
Concurrent Logic Program-
ming, Metaprogramming,
and Open Systems
Kenneth M. Kahn

WORKSHOP REPORT

and how can the agent deal with
"breakdown" in the sense discussed by
Terry Winograd and Fernando Flores.
Carl Hewitt of MIT presented actors
as an alternative computational
model for open-system programming.
Many were surprised at the close cor-
respondence between the actor model
and concurrent logic programming.
This similarity has become increas-
ingly apparent to researchers in both
fields. Both present a scalable, compu-
tational model with fine-grained,
implicit concurrency and explicit syn-
chronization control. Both are well
suited for defining robust, securely
encapsulated servers.

I presented the vision of the Vulcan
group at Xerox PARC, which takes as
its challenge the building of high-level
languages, abstractions, and tools
upon a distributed implementation of
a concurrent logic-programming lan-
guage. The Vulcan group sees
metaprogramming as an important
methodology in building concurrent
logic-programming abstractions. The
group shares with Weizmann, ICOT,
and others the belief that enhanced
metainterpreters are a conceptually
clear and simple way to capture many
programming abstractions. It is hoped
that the use of suites of enhanced
interpreters can be an effective and
practical technique when combined
with the automatic specialization that
partial evaluation provides.

Vijay Saraswat from CMU provided
the personal vision that tightly inte-
grates notions of controlled constraint
programming, transactions, produc-
tion systems, and synchronous com-
putation with the concurrent logic-
programming framework. The con-
nection between transactions and pro-
duction systems followed from his
proposal to permit the simultaneous

he workshop began with the
visions of concurrent logic pro-

gramming and open systems that are
driving research at Weizmann, ICOT,
CMU, MIT, and Xerox PARC. A
shared vision emerged from the morn-
ing session with concurrent logic pro-
gramming fulfilling the same role that
C and Assembler do now. Languages
such as Flat Concurrent Prolog and
Guarded Horn Clauses are seen as
general-purpose, parallel machine lan-
guages and interface languages
between hardware and software and
not, as a newcomer to this field might
expect, as high-level, AI, problem-
solving languages. This view is one of
the major departures from main-
stream logic programming and Prolog
that most of the workshop partici-
pants have taken, which is reflected
in the way these languages have trad-
ed Prolog's exhaustive search capabili-
ty for controllable concurrency.

Another major departure from con-
ventional (logic) programming is the
incorporation of an open-system
vision. In an open system, a growing
predominance of computational ser-
vices is provided and used by indepen-
dent entities. Computation is envi-
sioned as becoming more and more
distributed between entities from dif-
ferent organizations, with different
goals, that cooperate without requir-
ing trust. Open, distributed imple-
mentations of concurrent logic-pro-
gramming languages are seen by
researchers from Weizmann and
Xerox as a way of providing a uniform
notation for computation in open sys-
tems. Dan Bobrow of Xerox presented
the open-system challenge from the
viewpoint of a participating agent; for
example, how can an agent know
what others might do for it and what
assumptions will limit interactions,

An informal workshop on concurrent
logic programming, metaprogramming,

and open systems was held at Xerox Palo
Alto Research Center (PARC) on 8-9

September 1987 with support from the
American Association for Artificial Intel-

ligence.
The 50 workshop participants came from

the Japanese Fifth Generation Project
(ICOT), the Weizmann Institute of Sci-
ence in Israel, Imperial College in Lon-

don, the Swedish Institute of Computer
Science, Stanford University, the Mas-

sachusetts Institute of Technology (MIT),
Carnegie-Mellon University (CMU), Cal
Tech, Science University of Tokyo, Mel-
bourne University, Calgary University,
University of Wisconsin, Case Western

Reserve, University of Oregon, Korea
Advanced Institute of Science and Tech-

nology (KAIST), Quintus, Symbolics,
IBM, and Xerox PARC. No proceedings

were generated; instead, participants dis-
tributed copies of drafts, slides, and

recent papers.

T

SPRING 1988 115

AI Magazine Volume 9 Number 1 (1988) (© AAAI)

reduction of multiple processes with a
multiheaded definite clause. In a later
talk by John Connery from the Uni-
versity of Oregon, a similar idea came
up as a proposed extension to Prolog.

Mark S. Miller and K. Eric Drexler
presented the Vulcan group's market-
based approach to adaptive resource
management in open systems.
Takashi Chikayama presented ICOT's
latest developments in concurrent
logic programming.

The rest of the workshop consisted
of technically oriented presentations
and discussions. Several discussions
were on the differences between
Guarded Horn Clauses, Parlog,
Saraswat's family of CP languages,
and Flat Concurrent Prolog. The focus
of these discussions was on whether
unification should be an atomic trans-
action and whether data flow synchro-
nization annotations should be inter-
preted statically (as a code annotation)
or dynamically (as a data annotation).
Differences between these two points
lead to languages with different prop-
erties, for example, the ability or
inability to describe mutual exclu-
sion. Only Flat Concurrent Prolog
supports dynamic annotations (read-
only variables), and it was widely
acknowledged that this capability
confuses beginning programmers. Eric
Tribble from Xerox sparked much dis-
cussion by presenting his analysis of
the uses of read-only variables and
proposing alternative simpler mecha-
nisms.

Presentations about higher-level
languages included one by Jim Rauen
of MIT and Xerox about Lexical Flat
Concurrent Prolog. The talk described
a higher-order concurrent logic-pro-
gramming language that enables pro-
gramming with predicate arguments
and closures and provides a principled
means of defining and using modules.
This work was directly inspired by
the T dialect of Scheme.

One session was devoted to discus-
sions of object-oriented programming
languages built on concurrent logic
programming. Andrew Davison of
Imperial College presented Polka,
Takashi Chikayama of ICOT present-
ed KL1-U, and I talked about Vulcan.
All these languages consider objects
as recurrent processes consuming
streams of messages. They differ,

however, in their handling of inheri-
tance, delegation, messages to self,
and synchronization of state change.

We had a session on metainter-
preters and partial evaluation. Leon
Sterling of Case Western presented his
ideas on the Flavors-like mixing of
enhanced metainterpreters. Akira
Okumura of ICOT presented rules for
unfolding Guarded Horn Clauses pro-
grams. Udi Shapiro from Weizmann
talked about metainterpreter-based
algorithmic debugging and the ways
in which specialized views of the
computation can be useful for differ-
ent kinds of debugging. He also talked
about a new semantics for Flat Con-
current Prolog computations. Will
Winsborough from the University of
Wisconsin talked about abstract inter-
pretation in a logic-programming
framework.

Some of the talks were on imple-
mentation issues. Yasunori Kimura of
ICOT presented a multiple reference
count scheme that supported Guarded
Horn Clauses optimizations, which
are essential in keeping bus traffic
down on a shared-memory, snoopy
cache machine. Annika Waern and
Fredrik Holmgren of the Swedish
Institute of Computer Science talked
about how to compile Guarded Horn
Clauses programs to Prolog imple-
mentations extended with
"freeze"—the capability to suspend
goals. Vijay Saraswat from CMU
talked about a similar technique. He
also discussed constraint program-
ming in a concurrent logic-program-
ming framework. John Cleary from
the University of Calgary presented
the distributed simulation technique
called time warps and its applicability
to parallel implementations of Prolog
and distributed implementations of
unification. Seif Haridi of the Swedish
Institute of Computer Science talked
about work on parallel implementa-
tions of Prolog.

One session consisted of live demos
that were projected onto a large
screen. Dongwook Shin from KAIST
demonstrated Aflog, a functional
extension to concurrent logic pro-
gramming. Bob Cassels and John
Hotchkiss of Symbolics demonstrated
their graphic debugger for logic pro-
grams. Bill Silverman from the Weiz-
mann Institute showed the prototype

of a distributed implementation of the
Logix operating system. Logix is a pro-
gramming system for Flat Concurrent
Prolog written in Flat Concurrent Pro-
log. The distributed version supports
remote computations and distributed
code management.

Overall, the workshop exceeded our
expectations. Many presentations
were given of new results and work in
progress. The level, extent, and liveli-
ness of the discussions during and fol-
lowing the presentations obviated the
need for the several panels that had
been planned. We think the workshop
successfully tied together the threads
of concurrent logic programming,
metaprogramming, and open systems.
Many participants came to the work-
shop with some version of one or two
of these threads and went home with
a heightened awareness of all three.

References
Ehud Shapiro, ed., Concurrent Prolog:
Collected Papers, MIT Press, Cambridge,
Mass. 1987. A collection of papers on Con-
current Prolog and related languages, this
book includes classic papers that started
the field of concurrent logic programming
as well as recent work on embedded lan-
guages, implementations, tools, metapro-
gramming, partial evaluation, applications,
and semantics.

Kazunori Ueda, Guarded Horn Clauses,
MIT Press, Cambridge, Mass. 1987. This
book describes the language that has
become the kernel language for the latest
research at ICOT.

Steve Gregory, Parallel Logic Program-
ming in PARLOG, Addison-Wesley, Wok-
ingham, England 1987. This text serves as
a general introduction to Parlog, the con-
current logic-programming language from
Imperial College.

Bernardo Huberman, ed., The Ecology of
Computation, North Holland, Amsterdam
1988. This book is a good collection of
papers on open systems.

Kenneth Kahn, "Partial Evaluation, Pro-
gramming Methodology, and Artificial
Intelligence", AI Magazine, Vol. 5, No. 1,
pages 53-57. This article is a general intro-
duction to partial evaluation and its appli-
cation to the specialization of interpreters.

116 AI MAGAZINE

