
A numeric representation of uncertain and 
incomplete sensor knowledge called cer- 
tainty grids was used successfully in sev- 

eral recent mobile robot control programs 
developed at the Carnegie-Mellon Univer- 
sity Mobile Robot Laboratory (MRL) Cer- 
tainty grids have proven to be a powerful 
and efficient unifying solution for sensor 

fusion, motion planning, landmark identi- 
fication, and many other central prob- 

lems MRL had good early success with ad 
hoc formulas for updating grid cells with 

new information. A new Bayesian statisti- 
cal foundation for the operations promises 

further improvement MRL proposes to 
build a software framework running on 

processors onboard the new Uranus 
mobile robot that will maintain a proba- 
bilistic, geometric map of the robot’s sur- 
roundings as it moves, The certainty grid 
representation will allow this map to be 

incrementally updated in a uniform way 
based on information coming from vari- 

ous sources, including sonar, stereo vision, 
proximity, and contact sensors The 

approach can correctly model the fuzzi- 
ness of each reading and, at the same 

time, combine multiple measurements to 
produce sharper map features; it can also 

deal correctly with uncertainties in the 
robot’s motion The map will be used by 
planning programs to choose clear paths, 
identify locations (by correlating maps), 

identify well-known and insufficiently 
sensed terrain, and perhaps identify 

objects by shape. The certainty grid repre- 
sentation can be extended in the time 

dimension and used to detect and track 
moving objects Even the simplest ver- 

sions of the idea allow us to fairly 
straightforwardly program the robot for 

tasks that have hitherto been out of reach 
MRL looks forward to a program that can 
explore a region and return to its starting 

place, using map “snapshots” from its out- 
bound journey to find its way back, even 

in the presence of disturbances of its 
motion and occasional changes 

in the terrain. 

Sensor Fusion in Certainty 
Grids for Mobile Robots 
Hans I? Moravec 

R obot motion planning systems 
have used many space and 

object representations. Objects have 
been modeled by polygons and poly- 
hedra or bounded by curved surfaces. 
Free space has been partitioned into 
Vornoi regions or, heuristically, free 
corridors. Traditionally, the models 
have been hard edged; positional 
uncertainty, if considered at all, was 
used in just a few special places in the 
algorithms, expressed as a Gaussian 
spread. Partly, this oversimplification 
of uncertainty information is the 
result of analytic difficulty in manipu- 
lating interacting uncertainties, espe- 
cially if the distributions are not 
Gaussian. Incomplete error modeling 
reduces positional accuracy. Seriously, 
it can produce entirely faulty conclu- 
sions: A false determination of an 
edge in a certain location, for in- 
stance, can derail an entire train of 
inference about the location or exis- 
tence of an object. Because they 
neglect uncertainties and alternative 
interpretations, such programs are 
brittle. When they jump to the right 
conclusions, they do well, but a small 
error early in the algorithm can be 
amplified to produce a ridiculous 
action. Most AI-based robot controllers 
have suffered from this weakness. 

The Mobile Robot Laboratory 
(MRL) at Carnegie-Mellon University 
has built their share of brittle con- 
trollers. Occasionally, however, MRL 
stumbled across numeric (as opposed 
to analytic) representations that seem 
to escape this fate. One numeric rep- 
resentation is deep inside the program 
that drove the Stanford Cart in 1979 
(Moravec 1981). Each of 36 pairings of 
nine images from a sliding camera 
produced a stereo depth measurement 
of a given feature, identified by a cor- 
relator, in the nine images. Some pair- 

ings were from short baselines and 
had large distance uncertainty; others 
were from widely separated view- 
points with small spread. The proba- 
bility distributions from the 36 read- 
ings were combined numerically in a 
IOOO-cell array, each cell representing 
a small range interval (see figure 1). 
Correlator matching errors often pro- 
duced a multipeaked resultant distri- 
bution, but the largest peak almost 
always gave the correct range. The 
procedure was the most error-tolerant 
step in the Cart navigator, but it alone 
did not protect the whole program 
from brittleness. 

A descendant of the Cart program 
by Thorpe and Matthies had a path 
planner (Thorpe 1984) that modeled 
floor space as a grid of cells containing 
numbers representing the suitability 
of each region to be on a path. Regions 
near obstacles had low suitability, and 
empty space was high. A relaxation 
algorithm found locally optimum 
paths (see figure 2). The program rep- 
resented uncertainty in the location, 
even existence, of obstacles by having 
the suitability numbers for them vary 
according to extended, overlapping 
probability distributions The method 
dealt reliably and completely with 
uncertainty but suffered from being 
embedded in an otherwise brittle pro- 
gram. 

MRL’s earliest thorough use of a 
numeric model of position uncertain- 
ty was in a sonar mapper, map match- 
er, and path planner developed initial- 
ly for navigating the Denning Sentry 
(Moravec and Elfes 1985; Elfes 1987; 
Kadonoff et al. 1986). Space was repre- 
sented as a grid of cells, each mapping 
an area 30 (in some versions 15) cen- 
timeters on a side and containing two 
numbers, one the estimated probabili- 
ty the area was empty, the other that 
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n 
yigure 1 Nine Eyed Stereo. 

Identifications of a point on an object are seen in nine different images taken as a cam- 
era traversed a track at right angles to its direction of view Each pairing of images gives 
a stereo baseline, some short, some long Long baselines have less uncertainty in the cal- 
culated distance The distributions for all 36 possible pairings are added in a one-dimen- 
sional certainty grid, and the peak of the resultant sum is taken as the actual distance 
to the object The top graph represents a case where all nine identifications of the point 
in the images are correct The bottom graph represents a case where one image is in 
error The enor produces eight small peaks at incorrect locations, but these small peaks 
are no match for the large peak resulting from the accumulation of correct values 

it was occupied. Cells whose state of 
occupancy was completely unknown 
had both probabilities zero, and incon- 
sistent data were indicated if both 
numbers were high. Many of the algo- 
rithms worked with the differences of 
the numbers. Each wide-angle sonar 
reading added a 30-degree swath of 
emptiness and a 30-degree arc of occu- 
pancy, by itself a fuzzy image of the 
world. Together, several hundred read- 
ings produced an image with a resolu- 
tion often better than 15 centimeters, 
despite many aberrations in individu- 
al readings (see figure 3). The resilien- 
cy of the method was demonstrated in 
successful multihour-long runs of 
Denning robots around and around 
long trajectories, using 3-second map- 
building and 3-second map-matching 
pauses at key intersections to repeat- 
edly correct their position. These runs 
worked well in clutter and survived 
disturbances such as people milling 
around the running robot. 

Ken Stewart of MIT and Woods 
Hole has implemented a three-dimen- 
sional version of the sonar mapper for 
use with small submersible craft. Ini- 
tially tested in simulation in the pres- 
ence of large simulated errors, Stew- 
art’s program provided extremely good 
reconstructions, in a 128 x 128 x 64 
array, of large-scale terrain, working 
with about 60,000 readings from a 
sonar transducer with a 7-degree 
beam. Running on a Sun computer, 
his program can process sonar data 
fast enough to keep up with the 
approximately l-second pulse rate of 
the transducers on the two candidate 
submersibles at Woods Hole The pro- 
gram was recently tested on real sonar 
data from a scanning transducer on an 
underwater robot that swam over the 
remains of the civil war battleship 
USS Monitor as part of a National 
Oceanic and Atmospheric Administra- 
tion and United States Navy survey 
(Stewart 1988, 1987). The impressive 

results are shown in figure 4. 
Recently, Serey and Matthies (1986) 

demonstrated the utility of the grid 
representation in a stereo vision-based 
navigator running on the MRL “Nep- 
tune” (see figure 5) mobile robot. 
Edges crossing a particular scan line in 
the two stereo images are matched by 
a dynamic programming method to 
produce a range profile. The wedge- 
shaped space from the camera to the 
range profile is marked empty; cells 
along the profile itself are marked 
occupied. The resulting map is then 
used to plan obstacle-avoiding paths, 
as with the stereo and sonar programs 
mentioned earlier (see figure 6). 

Matthies and Elfes (1987) combined 
improved versions of the sonar and 
stereo programs into a single one that 
builds maps integrating data from 
both sensors. Their first results, also 
from a run of Neptune, are shown in 
figure 7. 

In work in progress, In So Kweon 
(1987) of Carnegie-Mellon University 
successfully demonstrated the map- 
ping of data from a scanning laser 
range finder (from ERIM Company, 
Ann Arbor, Michigan) into a three- 
dimensional grid. 

Despite its effectiveness, in each 
instance, MRL reluctantly adopted the 
grid representation of space. This 
reluctance might reflect habits from a 
recent time when analytic approaches 
were more feasible and seemed more 
elegant because computer memories 
were too small to easily handle 
numeric arrays of a few thousand to a 
million cells. I think the reluctance is 
no longer appropriate. The straightfor- 
wardness, generality, and uniformity 
of the grid representation have proven 
themselves in finite-element 
approaches to problems in physics and 
raster-based approaches to computer 
graphics and have the same promise in 
robotic spatial representations. At first 
glance, a grid’s finite resolution inher- 
ently seems to limit positioning accu- 
racy. This impression is false. Cam- 
eras, sonar transducers, laser scanners, 
and other long-range sensors have 
intrinsic uncertainties and resolution 
limits that can be matched by grids no 
larger than a few hundred cells on a 
side, giving a few thousand cells in 
two dimensions or a few million in 
three dimensions. Because the accura- 
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cy of most transducers drops with 
range, even greater economy is possi- 
ble using a hierarchy of scales, cover- 
ing the near field at high resolution 
and successively larger ranges with 
increasingly coarser grids. The implic- 
it accuracy of a certainty grid can be 
better than the size of its cell. The 
grid can be thought of as a discrete 
sampling of a continuous function. 
Extended features such as lines (per- 
haps representing walls) can be locat- 
ed to high precision by examining the 
parameters of surfaces of best fit. The 
Denning robot navigator convolves 
two maps to find the displacement 
and rotation between them. In the 
final stages of the matching correla- 
tion, values are obtained for a number 
of positions and angles in the vicinity 
of the best match. A quadratic least 
squares polynomial is fitted to the 
correlation values, and its peak is 
located analytically. Controlled tests 
of the procedure usually give posi- 
tions accurate to better than one- 
fourth of a cell width. 

MRL’s results to date suggest that 
many mobile robot tasks can be 
solved with this unified, sensor-inde- 
pendent approach to space modeling. 
The key ingredients are a robot-cen- 
tered, multiresolution map of the 
robot’s surroundings; procedures for 
efficiently inserting data from sonar, 
stereo vision, proximity, and other 
sensors into the map; other proce- 
dures for updating the map to reflect 
the uncertainties introduced by 
imprecise robot motion; and yet other 
procedures to extract conclusions 
from the maps. Procedures that pro- 
duce local and global navigational 
fixes and obstacle-avoiding paths from 
such maps have already been demon- 
strated. Other tasks, such as tracking 
corridors, finding vantage points with 
good views of unseen regions, and 
identifying larger features such as 
doors and desks by general shape, 
seem within reach. 

The Representation 
The sonar mappers mentioned earlier 
is MRL’s most thorough use to date of 
the certainty grid idea. Although orig- 
inal implementations used two grids 
to represent occupancy knowledge 
(labeled Poccupied and Pempty, Stewart’s 

Figure 2 Relaxation Path Planner. 
A path is chosen that minimizes a given cost function in a certainty grid Small peltur- 
bations are made in the vertexes of the path in directions that reduce the cost. 

three-dimensional system used only 
one An analysis of the steps in MRL’s 
code revealed that one grid did indeed 
suffice, and this simplification clari- 
fied several puzzling issues in the orig- 
inal formulation. Here, I present a 
sample of the methods MRL used in 
most of its work to date. A discussion 
of a new, Bayesian approach follows. 

Before any measurements were 
made, the grid was initialized to a 
background occupancy certainty 
value, Cb. This number represented 
the average occupancy certainty 
expected in a mature map and encod- 
ed a little a priori information MRL 
had about the world. In MRL, a good 
Cb seemed to be about the number of 
cells in the perimeter of the grid divid- 
ed by the total cells (4 x 32/(32 x 32) = 

l/8) in the case of the Denning code. If 
the space was cluttered, Cb should be 
larger. As the map was used, values 
near Cb would indicate regions whose 
occupancy state was essentially 
unknown, those much nearer zero 
would represent empty places, and 
those much nearer unity were likely 
to be occupied. Most of the planning 
algorithms that used the grid are bet- 
ter off if they do not make sharp dis- 
tinctions but instead numerically 
combine the certainty values from 
various cells to produce “goodness of 
fit” numbers for their various 
hypotheses In this way, the essential 
uncertainties in the measurements are 
not masked, and the algorithms do not 
jump to unnecessary, possibly false, 
conclusions. 
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Figure 3. Sonar Mapping and Navigation 
The figure illustrates a plan view of the certainty grid built by a sonar-guided robot traversing the MRL laboratory The scale marks 
are in feet Each point on the dark trajectory is a stop that allowed the on-board sonar ring to collect 24 new readings The grid cells 
are white if the occupancy probability is low, dots if unknown, and x if high The forward paths were planned by an A” algorithm 
working in the grid as it was incrementally generated 
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Figure 4. 
Three-Dimensional Underwater 

Sonar Image of USS Monitor. 

A surface was extracted from a three- 
dimensional certainty grid 128 cells on a 

side The grid was built from about 
100,000 readings from a 1 s-degree scan- 

ning sonar on a free swimming robot The 
ship is lying upside down, with many 

parts of the hull collapsed 

Figure 5. 
The Neptune Mobile Robot. 

fie Host for Many Early 
Certainty Grid Experiments. 
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Figure 6 Stereo Mapping and Navigation 
The figure illustrates a plan view of the certainty grid built by a stereo-guided robot 
traversing the MRL laboratory The situation is analogous to the sonar case of figure 3, 
but the range profiles were gathered from a scan-line stereo method using two television 
cameras rather than a sonar ring 

Inserting Measurements 

The readings of almost any kind of 
sensor can be incorporated into a cer- 
tainty grid if they can be expressed in 
geometric terms. The information 
from a reading can be as minimal as a 
proximity detector’s report that some- 
thing probably is in a certain region of 
space or as detailed as a stereo depth 
profiler’s precise numbers on the con- 
tours of a surface. 

In general, the first step is to ex- 
press the sensor’s measurement as a 
numeric spatial certainty distribution 
commensurate with the grid’s geome- 
try. For an infrared proximity detec- 
tor, this measurement can take the 
form of a set of numbers P, in an 

elliptical envelope, with high certain- 
ty values in a central axis (meaning 
detection is likely there) tapering to 
zero at the edges of the illumination 
envelope. Let’s suppose the sensor 
returns a binary indication that some- 
thing is or is not in its field of view. If 
the sensor reports a hit, cells in the 
certainty grid C, falling under the sen- 
sor’s envelope can be updated with the 
formula C,:= C, + P, - C, x P, which 
will increase the C values. In this 
case, the P values should be scaled so 
their sum is 1 because the measure- 
ment describes a situation where 
there is something somewhere in the 
field of view, probably not every- 
where. If the reliability of the sensor is 
less than perfect, the normalization 

can be to a sum less than unity. If, 
however, the detector registers 
no hit, the formula might be 
C,:= C, x (1 - P,) and the Cs will be 
reduced. In this case, the measure- 
ment states there is nothing anywhere 
in the field of view, and the P values 
should reflect only the chance that an 
object has been overlooked at each 
particular position; that is, they 
should not be normalized. If the sen- 
sor returns a continuous value rather 
than a binary one, perhaps expressing 
some kind of rough range estimate, a 
mixed strategy similar to the one 
described for sonar in the following 
paragraph is called for. 

A Polaroid sonar measurement is a 
number giving the range of the nearest 
object within about a 30-degree cone 
in front of the sonar transducer. 
Because of the wide angle, the object 
position is known only to be some- 
where on a certain surface. This range 
surface can be handled in the same 
manner as the sensitivity distribution 
of a proximity detector “hit” dis- 
cussed earlier. The sonar measure- 
ment has something else to say, how- 
ever. The volume of the cone as high 
as the range reading is probably 
empty, else a smaller range would 
have been returned. The empty vol- 
ume is like the “no hit” proximity 
detector case and can be handled in 
the same fashion. Thus, a sonar read- 
ing is like a proximity detector hit at 
some locations, increasing the occu- 
pancy probability there, and like a 
miss at others, decreasing the proba- 
bility. If we have a large number of 
sonar readings taken from different 
vantage points (say, as the robot 
moves), the gradual accumulation of 
such certainty numbers will build a 
respectable map. We can, in fact, do a 
little better than simply accumulate 
probabilities. 

Imagine two sonar readings whose 
volumes intersect, and suppose the 
empty region of the second overlaps 
part of the range surface of the first. 
Now, the range surface says, “Some- 
where along here there is an object,” 
and the empty volume says, “There is 
no object here.” The second reading 
can be used to reduce the uncertainty 
in the position of the object located by 
the first reading by decreasing the 
probability in the area of the overlap 
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Figure 7. Stereo and Sonar Sensor Integration. 
The figure illustrates a plan view of the certainty grids built on the first and tenth steps of a dual sensor run. The leftmost grids con- 
tain sonar data only, the center grid has stereo vision only, and the rightmost is the combination of the two Occupied regions are 
marked by shaded squares, empty areas by dots fading to white, and unknown territory by + signs, 
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Figure 8 The Uranus Mobile Robot-Great Expectations. 
and correspondingly increasing it in 
the rest of the range surface. This 
redistribution of range-surface proba- 
bilities can be accomplished by reduc- 
ing the range surface certainties R, 
with the formula R, :=R, x (l-E,) 
where E, is the empty certainty at 
each point from the second reading, 
and then normalizing the Rs. This 
method is used to good effect in the 
existing sonar navigation programs, 
with the elaboration that the Es of 
many readings are first accumulated 
and then used to condense the Rs of the 
same readings. (It is this two-stage pro- 
cess that led MRL to use two grids in 
the original programs. In fact, the grid 
in which the Es are accumulated need 
merely be temporary working space.) 

The stereo method of Serey and 
Matthies provides a depth profile of 
visible surfaces. Although, like a 
sonar reading, it describes a volume of 

emptiness bounded by a surface 
whose distance has been measured, it 
differs by providing a high certainty 
that there is matter at each point 
along the range surface. The process- 
ing of the empty volume is the same, 
but the certainty reduction and nor- 
malization steps we apply to sonar 
range surfaces are, thus, not appropri- 
ate. The grid cells along a tight distri- 
bution around the range surface 
should simply be increased in value 
according to the hit formula. The 
magnitude and spread of the distribu- 
tion should vary according to the con- 
fidence of the stereo match at each 
point. The method used by Serey and 
Matthies matches an edge crossing 
along corresponding scan lines of two 
images and is likely to be accurate at 
these points. Elsewhere, it interpo- 
lates, and the expected accuracy 
declines. 

If the robot has proximity or con- 
tact sensors, its own motion can con- 
tribute to a certainty grid. Areas tra- 
versed by the robot are almost certain- 
ly empty, and their cells can be 
reduced by the no-hit formula, applied 
over a confident sharp-edged distribu- 
tion in the shape of the robot. This 
approach becomes more interesting if 
the robot’s motion has inherent uncer- 
tainties and inaccuracies. If the cer- 
tainty grid is maintained so it is accu- 
rate with respect to the robot’s present 
position [so-called robot coordinates), 
then the past positions of the robot 
will be uncertain in this coordinate 
system. The uncertain relation be- 
tween past and present coordinate sys- 
tems can be expressed by blurring the 
certainty grid accumulated from pre- 
vious readings in a particular way 
after each move to reflect the uncer- 
tainty in this move. New readings are 
inserted without blur (essentially the 
robot is saying, “I know exactly where 
I am now; I’m just not sure where I 
was before”]. The track in the certain- 
ty grid of a moving robot’s path in this 
system will resemble the vapor trail of 
a high-flying jet-tight and dense in 
the vicinity of the robot, diffusing 
eventually to nothing with time and 
distance. 

Extracting Deductions 
The purpose of maintaining a certain- 
ty grid in the robot is to plan and 
monitor actions. Thorpe and Elfes 
showed one way to plan obstacle- 
avoiding paths. Conceptually, the grid 
can be considered an array of topo- 
graphic values-high-occupancy cer- 
tainties are hills, and low certainties 
are valleys. A safe path follows valleys 
such as running water. A relaxation 
algorithm can perturb portions of a 
trial path to bring each part to a local 
minimum. In principle, a decision 
need never be made about which loca- 
tions are actually empty and which 
are occupied, although perhaps the 
program should stop if the best path 
climbs beyond some threshold “alti- 
tude.” If the robot’s sensors continue 
to operate and update the grid as the 
path is executed, impasses will 
become obvious as proximity and con- 
tact sensors raise the occupancy cer- 
tainty of locations where they make 
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2meter grid 
6.25 an ceus 

Figure 9. Map Resolution Hierarchy 
Coarse maps are for the big picture, fine ones for the fiddly details in the immediate environment All the mpps are scrolled to keep 
the robot ii the center cells- - 

contact with solid matter. 
As indicated in the beginning of 

this article, MRL has already demon- 
strated effective navigation by con- 
volving certainty grids of given loca- 
tions built at different times, allowing 
the robot to determine its location 
with respect to previously construct- 
ed maps. This technique can be 
extended to subparts of maps and can 
be suitable for recognizing particular 
landmarks and objects. For instance, 
MRL is currently developing a wall 
tracker that fits a least squares line to 
points which are weighted by the 
product of the occupancy certainty 
value and a Gaussian of the distance 
of the grid points from an a priori 
guess of the wall location. The param- 
eters of the least squares line are the 
found wall location and, after being 
transformed for robot motion, serve as 
the initial guess for the next iteration 
of the process. 

For tasks that would benefit from 
an opportunistic exploration of un- 
known terrain, the certainty grid can 

be examined to find interesting places 
to go next. Unknown regions are those 
whose certainty values are near the 
background certainty Cb. By applying 
an operator that computes a function 
such as x (Cx - Cb)2 over a weighted 
window of suitable size, a program 
can find regions whose contents are 
relatively unknown and head for 
them. Other operators similar in spirit 
can measure other properties of the 
space and the robot’s state of knowl- 
edge about it. Hard-edged characteriza- 
tions of the stuff in the space can be left 
to the last possible moment by this 
approach or avoided altogether. 

A Plan: 
Awareness for a Robot 

Uranus is MRL’s latest and best robot 
and the third and last one we intend 
to construct for the foreseeable future. 
About 60 centimeters square with an 
omnidirectional drive system intend- 
ed primarily for indoor work, Uranus 
carries two racks wired for the indus- 

try standard VME computer bus and 
can be upgraded with off-the-shelf pro- 
cessors, memory, and input output 
boards (see figure 8J. In the last few 
years, the speed and memory available 
on single boards have begun to match 
that available in our mainframe com- 
puters. The growth in power of micro- 
processors removes the main argu- 
ments for operating the machine pri- 
marily by remote control. With most 
computing done on board by dedicated 
processors, enabling high bandwidth 
and reliable connection of processors 
to sensors and effecters, real-time con- 
trol is much easier. Also favoring this 
change in approach is the realization, 
growing from experience with robot 
control programs from the very com- 
plex to the relatively simple, that the 
most complicated programs are proba- 
bly not the most effective way to 
learn about programming robots. Very 
complex programs are slow, limiting 
the number of experiments possible in 
any given time, and they involve too 
many simultaneous variables whose 
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effects can be hard to separate. A 
manageable intermediate complexity 
seems likely to get MRL to long-term 
goals fastest. The most exciting ele- 
ment in MRL’s current plans is a real- 
ization that certainty grids are a pow- 
erful and efficient unifying solution 
for sensor fusion, motion planning, 
landmark identification, and many 
other central problems. 

As the core of the robot and the 
research, MRL will prepare a kind of 
operating system based on the cer- 
tainty grid idea. Software running 
continuously on processors on board 
Uranus will maintain a probabilistic, 
geometric map of the robot’s sur- 
roundings as it moves. The certainty 
grid representation will allow this 
map to be incrementally updated in a 
uniform way from various sources, 
including sonar, stereo vision, prox- 
imity, and contact sensors. The 
approach can correctly model the 
fuzziness of each reading and at the 
same time combine multiple mea- 
surements to produce sharper map 
features; it can also correctly deal 
with uncertainties in the robot’s 
motion. The map will be used by 
planning programs to choose clear 
paths, identify locations (by correlat- 
ing maps), identify well-known and 
insufficiently sensed terrain, and per- 
haps identify objects by shape. To 
obtain both adequate resolution of 
nearby areas and sufficient coverage 
for longer-range planning without 
excessive cost, a hierarchy of maps 
will be kept, the smallest covering a 
2-meter area at 6.25centimeters reso- 
lution and the largest 16 meters at 50- 
centimeters resolution (see figure 9). 
This map will be “scrolled” to keep 
the robot centered as it moves, but 
rotations of the robot will be handled 
by changing elements of a matrix that 
represents the robot’s orientation in 
the grid. The map forms a kind of 
consciousness of the world surround- 
ing the robot; reasoning about the 
world would actually be done by com- 
putations in the map. It might be 
interesting to take one more step in 
the hierarchy, to a l-meter grid that 
simply covers the robot’s own extent. 
It would be natural to keep this final 
grid oriented with respect to the robot 
chassis itself rather than approximate- 
ly to the compass, as with the other 

grids. This change of coordinate sys- 
tem would provide a natural distinc- 
tion between “world” awareness and 
“body” or “self” awareness. Such 
encoding of a sense of self might even 
be useful if the robot were covered 
with many sensors or, perhaps, were 
equipped with manipulators. MRL has 
no immediate plans in this direction 
and so will pass by this interesting 
idea for now. 

The initial version will contain a 
pair of two-dimensional grid sets, one 
mapping the presence of objects at the 
robots operating height of a few feet 
above ground level. The other will 
map the less complex idea of the pres- 
ence of passable floor at various loca- 
tions, The object map will be updated 
from all sensors and the floor map pri- 
marily from downward-looking prox- 
imity detectors, although possibly also 
from long-range data from vision and 
sonar. The robot will navigate by dead 
reckoning, integrating the motion of 
its wheels. This method accumulates 
error rapidly, and this uncertainty will 
be reflected in the maps by a repeated 
blurring operation. Old readings, 
whose location relative to the robot’s 
present position and orientation are 
known with decreasing precision, will 
have their effect gradually diffused by 
this operation until they eventually 
evaporate to the background certainty 
value. 

It would be natural to extend the 
two-grid system to many grids, each 
mapping a particular vertical slice, 
until we have a true three-dimension- 
al grid. MRL will do this as research 
results and processing power permits. 
The availability of single-board array _ 
processors that can be installed on the 
robot would help handle the increased 
computational demands because the 
certainty grid operations are amenable 
to vectorizing. The certainty grid rep- 
resentation can also be extended in 
the time dimension, with past certain- 
ty grids being saved at regular inter- 
vals like frames in a movie film, and 
registered to the robot’s current coor- 
dinates (and blurred for motion uncer- 
tainties). Line operators applied across 
the time dimension could detect and 
track moving objects and give the 
robot a sense of time as well as space. 
This possibility has some thrilling 
conceptual (and perceptual) conse- 

quences, but MRL might not get to it 
for a while. 

Even the simplest versions of the 
idea allows to fairly straightforwardly 
program the robot for tasks that have 
hitherto been out of reach. MRL looks 
forward to a program that can explore 
a region and return to its starting 
place, using map snapshots from its 
outbound journey to find its way 
back, even in the presence of motion 
disturbances and occasional changes 
in the terrain. By funneling the sensor 
readings through a certainty grid, 
which collects and preserves all the 
essential data and indications of 
uncertainties and makes it available 
in a uniform way, the problem-that 
for each combination of sensor and 
task, a different program is required 
-is avoided. Now, the task execution 
is decoupled from the sensing and, 
thus, becomes simpler. 

Bayesian Reasoning 
In most of MRL’s work to date, ad hoc 
formulas were used to update the cer- 
tainty grid estimates. Recently, a less 
arbitrary statistical approach derived 
from Bayes’s theorem (Berger 1985) 
has captured our attention. Prelimi- 
nary results using this approach are at 
least as good as those from the old for- 
mulas. Many puzzling aspects of the 
old scheme have been clarified in the 
process. 

Let p(AIB) represent our best esti- 
mate of the likelihood of situation A if 
we have received information B. By 
definition, 

p(AIB) = s (1) 
Plain p(A) represents our estimate of A 
given no special information. The 
alternative to event A is referred to as 
-A (not A). For any B, 

p(AIB) + p(lA]IB) = 1 PI 
Certainty grid is a regular finite-ele- 
ment model of space. Each cell of the 
grid contains a likelihood estimate 
(our certainty) of a given property of 
the corresponding region of space. Pri- 
marily, we are concerned with simple 
occupancy of the region, represented 
by p(o[x]), the probability that region x 
is occupied. When a discussion con- 
tains only one particular x, we drop 
the subscript and refer simply to p(o). 
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MRL is considering data derived 
from wide-angle sonar range measure- 
ments. A given measurement is desig- 
nated M[i], with i the sequential num- 
ber of the reading. The intersection of 
a set of readings can be designated by 
a range in subscript, as in 

Iill 
M[c n) = n M[i] (3) 

i=l 

or by a list as in 

M(i,j,l} = M[i] h M[j] h M[l] (4) 

When only one reading M[i] enters 
into a discussion, we abbreviate its 
name to M. Each measurement has a 
value, a sonar range R(M). The sonar 
sensor is quantized, and R is an inte- 
ger. 

P(o) is the probability that any par- 
ticular cell is occupied, that is, the 
average occupation density of our 
space. Our measurements don’t give 
P(o) directly, but it is approximately 
the overall average of the ~(0)‘s of all 
the cells of a typical map of the space 
By definition, Pi-o) = 1 P(o) = 1 - P(o) 

Fundamental Formulas 
For two occupancy possibilities o and 
1 o of a cell, new information B and 
old information A, one form of 
Bayes’s theorem gives (5). 

p( olB h A) = 
p( B lo h A) x p( olA) 

p(B(o^A) xp(o(A) +p(BI-o”A) xp(lo(A) 
and (6): 
p( lo(B A A) = 

p(BI~o” A) x p( 7olA) 
p(Blo”A) xp(olA) +p(BITo”A) xp(lolA) 

The odds formulation of equations 5 
and G is compact and convenient for 
computation and will be important 
later: 

p( olB * A) ~(Blo “Al p(o(A) (7) 
p(lolB “A) =p(Bl~o”A)~p( 

Equations 5 and 6 are somewhat com- 
plicated for repeated use Equation 7 
is better; it is formulated in terms of a 
product of odds. When the odds ratio 
involves a probability and its comple- 
ment, odds and probabilities can be 
interconverted by the relationship 
that is shown in the following: 

Odds(A) =$$=a 7 (81 
and 

P(AI = 
Odds(A) 

1 + Oddsj A) (9) 
The p(BI...) ratio in equation 7 is not of 
this form. To compute its value, both 
numerator and denominator must be 
evaluated separately To make this dif- 
ference apparent, the ratio p(Blo A 
AJ/p(B(?o A A) is referred to as 
Odds(Bllo h A). Once the ratio is 
obtained, however, it can be treated as 
any other odds number. 

If we deal exclusively with odds, all 
the combining operations become 
multiplications. Equation 7 is ex- 
pressed as 

Odds(olA A B) = 
OddsjBllo A A) x OddsjolA) (10) 
An additional transformation fur- 

ther streamlines the computation. Let 
L(AJ represent the logarithm, to some 
suitable base, of Odds(A) The formula 
then becomes a simple addition 
L(olA A B) = L(Bllo h A) + L(olA) (11) 

The terms can be integers if the 
base of the logarithms is chosen well. 
Perfect certainty (p(o) = 0 and p(o) = 1) 
can no longer be represented, but such 
values are probably a mistake in any 
representation because they are unal- 
terable by any input 

A Combining Formula 

Bayes’s theorem is a formula that 
combines independent sources of 
information A and B into an estimate 
of a single quantity p(olA A B). The 
new information B occurs in terms of 
the probability of B in the situation 
that (in our case of interest) a particu- 
lar cell is or is not occupied, p(Blo) and 
p(Bll0). This inversion is central to 
the usefulness of Bayes’ theorem. 
However, consider the problem of gen- 
erating a map from information A and 
B when each has already been individ- 
ually processed into a map; that is, 
find p(olA A B) given p(olA) and p(olB). 

Bayes’s formula (equation 7) applied 
to information B and null A (that is, 
only global information from the A 
side) makes the relationship between 
p(olB) and p(Bio) clear. 

p(olB) p(B)o) P(o) -= 
p( lo(B) p( Bllo) ’ P( 70) 112) 

thus, 

~(Blo) P( o(B) -= x pi-4 
p(Bl70) p(lolB) P(o) 

(13) 
It would be nice to substitute this 

ratio back into the original version of 
Bayes’s formula (equation 7) to pro- 
duce a formula giving p(olA A B) in 
terms of p(oiA) and p(olB), thus allow- 
ing measurements A and B to be 
incorporated into maps independently 
and combined afterward. Such inde- 
pendent insertion is not possible in 
general because the two measure- 
ments might interact in some way; for 
example, either A or B alone might 
indicate a high probability of o, but 
together, they might confirm some 
other hypothesis and reduce the prob- 
ability of o. If, however, we make a 
strong assumption of independence of 
B from A: 

p/B10 A A) P( B lo) =- 
p(Bllo”A) p(Blyo) (14) 

we can use equations 7, 12, and 14 to 
produce a map-combining formula (15): 
p( o(A A B) P( o(B ) P( o)A) l-3 ‘01 =- 

p( 7o(A A B)) 
~ - 

p( lo(B) ’ p( -olA) ’ P(o) 
Although the noninformative read- 

ing in equation 7, that which leaves 
the original p(o) estimate unchanged, 
is found when p(Blo)/p(Bl~o) = 1, the 
noninformative case in equation 15 
happens when p(olB)/p(~olB) = 
P(o)/P(lo), that is, when the cell densi- 
ty estimated from the reading is the 
same as the average cell density of the 
whole map 

Formula 15 is most important 
because it provides a means for com- 
bining maps of the same area obtained 
by different means, for example, by 
independent scans of different sensors. 
It can also be used to incorporate indi- 
vidual sensor readings as we build a 
map, but in general, it is inferior to 
Bayes’s formula (equation 7) for this 
purpose because it precludes the use 
of any knowledge we might have of 
sensor interactions. In odds and log 
odds form, it becomes (16). 

od&( olA ,, Bj = Odd4 W X Oddsi olB ) 
Oddsj o) 

and 

L(olA A B) = L(olA) + L(olB) - L(o) (17) 
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Sonar Wedges 
Simple reasoning from first principles 
can produce estimates for p(Mlo) and 
p(M)-o) for a sonar reading These val- 
ues can be used to update maps by 
direct application of Bayes’s formula 
(equation 7). In Measurement Errors, 
how to systematically incorporate in 
the possibility of errors in the read- 
ings is shown. For now, assume that 
the sensor always perfectly returns 
the range to the nearest occupied cell 
within its angle of sensitivity. Define 
the sonar regions according to the dia- 
gram shown in figure 10. 

When incorporating a new reading 
B, the map built from prior readings A 
can be used to help provide an esti- 
mate for the p(B)0 * A) and p(B)70 ^A) 
of equation 7 

Let P(R) be the probability prior to 
the reading that the next sonar mea- 
surement will result in a given range 
R P(R) can be approximated by step- 
ping through the possible ranges Ri, 
R,, ., R,, starting with the shortest, 
R,, and multiplying the occupancy 
probability p(oiA) of each cell on the 
range surface for the range by the 
probability that the sonar would 
detect an occupied cell at the loca- 
tion. The sum of these products at Ri, 
call it SIR,), is P(R,). Now P(R,) = SIR,) 
x (1 P(R,)) because an echo from 
R+an happen only if the sonar pulse 
has not already been intercepted at 
the shorter range R, In general, 

P(R,)=S(RJx(l-x P(Rj) 
id 

(18) 

By definition, z P(R) over all R is 
unity. I will suggest later exactly how to 
compute S and how the detection prob- 
abilities required in the calculation 
-equation 18-can be determined 
empirically by collecting statistics from 
many maps of the correlation of indi 
vidual sensor readings with the compos- 
ite maps they helped create. 

External Region 

Consider a cell in the external region. 
p(Mlo) is our estimate that a measure- 
ment range of R(M), as opposed to 
some other range, will occur if we 
happen to know only that the cell is 
occupied. Because the cell is outside 
the sonar cone, its state of occupancy 
has no effect on the reading, and we 
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can refer only to the uniform range 
distribution to conclude that 

p(Mlo) = p(M(lo) = P(R(M)) 

and 
(19) 

p(Mlo) / p(M)-o) = 1 (20) 
Inserting equations I9 and 20 into 

equation 7 gives (2 1) 
p(olM [l :i]) P(R(M)) p (olM[< i]) 
p(olM[l :i])=PIRo)Xp(~olM[<i]) 

p(o)M[< ill 
= p(lolM[< i]) 

so, the occupancy certainty is un- 
changed, as it should be, because the 
sonar reading contains no information 
about the external cell 

Range Surface 
Now, consider a cell on the range sur- 
face, and suppose this surface covers n 
cells in all. By definition, the range at 
this surface is R(M). 

If the cell is occupied, then a perfect 
sensor would detect it and, thus, could 
not return a greater range than R(M). 
All ranges beyond the occupied cell 
would thus be short-circuited by the 
cell. It would, however, be possible for 
it to return shorter ranges if closer 
cells within the sonar beam angle hap- 
pened to be occupied. The probabili- 
ties of the shorter ranges should not be 
changed by the presence of the farther 
occupied cell The probability of getting 
just the range reading would be unity 
minus the a priori probability of getting 
a lesser reading or, equivalently, the a 
priori probability of getting a reading 
greater than or equal to RIM): 

p(M(o) = I -R 5%) P(R) = R>zIMIP(R) (22) 
< 

If, however, the cell were unoccu- 
pied, the original distribution is hardly 
altered except that the particular R = 
R(M) is slightly less likely to occur 
because one possible way to achieve it 
is eliminated. The cell in question is 
one of “n” cells we assumed on the 
range surface; so, we can say the 
chance of R(M) happening is reduced 
by the factor (n-1)/n The probabilities 
of other ranges are not affected direct- 
ly; so, the result is a slight “notching” 
at R = R(M) of the a priori P(R) distri- 
bution Simply notching it, however, 
reduces its total area, which must 
then be renormalized by the proper 
factor to restore the area of the distri- 
bution to unity, increasing all the 
other probabilities slightly (23): 

p(M170) = NW)) X in- 11/n 
1 -PPWJl/n 

n-l 
= P(R(M11 ’ n _ p( R( M)) 

Interior Region 

If we assume a perfect sensor, an occu- 
pied cell in the wedge at a range less 
than R(M) would always be detected 
and, thus, would prevent the reading 
M. Thus, in this case, 

p(Mlo) = 0 (24) 
If the cell in the interior is unoccu- 

pied, then the range Rc at which the 
unoccupied cell occurs is less likely 
than other ranges. Suppose there 
would be k cells occupied by a range 
arc at distance Rc. With reasoning 
such as in equation 23, the probability 
of Rc would be reduced by a factor of 
(k-1)/k, but the overall distribution 
would have to be normalized by divid- 

Range “R(M)” 
of actual 

Figure 10. Example of a Sonar Wedge 



ing by (1 - P(Rc) / k). This normaliza- 
tion raises the probability of R(M) 
from its a priori value: 

PEW11 
p(“‘ToJ = 1 -p(Rc) / k 

(25) 

Measurement Errors 
Of course, MRL’s sensors are not per- 
fect in the sense of those described in 
the previous subsection. Sometimes, 
they fail to respond to an occupied 
location, and at other times, they give 
a spurious indication of occupancy. It 
is easy to modify the perfect case for- 
mulas for these imperfections. Sup- 
pose a small chance chit exists that an 
empty cell will act as if it were occu- 
pied. Suppose also there is a small 
possibility emiss that an occupied cell 
will fail to be detected. We can then 
construct the formulas with error 
from the error-free cases using the fol- 
lowing general formulas: 

~(Mlo),,,, = p(M(oJ x (I-em4 
+p(M)~o) x emiss (261 

and 

pro),, = pro) x (I-ehi,) 
+p(M)lo) X chit (27) 

If e&t = emiss = I/2, then the sensors 
are returning random readings. Ran- 
dom readings are captured in equa- 
tions 26 and 27 as p(M10)~~~~~ = 
~(M(yo)errov the noninformative case, 
which is similar to equation 20. AS 
chit and emiss grow closer to I/2, the 
reading becomes less and less infor- 
mative. If e&t = emiss = 1, the sensor is 
perfect, but the hit-and-miss indica- 
tions are mistakenly swapped. In this 
case, equations 26 and 27 restore the 
correct pairing. 

A real sensor can be modeled, some- 
what redundantly, by varying e&t and 
emiss over the sensed area. Toward the 
edges of the beam, they creep toward 
l/2, achieving this value perfectly 
outside the beam and perhaps at the 
boundary of the interior and range 
surface regions. If 0 5 ehiv emiss <1, the 
error formulas can only reduce or 
leave unchanged the amount of infor- 
mation provided by the perfect esti- 
mates of p(M)o) and p(Ml70). 

The quantities chit and e,i,,.must be 
initialized to some reasonable values 
when a system begins operation. They 
can then be adjusted by an iterative 
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learning process. Each time a map is 
constructed from many sensor read- 
ings, the correlation of each cell in 
each individual sensor profile with the 
area of the total map it overlays is 
recorded. This correlation is averaged 
over many maps. If the map often 
reports a high-occupancy probability 
in a location where the sensor profile 
indicates occupancy, e&t will be low 
for this position in the sensor profile; 
otherwise, it will be high. Similarly, if 
the map usually has low probabilities 
at a site indicated empty in the sensor 
profile, emiss will be low; otherwise, it 
will be high. 

(28) 

The detection probability required 
to compute the function S in equation 
18 is given by the expression l-emiss. A 
more accurate computation of S 
would also take into account the 
chance that an empty cell would false- 
ly register as occupied. Thus, a good 
estimate for S is 

S(R) = zR p(o)A) x (I - emlss) 
= ~(1oIA) X chit 

independent combining formula, 
equation 15. In general, this approach 
results in inferior maps, but it requires 
less computation. The following para- 
graph presents an example from a con- 
sideration of a stereo vision measure- 
ment 

object. We can directly estimate 
pjdlm) by the following reasoning. 

Consider the possible case that the 

One of MRL’s stereo approaches 
matches edges crossing a given scan 
line in the left and right images. A 
range is deduced from the relative hor- 
izontal shift of each edge between the 
two images. The edges cannot be 
located with infinite precision. Thus, 
there is some uncertainty in depth, 
given by a distribution PIDIm); the 
probability the object ranged by stereo 
measurement m is actually at distance 
D. Note that P(Dlm) is not the proba- 
bility that location d is occupied 
because d can contain an object other 
than the edge being ranged. Let pjdlm) 
represent the probability, given mea- 
surement m, that d is occupied by any 

Stereo Range Measurements ranged edge is at a particular distance 
D (this possibility has probability 

Another approach to incorporating P(Dlm)). In this case, assuming a per- 
individual sensor readings uses the feet sensor as we did in the sonar 
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example, we can conclude that References 

p(dlD) = 0 when d < D (291 
because a perfect sensor would 

detect an intervening object 

p(dlD) = 1 when d = D (30) 
because the object is at D: 

p(dlD) = p(o) when d z D (31) 
Because the edge blocks the view 

behind it, the measurement gives us 
no special information beyond d = D. 

This is shown in graphic form in 
figure lla. 
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Addendum 
MRL recently discovered a general 
formulation that captures and 
improves on the ideas of equations 21, 
23, 25, 28, and 32. It results in a single 
procedure that can process a broad 
class of range readings, of any dimen- 
sionality, at a cost linear in the vol- 
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quadratic in its volume of range 
uncertainty. See Moravec and Cho 
(1988). 
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