
Approximate Processing in
Real-Time Problem Solving
Victor R. Lesser, Jasmina Pavlin, & Edmund Durfee

change as search progresses. More-
over, solving some subproblems can
affect the importance and time needs
of tasks to solve related subproblems.
In an interpretation system (Lesser
and Corkill 1983), for example, a
problem solver cannot fully predict
the time needed to identify the most
consistent interpretation until it has
taken some steps to characterize the
amount and type of noise in its input
data. To satisfy real-time constraints,
therefore, a problem solver's control
component cannot and should not
reason about individual tasks but
instead should reason about how
groups of tasks lead to acceptable
overall solutions.

When the real-time control problem
is viewed from the perspective of the
overall solution, the emphasis of real-
time response changes. Although
faster hardware and more efficient and
predictable use of resources by the
underlying operating system can
improve the real-time processing of
individual tasks, a problem solver also
needs real-time control mechanisms
for dealing with the larger-grained
issues in solving complex problems
involving hundreds of interdependent
tasks. Our research concentrates on
developing these mechanisms (and is
not concerned with low-level activi-
ties such as input-output and inter-
rupt handling). Our goal is to develop
problem solvers that will adaptively
generate the most acceptable solu-
tions which meet deadlines and the
users' needs when they cannot find
optimal solutions in time. Our criteri-
on for problem-solving success is,
thus, similar to the idea of "satisfic-
ing" developed by March and Simon
(1958) (Simon 1969). In addition,
because a real-time problem solver
uses imprecise predictions about its

I promises to solve many
knowledge-intensive problems

that cannot be solved in conventional
ways. An important issue facing the
introduction of advanced AI technolo-
gy into real-time applications is the
ability of an AI system to meet dead-
lines (Fehling, Joerger, and Sagalowitz
1986; Hayes-Roth 1987a, 1987b). For
example, an AI problem solver often
must meet deadlines because some-
one or something has a specific, time-
dependent use for the solution. The
wider application of AI problem-solv-
ing systems, therefore, demands that
approaches for meeting real-time con-
straints be developed.

Typical approaches to real-time
computing assume a task's priorities
and resource needs (including time)
are completely known in advance and
are unrelated to those of other tasks,
so that a control component can
schedule tasks based on their individ-
ual characteristics (Ramamritham and
Stankovic 1984; Stankovic, Ramam-
ritham, and Cheng 1985). If more
tasks exist than the system can pro-
cess, the decision about which tasks
to ignore is simple and local, usually
based only on task priority. However,
tasks in problem-solving applications
are interdependent because they
search different parts of the solution
space to solve related subproblems.
Because the solution space can be too
large to search exhaustively within
any practical time limit, search is
heuristic, and only a small number of
all potential tasks are performed.
Although it might be able to form
rough estimates about the time need-
ed to perform this heuristic search, a
problem solver cannot precisely deter-
mine the time needs beforehand
because the information that influ-
ences heuristic decisions might

We propose an approach for meeting real-
time constraints in AI systems that views
(1) time as a resource that should be con-
sidered when making control decisions,
(2) plans as ways of expressing control
decisions, and (3) approximate processing
as a way of satisfying time constraints
that cannot be achieved through normal
processing. In this approach, a real-time
problem solver estimates the time
required to generate solutions and their
quality. This estimate permits the system
to anticipate whether the current objec-
tives will be met in time. The system can
then take corrective actions and form
lower-quality solutions within the time
constraints. These actions can involve
modifying existing plans or forming radi-
cally different plans that utilize only
rough data characteristics and approxi-
mate knowledge to achieve a desired
speedup. A decision about how to change
processing should be situation dependent,
based on the current state of processing
and the domain-dependent solution crite-
ria. We present preliminary experiments
that show how approximate processing
helps a vehicle-monitoring problem
solver meet deadlines and outline a
framework for flexibly meeting real-time

constraints.

A

SPRING 1988 49

AI Magazine Volume 9 Number 1 (1988) (© AAAI)

activities, it cannot guarantee it will
meet deadlines—just that it will meet
deadlines if its predictions do not
underestimate the time needs of prob-
lem-solving tasks. To reduce the risk
of exceeding deadlines, the problem
solver can leave extra time "just in
case," but this extra time can cause it,
in its haste, to generate poorer solu-
tions than it had to.

Our new approach to real-time con-
trol requires that the system reason
about its objectives, its problem-solv-
ing state, and the plans for achieving
its objective from the current state.
An objective represents the criteria for
acceptable solutions and should
define a range of acceptable solutions
and preferences among them (as is
illustrated later). A problem-solving
state includes partial solutions
obtained; active and satisfied goals;
and relationships among goals, cur-
rently pursued plans, and alternative
plans. A plan consists of a sequence of
problem-solving activities, the esti-
mated time needs of these activities,
and the results they are predicted to
generate.

The ability to specify problem-solv-
ing plans is necessary not only for rec-
ognizing that an expected solution
cannot be derived within the time
constraints from the current state but
also for evaluating alternative solu-
tion paths and finding out whether a
proposed solution is feasible from the
current state. If the problem solver's
rough estimate of when the best pos-
sible solution will be formed exceeds
the time constraints, the system
should be able to modify its plans and
perform approximate processing that
trades off the quality of a solution
against the time to derive it, where
the dimensions of solution quality are
domain specific.

To meet its deadlines, the problem
solver could make a rough pass at
solving the problem and then use any
remaining time to incrementally
refine this solution. Alternatively, it
could incorporate just enough approx-
imations into its plan steps to gener-
ate a solution within the time con-
straints. The advantage of incremen-
tal refinement is that the system has
some solution at any given time, but
refining parts of a solution and propa-
gating these changes can be costly. In

this article, therefore, we concentrate
on incorporating approximate process-
ing into plans to efficiently construct
acceptable solutions within the time
constraints. However, although we do
not plan for incremental refinement,
such refinement is possible within
our framework if the plan generates a
solution before the deadline (because
of changes in the deadline or tasks
taking less time than expected).

Although approximate processing
techniques are not new in computer
science, our work develops a taxono-
my of approximations, using an inter-
pretation problem as an example
domain. In interpretation problems,
processing speedup can be achieved by
reducing solution quality along one or
more of the following dimensions:
completeness (some solution aspects
are ignored), precision (some solution
parameters are not determined exact-
ly), and certainty (some supporting or
detracting evidence is not considered).
For example, consider a vehicle-moni-
toring system that must track vehi-
cles and supply the results to a vehi-
cle coordinator. To ensure that the
vehicles do not collide with buildings
or each other, the vehicle coordinator
supplies the vehicle-monitoring prob-
lem solver with the following objec-
tive:

Within 10 seconds, supply the
vehicle types, positions, and
movement characteristics for as
many vehicles moving through
the environment as possible, giv-
ing preference to tracking
vehicles of type v1 and determin-
ing vehicle directions with high
precision.

The best possible answer regardless of
time constraints might be as follows:

The following events and their
corresponding features are cer-
tain: Vehicle type v1 located at l1,
moving with speed s2 and direc-
tion d1. Vehicle type v2 located at
l2, moving with speed s1 and
direction d2. No other vehicles are
present in the environment.

To meet the deadline, however, the
problem solver might be unable to
form the best answer and instead con-
centrates on generating an acceptable
solution, as follows:

From a cursory analysis, it is like-
ly that there exists a vehicle of

type v1 located near l1, moving
with speed between s0 and s1 and
in direction d1. Other vehicles
might be present.

This answer is acceptable because it is
formed within the time constraints
and meets the other criteria (tracks
correct vehicle type and finds exact
direction). However, it lacks precision
(about location and speed of vehicle of
type v1), completeness (because the
vehicle of type v2 is missing), and cer-
tainty (because it is likely rather than
certain). It is important to note that
the different dimensions of solution
quality are interdependent. For exam-
ple, reducing the completeness of a
solution often reduces its certainty as
well: An incomplete solution leaves
room for doubt about whether the
unused information supports or
refutes this solution.

Trade-offs in solution time versus
quality should depend on the system's
objectives and its current problem-
solving state. For example, if the sys-
tem's primary objective is to track
large vehicles (type v1), possibly
because collisions involving large
vehicles are costly, then an incom-
plete map that excludes other vehicles
is almost as good as a complete map.
If the current problem-solving state
includes a cloud of noisy, ambiguous
signals, then a bounded approxima-
tion for data might be appropriate. In
short, when attacking problems to
meet objectives and time constraints
in a range of situations, the system
needs an arsenal of different approxi-
mations. We have identified three
major types of approximations: (1)
approximate search strategies explore
a smaller portion of the search space
than would be the case during normal
processing, (2) data approximations
provide an abstract view of data
resulting in a simpler space being
searched, and (3) knowledge approxi-
mations simplify the knowledge being
applied in the system so that the
search space can be explored quickly.

We study these types of approxima-
tions in detail in the remainder of this
article, describing specific techniques
for approximations, preliminary
experiments with some of these tech-
niques, and a framework for selecting
techniques for particular situations.
Although approximate processing is

50 AI MAGAZINE

potentially useful in any system
regardless of its problem-solving
architecture, a blackboard architec-
ture (Erman et al. 1980; Nii 1986) has
inherent flexibility and can easily be
extended to incorporate approximate
processing. Therefore, we examine
approximate processing in the context
of a particular blackboard-based prob-
lem-solving system for vehicle moni-
toring.

The next section discusses the
desired properties of approximate pro-
cessing and gives an overview of
approximate processing in our specific
blackboard-based vehicle-monitoring
system. Specific approximations for
each of the three major types are then
described in turn: approximate search
strategies, data approximations, and
knowledge approximations. For each
approximation, we discuss the prob-
lem-solving situation for which the
approximation is appropriate and its
effect on the solution quality (com-
pleteness, precision, and certainty).
Preliminary Experiments then
describes some experiments with
approximate processing in the Dis-
tributed Vehicle-Monitoring Testbed
(DVMT) to better illustrate its utility.
In A Framework for Approximate Pro-
cessing, we outline how the different
types of approximate processing can
be incorporated into a framework for
flexibly meeting real-time constraints.
Finally, Summary and Future
Research discusses our current and
future research directions.

Approximate Processing

and Vehicle Monitoring

Our approach to approximate process-
ing assumes that the following are
desirable properties of approxima-
tions.

1. The approximation should have a
well-defined effect on the solution
characteristics (time, precision, com-
pleteness, and certainty) so that the
system can determine whether a
given approximation might satisfy the
objective. A well-defined approxima-
tion can be contrasted with approxi-
mations that have ill-defined effects,
such as eliminating weak input sig-
nals or input signals above a certain
frequency. The difficulty with these
ill-defined approximations is that the

quality of the solution does not
degrade gracefully as the amount of
data being eliminated increases. For
example, it might be the case that the
weak signal being eliminated is the
only way to positively identify an
important vehicle.

2. Exact and approximate processing
should be well integrated, leading to a
continuity of solution approxi-
mations. This property implies that
incremental refinement for the
approximation should be available. If
the system is allowed to use more
time than originally anticipated, it
should be able to generate a propor-
tionally better solution by refining an
approximate solution. Knowledge pro-
cessing activities should also be able
to exploit input in which some data
are the result of approximate process-
ing, but other data are the result of
exact processing.

3. Approximations of knowledge-
application activities should be con-
sistent with exact processing. Thus,
weaker constraints exploited during
approximate processing should not
eliminate a result that is compatible
with the stronger constraints used
during regular processing. For exam-
ple, if an approximate activity
produces a range for a vehicle loca-
tion, then precise processing should
never result in locating the vehicle
outside this range.

These properties make it more like-
ly that approximations will lead to
results consistent with exact process-
ing whose quality and timeliness can
reasonably be bounded. Our approach
uses the well-defined behavior of
approximations with these properties
to predict how the approximations
will influence the quality of solutions
and the time needed to form them. In
contrast, an ill-defined approximation
is unpredictable: It might lead to a
better-quality answer in the available
time, but it might form a result that is
inconsistent with exact processing or
whose quality and timeliness do not
meet the stated criterion. Although
we feel predictability is an important
character of an approximation, the
overriding philosophy of our approach
is to get the best answer given the
time limitations. Thus, situations
exist (for example, extremely tight
time constraints) where the system

might choose to abandon well-defined
approximations that are unable to pro-
duce a solution with the appropriate
level of quality within the available
time and instead use ill-defined
approximations. By doing so, the sys-
tem risks forming erroneous solutions
or no solutions at all, but because it
predicted that well-defined approxi-
mations would not have worked any-
way, the risk is justified.

Approximation is useful in black-
board-based interpretation problem-
solving systems for tasks such as
vehicle monitoring. These systems
solve problems by selectively combin-
ing data into partial solutions in order
to form partial solutions that explain
more data by having either larger
scopes (such as longer vehicle tracks)
or higher abstraction levels (such as
classifying a combination of individu-
al signals as a single vehicle object).
This combination process uses
domain-specific constraints to form
consistent interpretation alternatives
and eliminate those which are incon-
sistent. Thus, problem solving can be
viewed as a constraint-aggregation
process that involves the creation of
more encompassing interpretations
and the elimination of alternatives
which become inconsistent or highly
unlikely as a result of an attempt to
incorporate additional data. The sys-
tem's objective is to form complete
interpretations that account for all its
data in terms of high-level events
(such as a pattern of vehicles moving
through the area) or non-events (such
as echoes or spurious sensor noise).

Our example interpretation applica-
tion, as mentioned earlier, is the vehi-
cle-monitoring task as implemented
in DVMT (Lesser and Corkill 1983). A
problem solver in DVMT receives
acoustically sensed data at discrete
sensed times and applies simplified
signal-processing knowledge to these
data in order to identify, locate, and
track patterns of vehicles moving
through a two-dimensional space. A
solution consumer (currently the user)
specifies to DVMT the solution crite-
ria, including deadlines and prefer-
ences for solution characteristics. The
DVMT problem solver applies its
knowledge sources to its data to
extend and refine partial solutions
until it forms a solution meeting the

SPRING 1988 51

desired characteristics. A partial inter-
pretation is represented as a hypothe-
sis on the blackboard and is character-
ized by one or more time locations
(where the vehicle was at the discrete
sensed times), an event class (classify-
ing the frequency or vehicle type), and
a belief (the confidence in the accura-
cy of the hypothesis).

We provide a DVMT problem solver
with a planner that uses an abstract
view of the problem-solving state to
plan sequences of actions for resolving
uncertainty about the potential solu-
tions to develop and for developing
them (Durfee and Lesser 1986; Durfee
and Lesser 1988). The abstract view is
built by clustering related data into an
abstraction hierarchy and allows the
planner to recognize long-term prob-
lem-solving goals (to track some type
of vehicle through a particular region).
The planner finds relationships
among these goals, such as competi-
tion when different goals involve
common data, because for both goals
to be true simultaneously, more than
one vehicle must occupy a certain
space at the same time.

The planner then develops a plan to
satisfy each long-term goal: It sketch-
es out a sequence of major plan steps,
where each step achieves an interme-
diate goal of processing and integrat-
ing data for a certain sensed time into

a developing partial solution. The
planner then details specific short-
term actions for the next intermediate
goal. By interleaving planning and
execution, it incrementally adds
details to plans when needed.
Through this interleaving, the planner
remains responsive to unexpected sit-
uations that can arise during problem
solving. The planner also predicts the
time needs and result quality of its
plans by forming predictions about
the results of the major plan steps and
roughly how long they will take,
based on the results and time needs of
similar steps in the past and on mod-
els of problem-solving actions (Durfee
and Lesser 1988).

To illustrate vehicle monitoring, an
example problem-solving situation is
depicted in figure 1 where there are
three alternative directions, labeled A,
B, and C, to extend the track. Howev-
er, only alternative A is consistent
with vehicle movement constraints.
Alternative B can be eliminated
because it exceeds the maximum
acceleration constraint (it turns too
sharply), and point C is eliminated
because to have gotten to this point, a
vehicle would have exceeded the max-
imum velocity constraint. If no other
tracks can be formed with data points
B and C, these data will be interpreted
as noise.

Solution quality depends on the
application of knowledge to input
data. Thus, a solution is complete to
the degree that all input data have
been incorporated into the solution or
interpreted as noise and discarded. A
solution is precise if its precision is no
lower than the precision of input data,
and the certainty of a solution is high
to the degree that (1) substantial sup-
port exists for the solution (it is con-
sistent with much data), (2) support-
ing data have high certainty, and (3)
the solution is unique (the same data
do not support other competing solu-
tions).

These quality characteristics of a
solution are affected by the number of
alternative partial interpretations
examined in problem solving and by
how precisely the constraints applied
in the incremental aggregation pro-
cess mirror the domain constraints.
Processing time is decreased to meet
deadlines by reducing the number of
alternatives examined and eliminat-
ing or weakening constraints (to
reduce the time needed for testing
whether the constraints hold), thereby
decreasing solution quality.

The number of alternatives can be
reduced by changing the search strate-
gy so that a smaller portion of the
search space is considered or devel-
oped. Another method for reducing
the number of alternatives is to take
an abstract view of data, where indi-
vidual data points are clustered
together, and this collection is pro-
cessed as a whole instead.

Constraints can be weakened by
simplifying knowledge in the system
or not evaluating all the constraints
that are applicable. Unfortunately, the
weakening of constraints often has
the effect of increasing the number of
alternatives. For example, in DVMT, a
speedup in vehicle tracking can be
obtained by only verifying a new vehi-
cle location against the maximum
velocity constraint instead of doing a
complex verification that considers
maximum acceleration as well. Con-
sidering only velocity is faster but
might let the system hypothesize
invalid tracks: The vehicle could not
have accelerated to the velocity that it
would have needed to generate these
data. Weakening constraints can
potentially slow down problem solv-

Figure 1. Eliminating Alternatives Based on Movement Constraints.

52 AI MAGAZINE

ing because more hypotheses might
be formed and pursued. To reduce the
number of hypotheses in this situa-
tion, the weakening of constraints can
be combined with some data abstrac-
tion mechanism to group hypotheses
into a smaller number of larger enti-
ties.

Therefore, many different approxi-
mations are possible, each with
advantages and disadvantages. In the
next three sections, we describe possi-
ble approximations for each of the
three major types.

Approximate Search Strategies

We consider two ways for limiting the
number of alternative interpretations
that are examined: limiting the input
to knowledge-processing activities
and limiting the output of activities.
To minimize the impact on the solu-
tion quality, it should be highly cer-
tain that data being eliminated are
inferior to data being retained. The
following strategies use corroboration
and competition as criteria for prun-
ing inferior alternatives.

Eliminating Corroborating Support

Multiple independent sources of evi-
dence for an event increase the cer-
tainty of the event. For example, mul-
tiple acoustic sources (for example,
engine, fan) provide mutually support-
ing evidence about a vehicle's identi-
ty. If the system is faced with time
constraints, it can save time by not
processing all corroborating data and,
thus, not evaluating all available con-
straints. However, note that this
approximation is well-defined because
only corroborating data are ignored.
Unlike ill-defined approximations
that ignore data based on their indi-
vidual attributes (such as signal
strength or frequency), this approxi-
mation ignores data that have already
been classified to some extent (as cor-
roborating).

The least relevant support—the
support that contributes the least to
the event identification—should be
eliminated first. In the earlier exam-
ple, if different vehicles are equipped
with similar fans but have distinct
engine sounds, then the acoustic sig-
nals corresponding to the fan should
not be processed. The sooner the cor-

roborating data are eliminated from
further consideration during the prob-
lem-solving process, the more time
that can be saved. Thus, not acquiring
certain input data would be most ben-
eficial, providing it can be determined
a priori that these data will provide
corroborating support. This approxi-
mation should be considered if the
amount of supporting data is large, or
the certainty of supporting data is
high. The effect of eliminating corrob-
orating support is reduced certainty of
the solution in proportion to the
amount, relevance, and individual cer-
tainties of eliminated support and the
relationship among competing inter-
pretations (that is, how well can the
system differentiate vehicles based
only on their engine sound?).

Some objects in an interpretation
system can best be thought of not as
single events but as a collection of
events with common attributes. In
this case, data can provide corroborat-
ing evidence for the common
attributes but can also support differ-
ent events. Eliminating this kind of
support will affect not only certainty
but possibly other solution character-

istics as well. For example, consider a
vehicle track hypothesis in DVMT
supported by signals at different
sensed times. The interpretation of
the data at one sensed time can cor-
roborate data at adjacent times if they
arrive at consistent interpretations for
common characteristics, such as the
type of vehicle being tracked. Thus,
the elimination of data at various
sensed times can reduce certainty.
Moreover, the elimination of such
data also reduces the completeness of
the solution by providing less infor-

mation about consecutive vehicle
locations.

It is sometimes possible to change
the effect of the approximation on the
solution characteristics. In the earlier
example, the problem solver can
increase completeness in the missing
sensed times by reducing precision. It
does this by using knowledge about
likely vehicle movements (velocity
and acceleration constraints) to rough-
ly estimate where the vehicle was
during these times. This change
would be appropriate when the objec-
tive specifies that a complete solution
is more important than a precise one.
The situation is depicted in figure 2.
Figure 2a shows the precise interpre-
tation (a vehicle track with seven
sensed times). Figure 2b is an incom-
plete solution (times 2, 4, and 6 are
missing). Figure 2c is an imprecise
solution, where a range of possible
vehicle locations exists at times 2, 4,
and 6.

Eliminating Competing Interpretations

Interpretations compete when they
support mutually exclusive events.
An alternative interpretation can be

eliminated if it has a lower certainty
than the best competing interpreta-
tion after all data have been pro-
cessed. To meet deadlines, however, a
problem solver can eliminate compet-
ing interpretations before all the data
have been processed. If based on its
predictions, the problem solver
believes that no amount of processing
can make an alternative more certain
than the best alternative, then it can
eliminate the alternative. However,
because predictions can be imperfect,
the problem solver runs the risk of

Figure 2. Some Effects of Approximation.

SPRING 1988 53

missing better alternatives. To mini-
mize this risk, it should only elimi-
nate alternatives that are expected to
have considerably lower certainties,
where the minimum difference in cer-
tainties is a parameter (currently user
supplied). By decreasing this parame-
ter, the problem solver becomes more
apt to decrease computation costs by
avoiding alternatives, but it becomes
less certain that its selected solution
is correct. One way of viewing this
search approximation is that the more
conservative the planner is, the more
breadth first the search is; the less
conservative the planner is, the more
depth first the search becomes.

Eliminating competing interpreta-
tions is a well-defined approximation
even though it might look similar to
the thresholding of input data (an ill-
defined approximation). The approxi-
mations differ in two important ways:
elimination is based on competition,
and the certainty of high-level inter-
pretations is highly correlated with
their correctness. Competition is
important because it establishes that
only one of a group of interpretations
can be true. This fact cannot be estab-
lished for input data because further
processing is needed to verify incon-
sistencies. Also, a high-level interpre-
tation brings many constraints to bear
and is typically consistent with a
large amount of input data so that its
certainty is truly a reflection of its
correctness. This case might not be
true with low-level interpretations
(for example, input data).

Another way to eliminate compet-
ing interpretations is on the output
side of an activity. An approximate
activity of this type generates only the
most certain among competing inter-
pretations. The result is faster pro-
cessing because of fewer alternatives,
and the effect on the solution is in
reduced certainty. This approximation
stands in between the DVMT planner
approximation described earlier and
the input data thresholding: It is well-
defined when used in the later stages
of processing when high-level inter-
pretations are formed. If low-level
interpretations are eliminated, lower-
ing the certainty threshold reduces
the risk of eliminating correct inter-
pretations but also reduces the
speedup because potentially more

alternatives are generated. Another
way to lower this risk is to allow the
activity to act as a "generator func-
tion" (Lesser and Erman 1977), initial-
ly creating only the most certain out-
put alternatives but having the ability
to generate more output if needed (for
example, if lack of problem-solving
progress is discovered). The disadvan-
tage of this scheme is that the solu-
tion time becomes difficult to predict.

Data Approximations

Two ways exist to limit the number of
processing alternatives by taking an
abstract view of data: incomplete
event characterization (some informa-
tion in the data is ignored during pro-
cessing) and clustering (processing a
cluster of data as a single unit instead
of processing each data unit in the
cluster separately). Processing incom-
plete events is faster because the con-
straints concerning the ignored infor-
mation do not need to be considered,
and clustering speeds up processing by
reducing the size of the search space.

Incomplete Event Processing

This type of approximate processing
ignores some information about
events, such as some pieces of data or
some attributes of the data. It saves
time by reducing the completeness of
the solution and is well-defined
because the ignored information can
be used later to refine the solution.
The degradation of the solution quali-
ty is proportional to the significance
of the information being ignored. If a
possibility exists to terminate an
event identification early based on the
outcome of incomplete processing or
if acceptable solutions can be formed
despite ignoring the information, then
this approximation is appropriate.

For example, if the location and
movement of a small vehicle is less
important than the location and
movement of a large one, then when
faced with tight deadlines, it might be
appropriate to first identify only the
type of the vehicle based on its char-
acteristic sounds, ignoring its location
and movement. If the evidence indi-
cates that the vehicle is small, no
need exists for further processing
(unless the movements of small and
large vehicles are correlated, and thus,

locating small vehicles helps in locat-
ing large vehicles). However, because
large vehicles might also have charac-
teristic movements that aid in their
identification, the problem solver
should not overlook movement in less
time-constrained situations because
considering both sounds and move-
ments simultaneously during inter-
pretation might be more efficient
(generate fewer alternatives) than con-
sidering one first and then going back
for the other.

As another example, when faced
with tight deadlines the problem
solver might determine that it cannot
track a vehicle over all sensed times.
Rather than eliminating corroborating
data over the range of sensed times to
reduce certainty (see Eliminating Cor-
roborating Support), the problem
solver might decide to develop an
incomplete solution that only covers
the most recent sensed times but with
high certainty (because the data at
these adjacent sensed times strongly
corroborate each other, the corrobora-
tion of less recent data has little effect
on certainty). If the purpose of vehicle
monitoring is to guide vehicles so that
they do not collide, timely and precise
information about a vehicle's recent
movements is more important than a
complete map of a vehicle's move-
ments over all sensed times. This
approximation is well-defined, howev-
er, because if a problem solver finds
that it has additional time, it can later
develop the information for earlier
sensed times.

Cluster Processing

Processing speedup is obtained by
clustering data, extracting cluster
characteristics, and performing fur-
ther processing on these clusters
instead of individual data units. This
approach is appropriate when correct
data are mixed with a large amount of
correlated noise caused by data distor-
tion. In this case, substantial process-
ing time is spent in eliminating incor-
rect interpretations because correct
data and noise have similar character-
istics. By clustering the data and giv-
ing the cluster the combined charac-
teristics of its data, this approxima-
tion is well-defined because the clus-
ter satisfies any domain constraints

54 AI MAGAZINE

that any of its encompassed data can,
so no possible solutions are over-
looked.

For example, meteorological distur-
bances can cause dispersion of a single
acoustic signal into a number of sig-
nals of the same frequency in nearby
locations. These signals would all be
weak, and the corresponding data
would have low certainty. By cluster-
ing them, the problem solver reduces
the number of individual hypotheses
to reason about by treating the group
as a single, less precise hypothesis.
Clustering is, thus, beneficial when
certainty is a more critical aspect of
the solution than precision: A cluster
has a higher certainty than its typical
member (data point) because it is more
likely to contain the correct data. The
loss in precision is proportional to the
size of the cluster, and the gain in cer-
tainty is dependent on individual cer-
tainties of data in the cluster.

Knowledge Approximations

We describe two types of knowledge
approximation: approximations that
work with data approximations and
approximations that summarize sev-
eral sources of knowledge into a sin-
gle, less discriminating knowledge
source.

Knowledge for Data Approximations

One kind of approximate knowledge
needs to be introduced into the sys-
tem as a direct result of data approxi-
mations. Data clusters require knowl-
edge-processing activities that deal
with the collection of data as a single
unit. The approximate knowledge
must, therefore, be capable of applying
domain constraints on imprecise clus-
ters of data. To ensure that the approxi-
mations are well-defined, clusters
must satisfy constraints if any combi-
nation of the data they encompass sat-
isfies these constraints. Knowledge
approximations are also needed to
overlook or weaken domain con-
straints when some information about
events is being ignored. For example,
to speed up processing by ignoring
acceleration information, a problem
solver needs approximate knowledge
sources that form tracks without
examining acceleration constraints.

Potential negative results of apply-

ing approximate knowledge to data
approximations include an increase in
alternative interpretations or
increased uncertainty in solutions.
Further data abstraction can reduce
the number of alternatives or increase
certainty but can also reduce preci-
sion. For example, if tracks are formed
by ignoring acceleration, a larger
number of such tracks might meet the
weaker constraints. If these tracks
have minor differences such as slight-
ly different locations for each sensed
time, they could be clustered together,
but the result would be a less precise
view of exactly where the vehicle was
at each sensed time.

Knowledge Combinations

A sequence of knowledge applications
can be combined into a single applica-
tion by eliminating some of the inter-
mediate processing steps. This combi-
nation might allow the knowledge to
be simplified when it could not be
simplified separately. There are also
positive and negative aspects to the
approximation, which combines
sequential activities by eliminating
intermediate steps. On the positive
side, time is saved by not forming and
posting the intermediate results and
eliminating the overhead of schedul-
ing the activity by eliminating the
activity. However, when intermediate
results are eliminated, opportunities
for increasing certainty by corroborat-
ing support later during processing
can be lost. A more subtle negative
effect is in the loss of opportunism in
processing, resulting in potentially
more search. To understand this phe-
nomenon, consider the example
depicted in figure 3. A large "fanout"

of interpretations takes place after
two successive activities, act1 and
act2, are performed. If two activities
are combined, then all output alterna-
tives have to be generated, as shown
in figure 3b. However, opportunism is
lost because if the two steps were
scheduled independently, it might
have been possible to pursue only cer-
tain intermediate interpretations1 (for
example, a shaded intermediate result
in figure 3a). If the certainty of this
intermediate result is high, exploring
the other two (unshaded) intermediate
results is unnecessary. In this case,
the presence of the intermediate step
has reduced the amount of search.

Approximations that combine pro-
cessing steps are well-defined and are
appropriate when the speedup is suffi-
cient to balance the uncertainty com-
ing from weaker constraints and the
potential loss of opportunism. For an
example from vehicle monitoring (fig-
ure 4), consider the two-step activity
of identifying a vehicle: First, related
acoustic signals are grouped; then, a
vehicle is identified based on the char-
acteristics of these groups of related
acoustic signals. Contrast this two-
step process with a single-step, "level-
hopping" process where vehicles are
directly recognized from the acoustic
signals. For example, consider a vehi-
cle characterized by two groups of sig-
nals. The first group can be identified
by a single signal, and the second is
characterized by three signals.

The corresponding grammar is
shown in figure 4a. Assume that only
signal A is present. If both groups are
equally important in the vehicle iden-
tification, then the intermediate pro-
cessing step of identifying groups gives
more certainty to the resulting vehicle
because signal A provides 50 percent
confirmation of the vehicle's identifi-
cation. This situation is schematically
represented in figure 4b. The elimina-
tion of the grouping step corresponds
to the simplified grammar shown in
figure 4c. The uncertainty is higher
because it is not known which group
the signal belongs to.

Preliminary Experiments

To develop an initial understanding of
how approximate processing affects
problem solving, we implemented

Figure 3. Eliminating
Intermediate Processing Steps.

SPRING 1988 55

three approximation mechanisms as
part of DVMT. These mechanisms
reduce problem-solving time to better
meet deadlines in different ways. The
first mechanism eliminates compet-
ing interpretations (see Eliminating
Competing Interpretations); we stud-
ied how a different value for the mini-
mum difference between expected
certainties affects the time needed to
solve the problem. The second mecha-
nism generates incomplete solutions
by incompletely processing the data
(see Incomplete Event Processing):
Because a vehicle's most recent move-
ments are important for collision
avoidance, the problem-solving plan is
modified to drop steps to process ear-
lier data until the remaining steps are
expected to complete by the deadline.
Ignoring these data does not signifi-
cantly affect certainty in the incom-
plete solution (see Incomplete Event
Processing). The third mechanism
eliminates corroborating support (see
Eliminating Corroborating Support)
by removing planned actions whose
only purpose is to increase the cer-
tainty in an interpretation. For exam-
ple, rather than looking for all the dif-
ferent sounds a particular type of
vehicle makes, the problem solver
concludes (with lower certainty) that
the vehicle is present based on a few
sounds.

The user specifies the objectives to
DVMT as a particular deadline for the
solution and an ordering in which it
should apply the approximation
mechanisms. We illustrate the experi-
mental results using the environment
in figure 5. Two competing solutions
exist in this environment: The vehicle
can start either in the upper-left or
lower-left corner. These alternatives
compete because two vehicles cannot
be present—they cannot be in the
same place at the same time at sensed
times 5-8. The track extending to the
upper left involves weak and strong
data but more weak than strong, and
the lower track is moderately sensed
throughout. The overall belief of the
lower track is higher than the upper
and, therefore, represents the best
solution. The data for the upper
extension were perhaps the result of
echoes in the environment.

The experimental results are sum-
marized in table 1. For each experi-

ment is shown the time when the
solution was returned by the problem
solver (where the execution of a single
knowledge source takes one time
unit), the user-supplied deadline given
to the problem solver, the sensed
times of the solution track, the belief
of the solution track, and comments
about the experiment.

When given a long time to solve the
problem (E1), the problem solver does
not need to use any approximate pro-
cessing mechanisms. In particular, it
can be conservative about eliminating
competing alternative interpretations.
In this case, the user-specified param-
eter is set so that the problem solver
never trusts its predictions: Given
time, the problem solver always
explores alternatives to make sure
that they do not yield better solutions
than what it has formed already.
Therefore, even though it generates
the best solution at time 40 (as in E2),
the problem solver examines the
other solution and does not respond
with an answer until time 57, when it
has formed and discarded the inferior
alternative. If only given 40 time
units to solve the problem (E2), the
problem solver cannot explore the
competing solutions, and it uses its
predictions to conclude that it has
found the best solution. It returns this
solution at time 40. Although both
experiments find the best solution
equally fast, E1 spends a lot of time
and energy verifying that it was the
best solution, whereas E2 predicts the
upper track will be inferior and does
not pursue it. The predictions in these
experiments are sufficiently accurate
so that E2's decision is correct. In
other problem situations, such a deci-
sion might be premature—the predic-
tions might underestimate the quality
of as yet undeveloped results, and the
best solution might be missed. How
conservative the decisions should be
depends on the problem situation and
how much time is available.

A highly believed hypothesis span-
ning the entire track cannot be
formed in less than 40 time units in
this particular environment. Given a
deadline of 36 time units (E3), the
problem solver predicts there is insuf-
ficient time to form the best solution
and, thus, revises its plan to meet the
deadline. Told by the experimenter

Figure 4. Level Hopping.

Figure 5.
The Experimental Problem Situation.

The problem-solving situation is
shown. The possible tracks are indi-
cated by connecting the related data
points, and the time each data point
was sensed is indicated. The size of a
data point represents the strength of
the detected signals.

56 AI MAGAZINE

(the consumer of the solution) to pre-
fer to sacrifice certainty in the solu-
tion, it removes enough actions which
generate corroborating support so that
it still forms a complete solution (cov-
ering all the sensed times) but only
with a moderate belief. With only 32
time units to work with (E4), the sys-
tem removes actions so that the solu-
tion covers all the sensed times but
with low belief.

Given a deadline of time 30 (E5),
the problem solver must employ a
larger combination of mechanisms
because it still expects to exceed the
deadline after it has removed all the
corroborating actions. Thus, it sacri-
fices some completeness by ignoring
data for the earliest sensed time (time
1) and generates hypotheses with low
belief spanning times 2-8. Finally,
given the same deadline of time 30
but told by the experimenter to prefer
to sacrifice completeness rather than
certainty (E6), the problem solver no
longer skips corroborating actions but
instead reduces the scope of the solu-
tion to span times 4-8. Note that in
these environments where each
action (knowledge source) takes one
time unit, the planner can drop just
enough corroborating actions (single
knowledge sources) to meet the dead-
line exactly (E3-E5). When it needs to
get high belief and ignores data in the
less important sensed times, the plan-
ner might not meet deadlines exactly
(E6) because processing these data can
require several knowledge sources.

Although these experiments repre-
sent only a preliminary examination
of approximate processing, they do
indicate how various mechanisms can

allow a problem solver to meet dead-
lines. Among the important issues
they have not explored are how the
problem solver can flexibly choose
approximations that are right for a
particular situation and how the time
spent in planning and deciding on
approximations affects real-time
activities. The first issue is discussed
in the following section; the second
issue remains an open research ques-
tion, although initial explorations
into the practicality of the control
mechanisms (when their benefits jus-
tify their overhead) have been per-
formed (Durfee and Lesser 1986; Dur-
fee and Lesser 1988; Durfee 1987).
This research indicates that because
problem-solving activities (applying
domain knowledge to some set of
data) are typically expensive, the mod-
est amount of overhead spent plan-
ning appropriate problem-solving
actions is worthwhile.

A Framework for Approximate Processing

A framework for approximate process-
ing must have mechanisms for recog-
nizing that solution requirements
cannot be met, choosing appropriate
approximations, and performing
approximate processing. We now
describe how our framework deals
with each of these issues.

Recognizing the Need
for Approximate Processing

Recognition of the need for approxi-
mate processing comes naturally from
planning the problem-solving activi-
ties for achieving system goals, esti-
mating the time these activities take
to achieve a solution, and monitoring

the progress of these plans.2
If the estimated time to complete

the plan is longer than the solution
time required by the objective, then it
becomes immediately clear that
approximations are necessary. As pro-
cessing goes on, plan predictions can
be adjusted to more accurate values
because additional information
becomes available. The DVMT plan-
ner, for example, uses the time the
system has taken to achieve goals in
the past to predict the time needed to
solve similar goals in the future, and
as it pursues its plans, it has a larger
selection of past goals to use when
making predictions (Durfee and Lesser
1986; Durfee and Lesser 1988). Com-
paring the adjusted solution time with
the given deadline can reveal that the
current plan cannot be completed on
time. Besides monitoring the plan, the
planner needs to monitor the system
state because slow progress on a plan
can be the result of a changed situa-
tion. For example, the amount of
input data can increase as a result of
busier traffic in the area, or a proces-
sor malfunction can impose stronger
resource constraints. In either case, in
order to satisfy the objective, the plan-
ner must make a new, approximate
plan that consists of faster or fewer
activities and takes a shorter time to
complete.

Choosing the Approximation Strategy

When the planner predicts that a solu-
tion satisfying the current objective
cannot be generated within the allow-
able time, the system must choose a
strategy for generating an approximate
solution. One approach is to evaluate

Expt STime Deadline Track Belief Comments
E1 57 80 1-8 high Explores all solutions
E2 40 40 1-8 high Stops with best predicted solution
E3 36 36 1-8 mod Sacrifice certainty
E4 32 32 1-8 low Sacrifice certainty
E5 30 30 2-8 low Sacrifice certainty
E6 28 30 4-8 high Sacrifice completeness

Legend
Expt: The experiment Track: Times spanned by best solution track
STime: Time at which the best solution was found Belief: Belief in best solution track
Deadline: Time at which solution must be returned

Table 1. Experiment Summary.

SPRING 1988 57

every applicable approximation and
then choose an approximation that
gives the best quality within the
allowable time. The evaluation
involves forming a plan with approxi-
mate activities (described in Perform-
ing Approximate Processing) and
allowing the planner to estimate the
time and quality of the solution based
on its models of problem-solving
actions and on past experience. This
approach for choosing approximations
is costly for two reasons: Evaluating
an approximation is a sophisticated
and time-consuming process because
it can require complete replanning,
and the number of applicable approxi-
mation alternatives is large in any
given situation. Complete evaluation
of all approximations would consume
a large amount of resources, canceling
any speedup that could be obtained by
approximate processing. Additionally,
the search for the optimal approxima-
tion might not be appropriate because
of the inherent unreliability of the
prediction used by the planner to
assess the effects of a plan and also
dynamic and unpredictable changes to
the problem situation. Thus, a heuris-
tic search for a nearly optimal "satis-
ficing" approximation is appropriate.

The first step in our approach is to
evaluate only a small fraction of appli-
cable approximations that are most
likely to be relevant in the current
state of processing. This procedure is
accomplished by introducing approxi-
mation rules: heuristic situation-
action rules that link the state of pro-
cessing with approximate processing
strategies. They state the situation
preference for approximations by
specifying approximations that are
most appropriate in a given situation.
This simple approach is used to limit
the number of approximation alterna-
tives by generating a relatively small
number of approximation candidates.
For example, a large amount of data
about a single event is a situation in
which the "incomplete event process-
ing" approximation should be tried.
This heuristic can be formulated as a
rule:

If there is a large amount of data
about an event then try the
"incomplete event processing"
approximation.

An approximation suggested by an
approximation rule can be eliminated
on the basis of unsatisfied precondi-
tions. Preconditions state the condi-
tions under which the approximation
is applicable. For example, the incom-
plete event processing approximation
that ignores less relevant data based
on recency of arrival might have pre-
conditions specifying sensed times
eligible to be ignored. If no data exist
for these times, the approximation
must be ruled out. The reason for sep-
arating these two filtering steps (can-
didate generation and precondition
testing) is efficiency. The rules pro-
vide a fast and inexpensive focusing
mechanism because situations are
based on global features of the state of
processing, whereas precondition tests
are based on detailed data attributes.

Another method we use to limit the
search for approximations is a simple
model of quality loss expected from
the approximation. Quality loss repre-
sents an estimate for degradation in
solution quality (certainty, precision,
and completeness) brought about by
the approximation. In the incomplete
event processing example, the sim-
plest model of expected loss would be
to make quality loss proportional to
the number of sensed times being
ignored. The expected quality loss
provides a simple and computational-
ly inexpensive model that is used to
control the much more expensive
evaluation process. Candidate approx-
imations generated by approximation
rules are ordered by increasing losses
before they are evaluated by the plan-
ner. By controlling the order in which
approximations are evaluated, the
quality loss controls the quality of the
resulting approximation. If the quality
loss is an accurate reflection of the
solution degradation, then the first
approximation that satisfies the objec-
tive is also the best one, and no other
approximations need to be evaluated.
Using the first successful approxima-
tion assumes that in most cases a sin-
gle approximation or combined group
of approximations coming from a sin-
gle situation-action rule leads to a bet-
ter solution than combinations of
approximations. Note, however, that
the optimality of the approximation is
not greatly affected by possible errors
in the loss model, because the loss is

used only to produce the ordering, and
approximations are selected based on
a detailed evaluation which relies on a
much more accurate model of pro-
cessing.

Finally, approximations can be
ruled out before evaluation if the
speedup expected from approximate
processing is insufficient (as specified
by the objective). The speedup is simi-
lar to quality loss in that its accuracy
is not critical (as long as the speedup
estimate is conservative enough not
to rule out any sufficient approxima-
tions) because it is not used to select
approximations. A good speedup
model does, however, improve the
efficiency of the search by avoiding
the detailed evaluation of approxima-
tions whose effect is in the wrong
ballpark in terms of processing time.
Typically, the speedup and the quality
loss depend on the same factors, and
thus, their magnitudes are related.
This relationship holds in our incom-
plete event processing approximation
example, where the speedup is greater
when additional sensed times are
ignored.

Before an approximation can be
evaluated or applied, the planner must
know how the approximation is per-
formed; that is, how new processing
plans are constructed. We call the
information that specifies how an
approximation is applied the value of
the approximation. For the approxi-
mation that ignores less recent data in
DVMT, approximate processing
entails ignoring intermediate process-
ing goals corresponding to less recent
sensed times.

All information needed to select,
evaluate, and apply an approximation
is contained in a record that we call
the approximation domain. Sample
information in the approximation
domain for DVMT (taken from the
incomplete event processing approxi-
mation example) is shown in figure 6.
This approximation ignores less
recent data (data for sensed times <
tn). Preconditions also specify that
data on the vehicle level are not
ignored (level < vehicle). This precon-
dition is introduced because the
speedup that could be achieved by
ignoring vehicle data is minimal (lit-
tle processing is left to do), and much
processing that has already been done

58 AI MAGAZINE

would be wasted.
The following steps specify how the

planner selects approximations:
1. Use approximation rules to gen-

erate candidate approximations.
2. Use preconditions to filter out

nonapplicable approximations.
3. Find the least costly approxima-

tion with sufficient speedup to meet
the specified deadline. If no simple
approximation provides a desired
speedup, consider combined approxi-
mations by adding their respective
costs and speedups. The cost is calcu-
lated as the ratio of quality loss to
speedup.

4. If there is no approximation or
combination of approximations for
which the total speedup is sufficient
or if all applicable approximations
have already been passed to step 5,
then exit with failure (or try ill-
defined approximations); otherwise,
pass this approximation to step 5.

5. Use the value of the approxima-
tion to evaluate the approximation
found in step 3.

6. If the evaluated approximation
satisfies the objective, then exit with
success; otherwise, go to step 3.

Figure 7 shows how this selection
process fits into the basic DVMT
planning loop. The selection of
approximations is the elaboration of
the box labeled "select best approxi-
mation."

Performing Approximate Processing

A change from exact to approximate
processing involves modifications of
the search space, problem-solving
plans, and the objective and low-level
system goals (the last two define char-
acteristics of acceptable results at a
global and local level, respectively). In
a blackboard-based problem solver,
the representation of the search space
corresponds to dimensions of the
blackboard, such as abstraction level
(signal, group, vehicle), the types of
events to be recognized at each level,
and the time and location range of
each event. An example of an approxi-
mation that involves search space
modification is cluster processing,
which can combine hypotheses with
identical time and location character-
istics regardless of their level on the
blackboard. For this approximation,

the search space is modified by col-
lapsing the abstraction levels into a
single level.

Modifications of problem-solving
plans include a choice of which of the
alternative plans to follow, the elimi-
nation of plan steps, the substitution
of regular activities in the plan by
approximate activities, and the inser-
tion of special activities into the plan.
In Preliminary Experiments is a
description of specific plan modifica-
tions based on certain approxima-
tions. In addition, some general mech-
anisms are required to initiate approx-
imate processing regardless of the
type of approximation. One such
mechanism is the ability to redefine
low-level system goals (Corkill, Lesser
and Hudlická 1982). When processing
is changed from exact to approximate,
old goals (corresponding to exact pro-
cessing) should be deactivated and
replaced by new goals based on a dif-
ferent goal template. A goal template
specifies the desired range of
attributes in which results should
fall—and the desired precision and
certainty of the results—as a function
of data attributes. Each approximation
has a characteristic goal template.
When clustering a cloud of data, for
example, the location range of the
clustering goal template specifies the
area where noise was detected as the
desired location range, and the loca-
tion precision is the clustering metric.

Another mechanism needed to
implement approximate processing is
a generalized view of data. In DVMT,
this data structure is called an
approximate hypothesis. An approxi-
mate hypothesis has a range of values
for event attributes and, thus, repre-
sents a generalization of the regular
hypothesis. An approximate hypothe-
sis provides an appropriate representa-
tion for data used both in clustering
and incomplete event processing. For
example, a location cluster is repre-
sented by an approximate hypothesis

whose location range includes the
locations of all data being clustered. If
a location range is undefined (or,
equivalently, includes all values possi-
ble in the domain), then the corre-
sponding approximate hypothesis is a
result of incomplete (type only) pro-
cessing.

To enable processing of approximate
hypotheses, an approximate version of
every knowledge source needs to be
added to the system. Approximate
knowledge sources are generalized
knowledge source modules, which are
able to deal with data that have differ-
ent levels of precision. Thus, process-
ing of data objects with different pre-
cisions could be freely intermixed,
and the detailed constraints of precise
results can be exploited when they are
available.

As part of DVMT, we have
developed several of the approxima-
tions discussed in Approximate
Search Strategies, Data Approxima-
tions, and Knowledge Approxima-
tions, as described in the following
subsections.
Eliminating Corroborating Support-
Multiple Types. This approximation
was illustrated in the experiments
(see Preliminary Experiments). When
the planner discovers multiple activi-
ties which can contribute to satisfying
the same goal, it eliminates enough of
them from the plan so that it meets
deadlines. Thus, if a vehicle is charac-
terized by two harmonic groups, and
data for both are available, data corre-
sponding to one group are ignored.

Eliminating Corroborating Support-
Skipping Sensed Times. General
tracking knowledge sources take time
resolution as a parameter (for exam-
ple, exact tracking has a time resolu-
tion of 1, tracks are formed with data
at every sensed time, but skipping
every other sensed time would have a
time resolution of 2). Plan modifica-
tion for this approximation involves

Incomplete Event Processing

preconditions value quality loss speedup

time > n ignore goals for 2 per sensed time 2 per sensed time
level < vehicle time = t1 …tn-1

Figure 6. Incomplete Event Processing Approximation.

SPRING 1988 59

modifying the resolution parameter of
tracking knowledge sources. Process-
ing is modified by deactivating goals
corresponding to eliminated data and
forming a new tracking goal template
with the appropriate time resolution.

Eliminating Competing Interpreta-
tions. Before the system returns a
solution, it estimates the certainty of
potential competing solutions result-
ing from plans that have not yet been
completed. If these solutions are esti-
mated to have much lower certainty
than the currently proposed solution
the corresponding plans can be ignored
(see Preliminary Experiments).

Incomplete Event Processing—Ignor-
ing Attributes. We introduce approx-
imate processing activities that con-
sider a restricted set of data attributes.
In the incomplete processing plan,
regular activities are replaced by these
incomplete activities. An example of
an incomplete knowledge source in
DVMT is class synthesis, which com-
bines hypotheses on one abstraction
level to obtain hypotheses on a higher
abstraction level by considering only

compatibility of event classes and
ignoring their location. The goal tem-
plates used for this incomplete event
processing specify that the ignored
attribute can have a range of all values
possible in the domain.

Incomplete Event Processing—Ignor-
ing Least Recent Data. Plan modifi-
cation involves ignoring the activities
which process the least recent data so
that less complete solutions are
formed (see Preliminary Experiments).

Cluster Processing. The clustering
function is performed by the new
combine knowledge source. Combine
is triggered by a new goal template
whose measure of precision is the
clustering metric specified in the
approximation domain. It forms new
data units consisting of the data being
clustered and represented by approxi-
mate hypotheses. When cluster pro-
cessing is decided on, the planner
replaces regular knowledge sources
(operating on single data units in a
cluster) with one knowledge source
(operating on the cluster).

Knowledge Simplification—Level

Hopping. Level-hopping knowledge
sources combine the knowledge con-
tained in several regular knowledge
sources. For example, a level-hopping
knowledge source that identifies vehi-
cles based on acoustic signals com-
bines the knowledge about how sig-
nals should be grouped and how
groups of signals indicate vehicles.
When the situation for which this
approximation is appropriate is dis-
covered, a sequence of regular activi-
ties in the plan is replaced by the
level-hopping activity.

Summary and Future Research

We have laid out an approach for real-
time problem solving. It is based on
the AI problem solver having a sophis-
ticated control component that can
plan out its problem-solving activi-
ties. Once a system is actively plan-
ning the use of its resources, then
time is but one such resource. The
key aspects of this approach follow.

1. The criterion for successful real-
time control behavior for AI systems
should be to try to develop the best
solution to the overall problem that
satisfies the time constraints.

2. A real-time AI problem solver
must be able to reason about its crite-
ria for acceptable solutions, its prob-
lem-solving state, and its plans for
achieving an acceptable solution.

3. A problem solver must estimate
the time it needs to complete its
plans. Because these estimates are
uncertain (problem solving is to some
extent unpredictable), the problem
solver might fail to meet a deadline
exactly.

4. If the best (most complete, pre-
cise, and certain) solution is not
obtainable within the available time,
the problem solver should resort to
approximate processing strategies that
trade the quality of the solution for
speedup. Three classes of approximate
processing strategies are detailed:
approximate search, data approxima-
tions, and knowledge approximations.
Each of these contributes to develop-
ing a smaller or simpler search space
and faster ways of searching the space.

We believe that the additional flexi-
bility provided by approximate pro-
cessing can be exploited by the prob-
lem solver to achieve other ends

60 AI MAGAZINE

besides meeting deadlines. For exam-
ple, when faced with highly uncertain
situations, the problem solver could
employ approximate processing to get
a handle on these situations without
investing large amounts of effort. The
problem solver, thus, becomes versa-
tile as a result of its ability to selec-
tively use a wider range of problem-
solving techniques.

An important assumption about
this framework for real-time control
is that it is possible to make a reason-
ably accurate estimate of the time to
carry out the steps of the plan and the
quality of the expected solution. The
better the prediction, the more quick-
ly it can be recognized that deadlines
cannot be met; thus, increased flexi-
bility is given to the system to find
the best-quality solution within the
remaining time. The work of Durfee
and Lesser (1986) and Pavlin (1983)
shows how to make reasonable pre-
dictions in DVMT, and we must
develop corresponding mechanisms
for other types of AI systems. We
should also explore other important
issues such as interrupting knowl-
edge-source processing; allowing for
ongoing, low-level sensor monitoring
and effector control; and predicting
and managing the cost of control deci-
sions (Fehling, Joerger, and Sagalowitz
1986; Pardee and Hayes-Roth 1987).

We considered real-time control in
the context of a blackboard-based
interpretation system that plans out
its problem-solving activities. In this
context, we discussed how deadlines
can be met by reducing the solution's
completeness, precision, certainty, or
any combination of these and outlined
approximate processing techniques for
speeding up problem solving at the
cost of solution quality. Our prelimi-
nary experiments show that these
techniques allow a problem solver to
flexibly meet deadlines. Finally, we
outlined a computationally efficient
framework for choosing and pursuing
suitable approximations in a black-
board-based interpretation system.

Acknowledgments

This work was first initiated in 1986 as
part of a Masters project by Ravi Bhargava
under the supervision of Victor Lesser and
Daniel Corkill. The perceptive and probing
comments on earlier drafts of this paper by

Norman Carver, Paul Cohen, Daniel
Corkill, and Jack Stankovic were extreme-
ly helpful. Michele Roberts assisted in
preparing the manuscript and figures.

This research was supported by the
Office of Naval Research under a Universi-
ty Research Initiative Grant, Contract #
N00014-86-K-0764, and the Defense
Advanced Research Projects Agency moni-
tored by the Office of Naval Research
under Contract # N00014-79-C-0439.

References

Corkill, D. D.; Lesser, V. R.; and Hudlická,
E. 1982. Unifying Data-Directed and Goal-
Directed Control: An Example and Experi-
ments. In Proceedings of the Second
National Conference on Artificial Intelli-
gence, 143-147. Los Altos, Calif.: Morgan
Kaufmann.
Durfee, E. H. 1987. A Unified Approach to
Dynamic Coordination: Planning Actions
and Interactions in a Distributed Problem
Solving Network. Ph.D. diss., Dept. of
Computer and Information Science, Univ.
of Massachusetts.
Durfee, E. H., and Lesser, V. R. 1988. Incre-
mental Planning to Control a Time-Con-
strained, Blackboard-Based Problem Solver.
IEEE Transactions on Aerospace and Elec-
tronic Systems. Forthcoming. (Also Tech-
nical Report 87-07, Dept. of Computer and
Information Science, Univ. of Mas-
sachusetts.)
Durfee, E. H., and Lesser, V. R. 1986. Incre-
mental Planning to Control a Blackboard-
Based Problem Solver. In Proceedings of
the Fifth National Conference on Artificial
Intelligence, 58-64. Los Altos, Calif.: Mor-
gan Kaufmann.
Erman, L. D.; Hayes-Roth, F.; Lesser, V. R.;
and Reddy, D. R. 1980. The Hearsay-II
Speech Understanding System: Integrating
Knowledge to Resolve Uncertainty. Com-
puting Surveys 12: 213-253.
Fehling, M. R.; Joerger, K.; and Sagalowitz,
D. 1986. Knowledge Systems for Process
Management. In Proceedings of the Instru-
ment Society of America-86 Conference,
41(3): 1509-1526. Research Triangle Park,
N.C.: Instrument Society of America.
Hayes-Roth, B. 1987a. A Multi-Processor
Interrupt-Driven Architecture for Adaptive
Intelligent Control, Technical Report, KSL
87-31, Dept. of Computer Science, Stan-
ford Univ.
Hayes-Roth, B. 1987b. Dynamic Control
Planning in Adaptive Intelligent Systems.
In Proceedings of the DARPA Knowledge-
Based Planning Workshop, 41-47.
Hudlická E., and Lesser, V. R. 1984. Meta-
Level Control through Fault Detection and
Diagnosis. In Proceedings of the Fourth
National Conference on Artificial Intelli-

gence, 153-161. Los Altos, Calif.: Morgan
Kaufmann.
Lesser, V. R., and Corkill, D. D. 1983. The
Distributed Vehicle Monitoring Testbed: A
Tool for Investigating Distributed Problem
Solving Networks. AI Magazine 4(3): 15-
33.
Lesser, V. R., and Erman, L. D. 1977. A
Retrospective View of the Hearsay-II
Architecture. In Proceedings of the Fifth
International Joint Conference on Artifi-
cial Intelligence, 790-800. Los Altos, Calif.:
Morgan Kaufmann.
March, J. G., and Simon, H. A. 1958.
ORGANIZATIONS. New York: Wiley.
Nii, H. P. 1986. Blackboard Systems: Part
One. AI Magazine 7(2): 38-64. Blackboard
Systems: Part Two. AI Magazine 7(3): 82-
106.
Pardee, W. J., and Hayes-Roth, B. 1987.
Intelligent Real-Time Control of Material
Processing, Technical Report #1, Rockwell
International Science Center, Palo Alto
Laboratory.
Pavlin, J. 1983. Predicting the Performance
of Distributed Knowledge-Based Systems:
A Modeling Approach. In Proceedings of
the Third National Conference on Artifi-
cial Intelligence, 314-319. Los Altos, Calif.:
Morgan Kaufmann.
Ramamritham, K., and Stankovic, J. A.
1984. Dynamic Task Scheduling in Dis-
tributed Hard Real-Time Systems. IEEE
Software 1(3):65-75.
Simon, H. A. 1969. The Sciences of the
Artificial. Cambridge, Mass.: MIT Press.
Stankovic, J. A.; Ramamritham, K.; and
Cheng, S. 1985. Evaluation of a Flexible
Task Scheduling Algorithm for Distributed
Hard Real-Time Systems. IEEE Transac-
tions on Computers C-34(12): 1130-1143.

Notes

1. It is possible to have opportunism with-
in the combined knowledge source, but
this opportunism is more difficult to do
correctly because the decision to drop pro-
cessing of intermediate alternatives is only
a local decision within the context of a sin-
gle knowledge source application.
2. An alternative way to recognize the
need for approximate processing is to have
some simple measure to indicate appropri-
ate problem-solving progress. For addition-
al details of this approach, see work by
Hudlická and Lesser (1984). This simpler
but less precise method could also be used
in conjunction with the techniques devel-
oped in Choosing the Approximate Strate-
gy except that the final step, which is the
verification of the new objective and con-
trol strategy by constructing a detailed
plan, would be eliminated.

SPRING 1988 61

