
Knowledge Base 
Verification 

We describe a computer program that 
implements an algorithm to verify the con- 

sistency and completeness of knowledge 
bases built for the Lockheed expert system 
(LES) shell. The algorithms described here 
are not specific to this particular shell and 

can be applied to many rule-based sys- 
tems. The computer program, which we 

call CHECK, combines logical principles 
as well as specific information about the 

knowledge representation formalism of 
LES. The program checks both goal-driven 

and data-driven tiles CHECK identifies 
inconsistencies in the knowledge base by 

looking for redundant rules, conflicting 
rules, subsumed rules, unnecessary IF con- 
ditions, and circular rule chains. Checking 

for completeness is done by looking for 
unreferenced attribute values, illegal 

attribute values, dead-end IF conditions, 
dead-end goals, and unreachable conclu- 

sions These conditions can be used to sug- 
gest missing rules and gaps in the knowl- 

edge base. The program also generates a 
chart that shows the dependencies among 
the rules CHECK can help the knowledge 
engineer detect many programming errors 

even before the knowledge base testing 
phase It also helps detect gaps in the 

knowledge base that the knowledge engi- 
neer and the expert have overlooked A 

wide variety of knowledge bases have been 
analyzed using CHECK. 

Tin A. Nguyen, WaIton A. Perkins, 
Thomas J. laffey, and Deanne Pecora 

ayes-Roth (1985) describes 
several features of rule-based 
systems that would help to 

make such a system suitable as a gen- 
eral computing approach. He points 
out that one of the key features these 
systems lack is “a suitable verification 
methodology or a technique for test- 
ing the consistency and completeness 
of a rule set.” It is precisely this fea- 
ture that we address here. 

LES is a generic rule-based expert 
system building tool (Laffey, Perkins, 
and Nguyen 1986) similar to EMYCIN 
(Van Melle 1981) that has been used as 
a framework to construct expert sys- 
tems in many areas, such as electronic 
equipment diagnosis, design verifica- 
tion, photointerpretation, and hazard 
analysis. LES represents factual data 
in its frame database and heuristic and 
control knowledge in its production 
rules. LES allows the knowledge engi- 
neer to use both data-driven and goal- 
driven rules. 

One objective in the design of LES 
was to make it easy to use. Thus, 
many debugging tools and aids were 
added to the LES program. One aid is a 
syntax checker that examines each 
rule for syntactic errors such as unbal- 
anced parentheses or misspelled 
names. Another of these aids is the 
knowledge base completeness and 
consistency-verification program 
called CHECK. Its purpose is to help a 
knowledge engineer check the knowl- 
edge base for existing and potential 
problems as it is being developed. 
CHECK analyzes the knowledge base 
after the rules, facts, and goals have 
been loaded into LES. 

Related Work 
Surprisingly enough, little work has 
been reported on knowledge base 
debugging. The TEIRESIAS program 
(Davis 1976) was the first attempt to 
automate the knowledge base debug- 
ging process. It worked in the context 
of the MYCIN (Shortliffe 1976) infec- 
tious disease consultation system. 
TEIRESLAS examined the “completed” 
MYCIN rule set and built rule models 
showing a number of factors, includ- 
ing which attributes were used to con- 
clude other attributes. Thus, when a 
new rule was added to MYCIN, it was 
compared with the rule model for the 
attributes found in the IF conditions. 
The program then proposed missing 
clauses if some attributes found in the 
IF part of the model did not appear in 
the new rule. TEIRESIAS did not 
check the rules as they were initially 
entered into the knowledge base. 
Rather, it assumed the knowledge 
base was “complete” (or close to it], 
and the knowledge transfer occurred 
in the setting of a problem-solving ses- 
sion. 

Suwa, Scott, and Shortliffe (1982), 
on which our work is based, wrote a 
program for verifying knowledge base 
completeness and consistency. The 
program was devised and tested with- 
in the context of the ONCOCIN sys- 
tem, a rule-based system for clinical 
oncology. 

Unlike TEIRESIAS, ONCOCIN’s 
rule checker is meant to be used as 
the system is being developed. It 
examines a rule set as it is read into 
the system. Knowledge base problems 
are found gby efirst partitioning the 
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CHECK identifies inconsistencies in the 
knowledge base by looking for redundant rules, 
conflicting rules, subsumed rulesqnnecessary 

IF conditions, and circular rule chains. 

rules into disjoint sets based upon 
what attribute is assigned a value in 
the conclusion. It then makes a table, 
displaying all possible combinations of 
attributes used in the IF conditions 
and the corresponding values that will 
be concluded in the THEN part of the 
rule. The table is then checked for 
conflicts, redundancy, subsumption, 
and missing rules. Finally, a table is 
displayed with a summary of any 
potential errors that were found. The 
rule checker assumes there should be 
a rule for each possible combination of 
values of attributes that appear in the 
antecedent. It hypothesizes missing 
rules based on this assumption. Such a 
process can result in the system 
hypothesizing rules that have seman- 
tically impossible combinations of 
attributes. Also, if the number of 
attributes is large, the system can sug- 
gest a very large number of missing 
rules. Nevertheless, the developers of 
the ONCOCIN system found the rule 
checker extremely useful in helping 
them to debug their evolving knowl- 
edge base. ONCOCIN uses both data- 
driven and goal-driven inferencing. 
Although the rule checker checks the 
rule set used in the ONCOCIN sys- 
tem, its design is general so that it can 
be adapted to other rule-based sys- 
tems. 

The intelligent machine model 
(TIMM) (1985) is an expert system 
shell that generates its rules from 
examples (that is, induction). 
TIMMTM has some capability for 
checking rules. In its method, incon- 
sistency is defined as (1) those rules 
with the same IF conditions but with 
different conclusions, (2) those rules 
with overlapping IF conditions but 
with different conclusions, and (3) sin- 
gle rules with more than one conclu- 
sion. 

The first condition is equivalent to 
logical conflict, but the other two con- 
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ditions are peculiar to the way the sys- 
tem generalizes its rules. TIMM 
checks for completeness by searching 
for points (that is, combinations of 
attribute values) in the state space that 
have low similarity to the existing 
training cases. It does this check by 
randomly selecting combinations of 
attributes and finding the situation 
that is least similar to any training 
case. This situation is then presented 
to the user along with a similarity 
measurement that tells the user how 
similar the situation is to the closest 
training case in the knowledge base. 

Knowledge engineering system 
(KES))TM (1983) is an expert system shell 
that has a support tool called INSPEC- 
TOR. INSPECTOR identifies all recur- 
sive attributes that have been directly 
or indirectly defined. An example of a 
recursive attribute is an attribute that 
occurs in both the antecedent and the 
consequent of a rule (this definition is 
similar to that of circular rules, which 
we discuss later). INSPECTOR can 
also identify all unattached attributes. 
An unattached attribute is one that is 
not contained in the antecedent or 
conclusion of any rule. However, this 
situation might not be an error if the 
knowledge engineer put the attribute 
in the knowledge base for future use or 
is using it to contain some type of ref- 
erence information. 

The work described in this article is 
an extension of the rule-checking pro- 
gram used in the ONCOCIN project. 
Our work differs from the ONCOCIN 
effort in that CHECK is applied to the 
entire set of rules for a goal, not just 
the subsets which determine the value 
of each attribute. Because of this global 
view of the knowledge base, CHECK 
includes several new rule-checking cri- 
teria, including unreachable conclu- 
sions, dead-end IF conditions, dead-end 
goals, unnecessary IF conditions, 
unreferenced attribute values, and ille- 

gal attribute values. Furthermore, 
CHECK produces dependency charts 
and detects any circular rule chains. 
This rule-checking system was devised 
and tested on a wide variety of knowl- 
edge bases built with a generic expert 
system shell rather than on a single 
knowledge base as in the ONCOCIN 
project. 

Potential Problems 
in the Knowledge Base 

static analysis of the rules can 
detect many potential problems 
that exist in a knowledge base. 

First, we identify knowledge base prob- 
lems that can be detected by perform- 
ing an analysis of goal-driven rules and 
then give definitions and examples of 
such problems. Later in this article, we 
look at how these definitions must be 
modified for data-driven rules. 

Knowledge base problems can only 
be detected if the rule syntax is restric- 
tive enough to allow one to examine 
two rules and determine whether situ- 
ations exist in which both can succeed 
and whether the results of applying the 
two rules are the same, conflicting, or 
unrelated. In rule languages that allow 
an unrestricted syntax, it is difficult or 
impossible to implement the algo- 
rithms described in this article. 

Checking for Consistency 
By statically analyzing the logical 
semantics of the rules represented in 
LES’s case-grammar format, CHECK 
can detect redundant rules, conflicting 
rules, rules that are subsumed by other 
rules, unnecessary IF conditions, and 
circular-rule chains. These five poten- 
tial problems are defined in the subsec- 
tions that follow. 

Redundant Rules Two rules are redun- 
dant if they succeed in the same situa- 



tion and have the same conclusions. In 
LES this statement means that the IF 
parts of the two rules are equivalent, 
and one or more conclusions are also 
equivalent. The IF parts of two rules 
can be equivalent only if each part has 
the same number of conditions, and 
each condition in one part is equiva- 
lent to a condition in the other part. 
Because LES allows variables in rules, 
two conditions are equivalent if they 
are unifiable. 

Formally, with the notation from 
predicate calculus, rule p(x) --> q(x) is 
equivalent to the rule p(y) --> q(y), 
where x and y are variables, and p and 
q are logical relationships. 

For example, consider the two rules 
that follow: 
IF ?X has a hoarse cough, AND 

!X has difficulty breathing 
THEN type-of-disease of 2X is 

CROUP 
IF ?Y has difficulty breathing, 

AND 
!Y has a hoarse cough 

THEN type-of-disease of ?Y is 
CROUP 

2X and !Y represent variables that 
will be instantiated to a person in the 
database. These two rules would be 
redundant even if they used different 
variables and their IF conditions were 
in a different order. 

As reported by Suwa, Scott, and 
Shortliffe (1982), redundancy in a 
knowledge base does not necessarily 
cause logical problems, although it 
might affect efficiency. In a system 
where the first successful rule is the 
only one to succeed, a problem will 
arise only if one of two redundant 
rules is revised or deleted, and the 
other is left unchanged. Also, unless 
the system uses some type of scoring 
scheme (for example, certainty fac- 
tors), redundancy should not cause a 
problem. 

Conflicting Rules Two rules are con- 
flicting if they succeed in the same sit- 
uation but with conflicting conclu- 
sions. In LES this statement means 
that the IF parts of the two rules are 
equivalent, but one or more conclu- 
sions are contradictory. 

Formally, with the notation from 
predicate calculus, the rule p(x) --> 
not(q(x)) is contradictory to the rule 

PM --’ k4. 
For example, consider the two rules 

that follow: 
IF !X has a hoarse cough, AND 

3X has difficulty breathing 
THEN type-of-disease of 2X is 

CROUP 
IF !X has a hoarse cough, AND 

!X has difficulty breathing 
THEN type-of-disease of ?X is 

BRONCHITIS 
These two rules are conflicting 

(assuming the attribute type-of-disease 
is single-valued) because given the 
same information, one rule concludes 
that the disease is croup, and the other 
concludes bronchitis. 

NOTE 
It is possible that rules with simi- 
lar premises might not conflict at 
all, especially when they are con- 
cluding values for a multivalued 
attribute. (A multivalued at- 
tribute can assume multiple val- 
ues simultaneously. For example, 
a person can be allergic to many 
different drugs or can be infected 
by numerous organisms.] 

Subsumed Rules One rule is sub- 
sumed by another if the two rules 
have the same conclusions, but one 
contains additional constraints on the 
situations in which it will succeed. In 
LES this statement means one or more 
conclusions are equivalent, but the IF 
part of one rule contains fewer con- 
straints or conditions than the IF part 
of the other rule. 

Formally, with the notation from 
predicate calculus, the rule (p(x)and 
q(y)) --> r(z) is subsumed by the rule 
p(x) --> r(z). Whenever the more 
restrictive rule succeeds, the less 
restrictive rule also succeeds, resulting 
in redundancy. 

For example, consider the two rules 
that follow: 
IF !X has flat pink spots on his 

skin, AND 
!X has a fever 

THEN type-of-disease of 2X is 
MEASLES 

IF ?X has flat pink spots on his 
skin 

THEN type-of-disease of ?X is 
MEASLES 

In this case, we would say that rule 
1 is subsumed by rule 2 because rule 2 
only needs a single piece of informa- 
tion to conclude “measles.” Whenever 
rule I succeeds, rule 2 also succeeds, 

Unnecessary IF Conditions Two rules 
contain unnecessary IF conditions if 
the rules have the same conclusions, 
an IF condition in one rule is in con- 
flict with an IF condition in the other 
rule, and all other IF conditions in the 
two rules are equivalent. With our 
notation from predicate calculus, if we 
have the rule (p(x) and q(y)) --> r(z) and 
the rule (p(x) and not(q(y)) --> r(z), the 
condition involving q(y) in each rule is 
unnecessary. These two rules could be 
combined into (p(x) and (q(y) or 
not(q(y))) --> r(z). The condition (q(y) or 
not(q(y))) resolves to TRUE; thus, the 
rule becomes p(x) --> r(z). In this case, 
the unnecessary IF condition actually 
indicates that only one rule is neces- 
sary. 

For example, consider the two rules 
that follow: 
IF 

THEN 

IF 

THEN 

?X has flat pink spots on his 
skin, AND 
?X has a fever 
type-of-disease of ?X is 
MEASLES 
2X has flat pink spots on his 
skin 
?X does not have a fever 
type-of-disease of ?X is 
MEASLES 

In this case, the second IF condition 
in each rule is unnecessary. Thus, the 
two rules could be collapsed into one. 

A special case occurs when two 
rules have the same conclusion, one 
rule containing a single IF condition 
that is in conflict with an IF condition 
of the other rule which has two or 
more IF conditions. With our notation 
from predicate calculus, if we have the 
rule (p(x) and q(y)) --> r(z)) and the rule 
not(q(y)) --> r(z), then the second IF 
condition in the first rule is unneces- 
sary, but both rules are still needed 
and can be reduced to (p(x)) --> r(z) and 
noth( --7 r(z). 

Circular Rules A set of rules is circu- 
lar if the chaining of these rules in the 
set forms a cycle. With our notation 
from predicate calculus, if we have the 
set of rules p(x) --> q(x), q(x) --> r(x), 
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and I(X) --> p(x), and the goal is r(A), 
where A is a constant, then the system 
enters an infinite loop at run time 
unless the system has a special way of 
handling circular rules. Also, this defi- 
nition includes the possibility of a sin- 
gle rule forming a circular cycle (for 
example, p(x) --a p(x)). 

For example, consider the following 
set of rules: 
IF 

THEN 

IF 

THEN 

IF 

THEN 

temperature of ?X > 100 (in 
Fahrenheit) 
?X has a fever 
?X has a fever, AND 
?X has flat pink spots on his 
skin 
type-of-disease of ?X is 
MEASLES 
type-of-disease of !X is 
MEASLES 
temperature of ?X > 100 (in 
Fahrenheit) 

Given a goal of 
type-of-disease of patient is 

MEASLES, 
this set of rules would go into an infi- 
nite loop if one attempted to backward 
chain them together because the goal 
would match the conclusion of rule 2, 
the first IF condition of rule 2 would 
match the conclusion of rule 1, the IF 
condition of rule 1 would match the 
conclusion of rule 3, and the IF part of 
rule 3 would match the conclusion of 
rule 2, thus completing our circular 
chain. 

Checking for Completeness 
The development of a knowledge- 
based system is an iterative process in 
which knowledge is encoded, tested, 
added, changed, and refined. Knowl- 
edge flows from the expert into the 
knowledge base by way of a middle- 
man (the knowledge engineer). This 
iterative process often leaves gaps in 
the knowledge base that both the 
knowledge engineer and the expert 
have overlooked during the knowl- 
edge-acquisition process. Furthermore, 
as the number of rules grows large, it 
becomes impossible to check every 
possible path through the system. In 
our research, we have found four situa- 
tions indicative of gaps (that is, miss- 
ing rules) in the knowledge base: (1) 
unreferenced attribute values, (2) dead- 

The TEIRESIAS program 
(Davis 1976) was the 

first attempt to 
automate the knowledge 
base debugging process. 

end goals, (3) unreachable conclusions, 
and (4) dead-end IF conditions. Any 
one of these four conditions might 
indicate that there is a rule missing. 

In the ONCOCIN system, the rule 
checker assumes there should be a rule 
for each possible combination of val- 
ues of attributes that appear in the 
antecedent. In practice, we found this 
criterion causes the system to hypothe- 
size a very large number of missing 
rules and chose to leave it out of our 
checking process. This problem was 
not serious in the ONCOCIN project 
because the checker was only tested 
on a single application. 

LES (and EMYCIN) allows the 
knowledge engineer the feature of 
strong typing the defined attributes, 
thus facilitating the detection of gaps. 
For each attribute, one can define a set 
of properties for it, including whether 
the user can be queried for the value, 
and a set of values the attribute can 
take on (that is, its legal values). This 
method has long been recognized in 
software engineering as an excellent 
programming practice. In fact, the 
newer programming languages (for 
example, Pascal and Ada) have type- 
checking capabilities along these lines. 

LES allows the knowledge engineer 
to define properties about each slot in 
its factual database, including the set 
or range of acceptable attribute values, 
system ability to query the user for the 
attribute, and the attribute’s type (sin- 
gle valued or multivalued). In the sub- 
sections that follow, we describe how 
LES uses these properties to aid it in 
finding gaps and errors in the knowl- 
edge base. 

Unreferenced Attribute Values Unref- 
erenced attribute values occur when 
some values in the set of possible val- 
ues of an object’s attribute are not cov- 
ered by any rule’s IF conditions. In 
other words, the legal values in the set 
are covered only partially or not at all. 

A partially covered attribute can pro- 
hibit the system from attaining a con- 
clusion or can cause it to make a 
wrong conclusion when an uncovered 
attribute value is encountered at run 
time. Unreferenced attribute values 
might also indicate that rules are miss- 
ing. 

For example, suppose we have the 
attribute TEMPERATURE with the set 
of legal values {high, normal, low]. If 
the attribute values high and normal 
are used in the IF conditions of rules 
but not low, CHECK alerts the knowl- 
edge engineer that low is not used. The 
knowledge engineer would then have 
to decide if a rule is missing or if the 
value low should be removed from the 
set of legal values. 

Illegal Attribute Values An illegal 
attribute value occurs when a rule 
refers to an attribute value that is not 
in the set of legal values. This error is 
often caused by a spelling mistake. No 
extra work is required to check for this 
condition because it is a by-product of 
checking for unreferenced attribute 
values. 

Suppose we have the attribute TEM- 
PERATURE with the set of legal val- 
ues {high, normal, low}. If a rule has a 
condition such as 
IF temperature of ?X is very high... or 
. ..THEN temperature of ?X is medium 
CHECK alerts the knowledge engineer 
that the values “very high” and “medi- 
um” are illegal attribute values for 
temperature. 

Unreachable Conclusions In a goal- 
driven production system, the conclu- 
sion of a rule should either match a 
goal or match an IF condition of anoth- 
er rule (in the same rule set). If there 
are no matches for the conclusion, it is 
unreachable. 

For example, suppose we have the 
following rule: 
IF temperature of ?X > 100 (in 

Fahrenheit) 
THEN ?X has a fever 

If the condition ?X has a fever does 
not appear in the IF part of any rule 
and is not part of the goal, Check 
alerts the knowledge engineer that this 
conclusion is unreachable. 

It is possible that such a rule is 
merely extraneous, in which case it 
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might affect efficiency but not the out- 
come because it will never be trig- 
gered. It is also possible that the con- 
clusion does not match a goal (or sub- 
goal) because of a terminology error. 
For example, a rule might exist with 
an IF condition of the form 
IF ?X has an elevated tempera- 

ture 
THEN . . . , 
where the terms “elevated tempera- 
ture” and “fever” are synonymous to 
the expert but not to the expert sys- 
tem. 

Dead-End IF Conditions and Dead-End 
Goals To achieve a goal (or subgoal) in 
a goal-driven system, either the 
attributes of the goal must be askable 
(user provides needed information), or 
the goal must be matched by a conclu- 
sion of one of the rules in the rule sets 
applying to the goal. If neither of these 
requirements is satisfied, then the goal 
cannot be achieved (that is, it is a 
dead-end goal). Similarly, the IF condi- 
tions of a rule must also meet one of 
these two conditions, or they are dead- 
end conditions. 

For example, suppose we have the 
following as a goal (or subgoal): 

type-of-disease of patient is 
MEASLES, 

If the attribute type-of-disease is not 
askable, and there are no rules that 
conclude this fact, then this goal 
would be labeled dead-end goal. 

Dependency 
Chart and Circular- 
Rule-Chain Detection 
As a by-product of rule checking, 
CHECK generates two dependency 
charts. One chart shows the interac- 
tions among the data-driven rules, and 
the other shows the interactions 
among the goal-driven rules and the 
goals. An example of a dependency 
chart for a small set of rules is shown 
in Figure 1. 

An * indicates that one or more IF 
conditions or a goal condition (GC) 
matches one or more conclusions of a 
rule. The dependency chart is useful 
when the knowledge engineer deletes, 
modifies, or adds rules to the rule base 
because it is a means of immediately 

Figure 1. A Simple Rule Set and Its Dependency Chart. 

seeing the dependencies among the 
rules. 

Note that in figure 1 the asterisks ( l ] 
indicate the dependencies for the origi- 
nal rule set. (For example, the * in row 
Rl, column R2 indicates than an IF 
clause of rule Rl is concluded by rule 
R2). Adding a condition to rule R2 (see 
rule R2a) caused the *2 dependency to 
appear. Note that rule R2a now refer- 
ences itself (that is, it is a self-circular 
rule). The addition of one condition to 
rule R3 [see rule R3a) caused the *3 
dependency to appear. This addition 
also causes the rule set to be circular 
because a condition of rule R3a is 
matched by the conclusion of rule R2, 
and a condition of rule R2 matches the 
conclusion of rule R3a. 

Circular rules should be avoided 
because they can lead to an infinite 
loop at run time. Some expert systems, 
such as EMYCIN, handle circular rules 
in a special way. Nevertheless, the 
knowledge engineer will want to know 
which rules are circular. CHECK uses 
the dependency chart to generate 
graphs representing the interactions 

between rules and uses a cyclic graph- 
detection algorithm to detect circular- 
rule chains. 

Checking Data-Driven Rules 
To this point, we have only considered 
goal-driven rules, but as discussed ear- 
lier, LES also supports data-driven 
inferencing. The data-driven rules are 
called WHEN rules. A WHEN rule 
consists of one or more WHEN condi- 
tions (similar to IF conditions) and one 
or more conclusions. 

Checking a data-driven rule set for 
consistency and completeness is very 
similar to checking goal-driven rules. 
The detection of conflicting rules, 
redundant rules, subsumed rules, cir- 
cular-rule chains, dead-end IF condi- 
tions, unreferenced attribute values, 
and illegal attribute values is done in 
the same manner as described earlier 
for checking goal-driven rules. Howev- 
er, the detection of unreachable con- 
clusions is not applicable in checking a 
data-driven rule set because there are 
no goals to match to the conclusions. 
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Implementation of the 
Rule Checker 

In solving a problem with LES, the 
knowledge engineer partitions the 
rules into sets, where each set is 

associated with a subject category. (In 
LES one can have multiple goals, and 
each goal has zero or more rule sets 
associated with it.) The set of rules for 
each goal can then be checked inde- 
pendently. To check a set of rules, the 
program performs five steps, as 
described in the following paragraphs 
(note that the phrase IF part of a rule 
means the entire set of antecedent 
clauses, and the phrase THEN part of 
rule means the entire set of conclu- 
sions). 

First, each IF and THEN clause of 
every rule in the set (and each goal 
clause) is compared against the IF and 
THEN clauses of every other rule in 
the set. The comparison of one clause 
against another results in a label of 
SAME, DIFFERENT, CONFLICT, 
SUBSET, or SUPERSET being stored in 
a two-dimensional (2-D) table main- 
taining the interclause relationships. 
The comparison operation is not 
straightforward because variables and 
the ordering of clauses must be taken 
into consideration. 

Second, the IF part and the THEN 
part of every rule [and the goal) are 
compared against the IF and THEN 
part of every other rule to deduce the 
relationships. This process is done 
using the 2-D table of interclause rela- 
tionships, together with the number of 
clauses in each part, to determine how 
an IF or THEN part (or goal) is related 
to another IF or THEN part. The possi- 
ble relationships resulting from the 
deductions are the same as described 
in the first step. 

Third, the part relationships of each 
rule are compared against the part 
relationships of every other rule to 
deduce the relationships among the 
rules. These comparisons are then out- 
put to the user; the possible relation- 
ships are SAME (redundant), CON- 
FLICT, SUBSET (subsumption), 
SUPERSET (subsumption), UNNEC- 
ESSARY CLAUSES, or DIFFERENT. 

Fourth, gaps are checked for using 
the 2-D table of interclause relation- 

ships. Unreachable conclusions are 
identified by finding those THEN 
clauses which have the DIFFERENT 
relationship for all IF clauses and 
goals. Dead-end goals and IF condi- 
tions are identified when the DIFFER- 
ENT relationship exists for all conclu- 
sions, and the attribute these goals and 
conditions refer to is not askable. 

Fifth, the dependency chart is also 
generated from the 2-D table of inter- 
clause relationships. A rule is said to 
be dependent on another rule if any of 
its IF conditions have the relationship 
SAME, SUBSET, or SUPERSET with 
any of the other rules’ conclusions. 
The actual algorithms that used to do 
the checking appear in Nguyen, et al. 
(1985). (Since the publication of these 
algorithms, we have added the capabil- 
ity to check for unnecessary IF condi- 
tions. We have also revised our defini- 
tion of missing rules.) 

How Certainty Factors 
Affect the Checking 

LES allows the use of certainty factors 
in its goal-driven and data-driven 
rules. Certainty factors are implement- 
ed in the same manner as in the 
EMYCIN system, with a value of +l.O 
for meaning definitely true, 0.0 for 
unknown, and -1.0 for definitely false. 
The presence of certainty factors fur- 
ther complicates the process of check- 
ing a knowledge base. Allowing rules 
to conclude with less than certainty 
and allowing data to be entered with 
an associated certainty factor affects 
our definitions, as shown in the fol- 
lowing paragraphs. 

A conflict--when two rules succeed 
in the same situation but with differ- 
ent conclusions--is a common occur- 
rence in rule sets using certainty fac- 
tors. Often, given the same set of 
symptoms, the expert might wish to 
conclude different values with differ- 
ent certainty factors. 

In reference to redundancy, rules 
that are redundant can lead to serious 
problems. They might cause the same 
information to be counted twice, lead- 
ing to erroneous increases in the 
weight of their conclusions. 

Subsumption is used quite often in 

rule sets with certainty factors. The 
knowledge engineer frequently writes 
rules so that the more restrictive rules 
add weight to the conclusions made by 
the less restrictive rules. 

In regard to Unnecessary IF condi- 
tions, IF conditions that are labeled as 
unnecessary when rules conclude with 
absolute certainty might be necessary 
when dealing with certainty factors. 
The knowledge engineer might wish to 
conclude a value at different certainty 
factors. If the rules conclude with the 
same certainty factor, then the IF con- 
ditions are still unnecessary. 

Certainty factors do not affect our 
definition of or the way we detect 
unreferenced attribute values. The 
same is true with our definition of ille- 
gal attribute values. 

Finding dead-end IF conditions (or 
dead-end goals) becomes complex with 
certainty factors. LES, like EMYCIN, 
allows the user to specify a threshold 
at which point the value becomes 
unknown. (In MYCIN this threshold is 
set at 0.2.) Thus, a dead-end goal could 
occur if there is a THEN clause that 
concludes with a certainty factor less 
than the threshold (or a chain of rules 
that when combined produces a cer- 
tainty factor less than the threshold). 
For example, suppose there is a linear 
reasoning path of three rules (Rl, R2, 
and R3), where A is to be asked of the 
user and D is the initial goal which 
initiated this line of reasoning 

Rl R2 R3 
A __________-- > B _____-----. > C ____.________ > 

0.4 0.7 0.7 
If A is known with certainty, D would 
only be known with a certainty factor 
of (0.4)(0.7)(0.7) = 0.19. This factor is 
less than the threshold used in 
MYCIN, and, thus, D would be a dead- 
end goal. If D is an IF condition rather 
than a goal, then D would be a dead- 
end condition if it were not askable, 
and there were no other lines of rea- 
soning to determine it. 

Detecting unreachable conclusions 
in a rule set with certainty factors also 
becomes complex. A conclusion in a 
rule could be unreachable even though 
its IF part matches a conclusion in 
another rule. This situation might 
occur if the conclusion that matches 
one of the IF conditions cannot be 
determined with a certainty factor 
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above the threshold. For example, sup- 
pose we have the following two rules: 
Rl: IF A THEN B [certainty factor = 

0.1) 
R2: IF B THEN C (certainty factor = 

1.0) 
If the only way to determine B was 

with rule Rl, then the conclusion of 
rule R2 would be unreachable because 
even if A were known with certainty, 
C could not be determined with a cer- 
tainty factor above the threshold of 
0.2. 

The detection of circular-rule chains 
is not affected by certainty factors. 
However, it should be noted that cer- 
tainty factors might cause a circular 
chain of rules to be “broken” if the cer- 
tainty factor of a conclusion falls 
below the threshold of 0.2. 

From this discussion, we can see 
that certainty factors only introduce 
minor extensions to the checking pro- 
cess, but the knowledge engineer 
should be aware of these differences. 
(The program CHECK does not look at 
certainty factors when checking a 
knowledge base.) 

Summary 
In this article we described CHECK, a 
program whose function is to check a 
knowledge base for consistency and 
completeness. The program detects 
several potential problems, including 
redundant rules, conflicting rules, sub- 
sumed rules, unnecessary IF condi- 
tions, and circular rules. CHECK also 
attempts to verify completeness in the 
knowledge base by looking for poten- 
tial gaps, including unreferenced 
attribute values, illegal attribute val- 
ues, missing rules, unreachable con- 
clusions, dead-end IF conditions, and 
dead-end goals. We extended and 
applied the verification method for 
consistency and completeness of 
Suwa, Scott, and Shortliffe (1982) to a 
variety of knowledge bases built with 
the generic expert system shell LES 
with excellent results. We showed a 
general algorithm that efficiently per- 
forms the checking function in a sin- 
gle pass through the rules. We also 
built a version of CHECK that works 
with knowledge bases built with the 
Automated Reasoning Tool 
(ART[sup/TM]) (Nguyen 1987). 

Finally, as a by-product of the rule- 
checking process, CHECK generates a 
dependency chart that shows how the 
rules couple and interact with each 
other and the goals. These charts can 
help the knowledge engineer visualize 
the effects of deleting, adding, or mod- 
ifying rules. 

From our experiences with con- 
structing different knowledge bases, 
we found that many changes and addi- 
tions to the rule sets occur during the 
development of a knowledge base. 
Thus, a tool such as CHECK that can 
detect many potential problems and 
gaps in the knowledge base should be 
very useful to the knowledge engineer 
in helping to develop a knowledge 
base rapidly and accurately. 

As the field of knowledge-based sys- 
tems matures, large expert systems 
will be fielded in critical situations. 
Because it will be impossible to test 
all paths beforehand, one must be 
assured that deadly traps such as cir- 
cular rules and dead-end clauses do 
not exist in the knowledge base. Thus, 
a checking capability similar to the 
one described in this article is essen- 
tial. 
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