It is for this reason that I feel com- 
pelled to present my own “ballpark” 
estimates.) Typically, authors do not 
even state how the knowledge was 
obtained--sometimes from texts and 
manuals, sometimes from archived 
data, and usually from unstructured 
interviews. Typically, research reports 
jump right into a discussion of system 
architecture. 

Some reports on expert system pro- 
jects state how long it took to develop 
a prototype, but one can only guess 
how long it took just to acquire (or 
extract) the data. The development of 

MYCIN (Davis, Buchanan, and Short- 
liffe I977), a system for diagnosing 
infectious diseases, took many years. 
The development of INTERNIST, 
another medical-diagnosis system, 
took 10 years with the help of a full- 
time specialist in internal medicine 
(Buchanan 1982). Rl, which configures 
the VAX computer (McDermott 1980), 
took two man-years to develop by a 
team of about a dozen researchers and 
is still being refined. In general, it 
takes one to two years to develop a 
prototype and about five years to 
develop a full-scale system (Duda and 
Shortliffe 1983; Gevarter 1984). 

In contrast, the PUFF system for the 
diagnosis of pulmonary disorders was 
reported to have been developed in 
less than 10 weeks (Bramer 1982). The 
likely reason for this brevity was that 
most of the rules were easily gleaned 
from archived data (Feigenbaum 1977), 
and only one week was spent inter- 
viewing the experts (Bramer 1982). 

Apparently, if one is relying on 
unstructured interviews, is interview- 
ing a large number of experts, or is 
working on a system that requires 
hundreds or thousands of rules and 
facts in its data base (as in the 
INTERNIST system), then many years 
of effort are required to develop the 
system to the prototype stage. 

In this light, a minimum of three 
months to build a second-pass data 
base seems like an underestimate. 
However, it cannot be a gross 
underestimate. The second-nass data 
base for the aerial-photo-interpretation 
project (Hoffman 1984) contained over 
1400 rules and facts, and it took me 
about 45 days to develop it by means 
of structured interviews and special 
tasks. 

AI researchers will not be eager to 
use all the methods and carry out all 
the efficiency computations presented 
here, but I do not propose that they 
should. I do not want to shoehorn the 
“tricks of the trade” of building expert 
systems into the rigid statistics-orient- 
ed structure of a psychological experi- 
ment. However, I do want to strongly 
recommend that developers of expert 
systems routinely report the methods 
used to extract experts’ knowledge and 
the efficiency of the methods [that is, 
the amount of effort taken to con- 
struct the data base). 

Some Lingering Issues 

None of the methodological ideas that 
are presented here is intended to be 
logically airtight. My categorization of 
methods is intended to be pragmatic 
rather than complete. The criteria for 
analyzing methods are probably insuf- 
ficient. I welcome reactions and sug- 
gestions and hope that these ideas are 
helpful to others. 

To those who have already devel- 
oped an expert system, many of the 
research ideas I have referred to might 
seem detailed (if not trivial). I wanted 
to spill out the gory details for the 
sake of those who have not yet 
attempted to generate an expert sys- 
tem. As I said at the outset, I address 
the expert system engineering process 
from a nuts-and-bolts perspective. To 
those who are not familiar with exper- 
imental psychology, it might be sur- 
prising that experimentalists deal with 
minutiae such as better ways of tape 
recording or the variety of ways to 
assess the validity of a data set. How- 
ever, such minutiae are precisely the 
sorts of things that experimental psy- 
chologists like to attend to. Thus, my 
discussion focused on methods and 
methodology (the analysis of meth- 
ods). Hidden in the discussion are a 
few broader issues that merit explicit 
consideration and a wee bit of feather 
ruffling. 

The Social 
PsychologyofExpertise 

Should the knowledge engineer be the 
expert? In other words, should the 
expert become a knowledge engineer? 
I do not know if there can be a princi- 
pled answer to this question. Some 
researchers claim that the knowledge 
engineer should be the expert (Fried- 
land 1981), that “expert systems are 
best conceived by the experts them- 
selves” (Taylor 1985, p. 62). Some 
researchers claim that the situation in 
which experts interview other experts 
can be disastrous. Other researchers 
say the more the expert knows about 
AI, the more likely it is that the expert 
has biases (for example, about which 
knowledge representation format to 
use) (McIntosh 1986). 
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Table 8 Some Steps for Extracting and Characterizing the Knowledge of an Expert Prior to the Construction of an 
Expert System The analysis of familiar tasks includes the analysis of texts and technical manuals. The activity des- 
ignated “Special tasks” includes limited information tasks, constrained processing tasks and analyses of “tough 
cases ” All figures for “effort required” are approximations based on the author’s experience. 

elusion or inference. Typically, the what degree does a given expert sys- _ . The answer to this question proba- 
bly lies in the social-psychological 
dynamics of particular working 
groups. Certainly, the expert should 
know enough about AI to be skeptical 
and enough about expert systems to 
appreciate the ways in which the sys- 
tern can aid, rather than replace them. 

system returns with what is essential- 
ly a list or a printout of the rules 
involved. Such an explanation is not 
very adequate. Until expert systems 
deal with reasoning and knowledge at 
a semantic or conceptual level, their 
artificiality will remain painfully obvi- 
ous, and they might not even merit 
being called intelligent. 

tern need to represent conceptual 
knowledge? The jury is still out. We 
cannot be certain the purely rule-based 
approach will always effectively or 
efficiently solve the various problems 
that people would like their expert 
systems to solve. 

Are Expert Systems AI, or Are 
They Cognitive Simulation? 
Some expert systems have an “expla- 
nation” component; that is, one can 
query the system about a given con- 

Concepts are typically defined in AI 
using logically necessary and sufficient 
conditions. However, can an expert 
system work (or work well) without 
also being a “cognitive simulation?” To 

Most concepts do not exist in 
human cognition in any pristine form. 
Experts, unlike expert systems, do not 
always reason in terms of a logical set 
of rules (Dreyfus and Dreyfus 1986). 
What is clear is that in many domains, 
experts reason in terms of their percep- 
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tual and conceptual understanding, 
such as their “mental models” of 
causal laws (Gentner and Stevens 
1983; Sridharan 1985). 

When the expert aerial-photo inter- 
preter looks at a photo, the complex 
geo-biological events that led to the 
formation of the terrain are perceived 
(for example, mountain building, 
glaciation, and so on). When the expert 
cardiologist listens to heart sounds 
over a stethoscope, the complex 
biomechanical events that occur in 
the cardiovascular system are per- 
ceived (Jenkins 1985; Johnson et al. 
1982). Such perceptual and conceptual 
understanding, the result of perceptu- 
al-learning ma concept-formation pro- 
cesses, might be direct (Gibson 1979); 
that is, it might not be mediated by 
any analysis of naked if-then rules, 
serial or otherwise. 

Recently, attempts have been made 
to incorporate conceptual knowledge 
into AI systems (Chandrasekaran and 
Mittal 1983; Kunz 1983; Pople 1982) 
and to define rule systems that behave 
like the human reasoner (Sridharan 
1985). As instances of AI systems, 
expert systems might not need to pre- 
cisely simulate cognition in order to 
get the job clone. However, we do need 
to learn more about experts’ reasoning 
through basic research if our expert 
systems are ever to get the job clone 
well, which brings me to the last issue 
I address. 

Does AI Have Its Foundations 
in Philosophy or Research? 
The cognitive-simulation work hints 
at the fact that some AI workers are 
really closet psychologists. They rely 
on psychological terms and mentalis- 
tic metaphors, and they work on psy- 
chological problems. More to the 
point, the problems they work on 
often beg for an empirical answer, an 
answer based on research findings. 
However, AI workers tend to turn to 
computing theories and abstract con- 
cepts to produce solutions. 

No better example of this tendency 
exists than that provided by the field 
of expert systems itself. Having recog- 
nized that the knowledge-acquisition 
process is a bottleneck, what solution 
do AI workers seek? Let’s build anoth- 

er program! Davis and Lenat (1982, p. 
348) assert that a system which has 
knotiledge about its own representa- 
tions can allow for “knowledge acqui- 
sition using a high-level dialog.” But 
can’t humans use dialog to extract 
knowledge, or did I miss something? 
AI really does like to put the logical 
cart before the empirical horse. 

In the literature on expert systems, 
I’ve found numerous assertions, such 
as the claim that experts are better 
able to build good data bases than 
computer scientists. Such assertions 
might seem solid and might indeed be 
correct, but they are rarely empirically 
grounded, which causes the experi- 
mental psychologist to yank out 
clumps of hair. 

The broader literature on AI and 
cognitive science is characterized by 
its penchant for philosophical specula- 
tion (Hoffman and Ned 1983). The 
typical issue of a cognitive science 
technical journal contains evermore 
clever theories, theories that combine 
“schemas,” “scripts,” “inference nets,” 
and “labeled relations” in all sorts of 
clever computational ways. However, 
there is rarely a clear statement about 
whether the theory has an evidential 
base. Sometimes, no statement even 
exists about whether the theory is sup- 
posed to have anything at all to do 
with heads or whether it is just sup- 
posed to be about computers, which 
causes the experimental psychologist 
to yank out even larger clumps of hair. 

While remembering that the roots 
of AI are in the philosophy of the mind 
(cf. McCarthy and Hayes 19691, AI 
practitioners seem to have forgotten 
about the roots in experimental psy- 
chology. It is the rare paper that 
acknowledges the need for basic 
research on cognition, that is not put 
off by the experimental psychologist’s 
stubborn concern with methodological 
details, or that is sensitive to the dif- 
ference between AI and cognitive sim- 
ulation.8 

If one is at all interested in cogni- 
tion or cognitive simulation, then 
experiments are necessary to ensure 
that the model works like the mind 
does, or to test hypotheses about an 
expert’s strategies. One cannot simply 
assert, for instance, that human or 
computer memories must rely on 
schemas because schemas are compu- 

tationally elegant. Such hasty episte- 
mological pronouncements will never 
do.9 

If AI is to solve the really tough 
problems, it would do well to put a bit 
less effort into short-term solutions 
[for example, reliance on naked if-then 
rules) ma premature applications (for 
example, expert systems that rapidly 
become too complex to be rapidly 
computable) and a bit more effort into 
systematic research (for example, how 
experts really reason]. In the past few 
years, federal funding for basic 
research on cognition and graduate 
training in experimental psychology 
have suffered from much more than 
their fair share of cuts. Rather than 
just bemoaning the lack of trained 
knowledge engineers, anyone who is 
interested in making a real contribu- 
tion to our needs in the field of AI 
might consider investing some 
resources in the support of basic 
research on human cognition and per- 
ception. 

The Benefits of Collaboration 
The collaboration of AI researchers 
and experimental psychologists can be 
of benefit to work on expert systems. I 
hope my article has made this point. 
Benefits can also accrue for psycholo- 
gy, however. For example, a major the- 
ory of memory asserts that forgetting 
is caused by the interference of new 
learning with old (Reder 19873 Smith, 
Adams, and Schon 1978). This hypoth- 
esis generates what is called the para- 
dox of expertise: how can experts deal 
so adroitly with so many remembered 
facts? Hopefully, research on the cog- 
nition of experts can help clarify this 
paradox. 

Expert system work also bears on 
theories of perceptual learning. 
Although it is obvious experts have 
special knowledge and concepts, it 
should be kept in mid that they also 
have special perceptual skills 
(Shanteau 1984). For example, the 
expert radiologist “sees” X rays differ- 
ently than the first-year medical stu- 
dent (Feltovich 1981). Another, more 
commonplace example is the expert 
sports commentator who “sees” some- 
thing that we novices can only pick up 
when shown the slow-motion replay. 
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Lifetimes of good research could be 
carried out to distinguish experts from 
novices in terms of their perceptual 
processes, learning processes, and rea- 
soning strategies. What information do 
experts focus on? What reasoning bias- 
es do they have? How can experts be 
identified? 

What I find particularly appealing 
about such questions is that the 
research they engender is practical and 
basic at the same time--practical 
because it contributes to the solving of 
important problems, basic because it 
contributes to the body of knowledge. 
The collaboration of experimental psy- 
chologists and AI researchers can be of 
great mutual benefit. 
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4. Tape-recording tips: [ 1 J conduct the inter- 
view in a small, quiet room; (2) use batter- 
ies liberally so you always receive a clear 
signal; and (3) preface your recording by 
identifying each of the participants. 
5. Constrained-processing tasks can also 
involve the measurement of reaction time 
or decision latency Such measures are 
important for the purposes of cognitive 
simulation and cognitive psychology, 
because the results can be informative 
about specific sequences of mental opera- 
tions (such as memory encoding and 
retrieval] For a discussion of the logic of 
reaction-time experiments, see Hoffman 
and Kemper (1987), Pachella (1974), Posner 
[ 1978), or Townsend and Ashby [ 1983). 
6. What is salient here is that the analogic 
reasoning is in terms of a comparison to 
previously encountered scenarios Because 
reasoning by analogy pervades all problem 
solving, the analogy component of the 
method of scenarios does not seem as 
salient for present purposes as the reliance 
on scenarios to form the analogies For 
reviews of the abundant literature on the 
role of analogy and metaphor in problem 

solving, see Eliot (1986), Gentner and 
Stevens [1983), Hoffman (1980, 1985), and 
Sternberg (1977) 
7. Some detailed comments are in order 
about the transcription process for the sake 
of those who might choose to go this route. 
As I have already implied, the transcription 
process takes time Without any doubt, the 
most time-consuming aspect of the tran- 
scription process is the time spent pausing 
and backing up the tape to interpret and 
write down the segments where more than 
one person speaks at a time. The moral: 
The examiner should consciously try to 
withhold comments or questions while the 
expert is talking. The examiner should use 
a notepad to jot down questions and return 
to them when the expert’s monologue is 
over The goal of any interview, whether 
structured or unstructured, is not to edify 
the knowledge engineer, but to let the 
expert talk and get the knowledge out so 
that it can be formalized (hence my earlier 
distinction between interviews and discus- 
sions] It also takes time to code the tran- 
script for propositional content, anywhere 
from one to five minutes for each page of 

transcript. The coding should involve at 
least two independent coders (or judges) 
until evidence indicates that their respec- 
tive codings show agreement which is high 
enough to warrant dropping the extra 
coders. 
8 To be fair, some AI authors are sensitive 
to the difference, for example, Bierre (19851, 
McCarthy (19831, Purves (1985,) and Woods 
(1985). Furthermore, the major AI conven- 
tions include sessions on cognitive 
research, and the AI technical journals 
include occasional reviews of recent cogni- 
tive research 
9 I am hesitant to attribute this particular 
claim about schemas to any one person I’ve 
read so many claims about the representa- 
tion of knowledge [templates, prototypes, 
networks, semantic features, and so on), 
and I’ve yanked out so much hair, that I’d 
rather ruffle everyone’s feathers I also find 
it worrisome when claims are made about 
computer or mental representations on the 
basis of the argument that there are “stor- 
age” limitations. Indeed, “storage” might be 
the wrong metaphor altogether. For further 
discussion, see Gorfein and Hoffman (1987) 
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