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In Defense of Reaction
Plans as Caches

Marcel J. Schoppers

Ginsberg raises two
issues for our con-
sideration: (1) uni-
versal plans that do
not allow cognitive
actions (run-time
problem solving)
might need an
exponential amount
of space or circuitry
for their realization and (2) universal plans
that do allow cognitive actions will spend so
much time on these actions that the univer-
sal plan itself can be largely superfluous. In
sum, depending on whether planning is
allowed to supplement a universal plan, the
universal plan itself is likely to be either
infeasible or superfluous, respectively.

Reaction Plans and Classifiers
Let me clear up some areas of potential con-
fusion. Although universal plans had the title
role in Ginsberg’s article, he is actually dis-
cussing a small group of related endeavors
that are more commonly known as reactive

planning and situat-
ed action. The uni-
versal plans label
originally pertained
only to my work.

Ginsberg’s con-
cerns apply only to
a small part of the
situated action
work. The general

idea is to build embodied agents that behave
intelligently in physical surroundings. This
goal has a number of subgoals, the most
prominent of which are (1) flexibility in
interacting with real environments, (2) time-
liness of response, and (3) coping with com-
putational and physical limitations.

To achieve subgoals one and two,
several of the agents constructed to
date have contained code that
mapped configurations of percepts
(past and present) into decisions
about behavior (present and
future).

As particularly simple cases of
percept-to-action functions, uni-
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Universal plans address the tension between rea-
soned behavior and timely response by caching
reactions for classes of possible situations. This
technique reduces the average time required to
select a response at the expense of the space
required to store the cache—the classic time-
space trade-off. In his article, Matthew Ginsberg
argues from the time extreme and against the space
extreme. Although I find both extremes undesir-
able, I defend an increase in space consumption.
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for organizing and indexing reactions. How-
ever, if the domain were especially difficult
and the universal plan were pushed to com-
pletion, the plan might, indeed, become large.

To demonstrate that such functionality
could be automatically constructed by a plan-
ning program, I had my planner construct
the entire plan at once, thereby igniting the
plan-size controversy. My purpose was to
illustrate that universal plans operate on dif-
ferent principles from plans built automati-
cally: Universal plans classify possible
situations; naturally cover the entire domain;
place no restrictions on what possible situa-
tions might become actual and in what order;
and use sensory information to identify the
class of possible situations to which the
actual situation belongs, hence redeciding
what to do from moment to moment. 

I have never argued that the entire plan
should always be assembled in one sitting;
conversely, had I designed the planner to
limit itself to the reasoning necessary to solve
the current problem, as done with previous
planners, the novel aspects of my work would
have been much less obvious.1 Rest assured
that the development of a more practical
planner is high on my agenda.

However, universal plans have become a
focal point for doubts about all the work
being done under the situated action head-
ing. Let me repeat that universal plans are
severely oversimplified to facilitate their auto-
matic synthesis; there is far more to the situ-
ated action enterprise than functions that
map perceptual states into actions. Neverthe-
less, such functions are common in situated
action (and control systems) work, so that the
current controversy isolates an important
part of the approach. Indeed, the idea of clas-
sifying perceptual states allows some useful
perspectives on the reactive planning field as
a whole, for example, by allowing us to dis-
tinguish where the reactivity comes from.

On one side, there is work on ways of
encoding reactive behavior (Agre 1988; Albus
1985; Allard and Kaemmerer 1987; Andersson
1987; Brooks 1986; Drummond 1989; Firby
1989; Georgeff and Lansky 1987; Giralt,
Chatila, and Vaisset 1984; Goldstein and
Grimson 1977; Griesmer et al. 1984; Harel
1987; Hendler and Sanborn 1987; Kaelbling
1988; Nilsson 1988; Schoppers 1989; Sim-
mons and Mitchell 1989; Sobek 1985; Weis-
bin, Saussure, and Kammer 1986). Here, the
needed reactivity is available without auto-
matic planning; the programs are generally
coded by hand. Some of the researchers doing
this work present themselves as doing
bottom-up robot programming with the goal

versal plans map the agent’s current percepts
into current effector commands. In so doing,
universal plans ignore many functions that
must be present in real agents, such as robot-
ic control laws to realize primitive actions,
perceptual activities to obtain information,
recall of past events, the ability to decide
what goals to achieve when, a focus of atten-
tion, and the ability to act and reason at the
same time. These functions are present in the
situated agents being constructed by others.
Thus, universal plans are a severe oversimpli-
fication of the functionality needed in situat-
ed agents. However, the oversimplification is
deliberate; it makes universal plans amenable
to automatic synthesis; and it is by no means
my best and final word.

Nevertheless, the simplicity of universal
plans has served to clarify certain promising
features and potential problems of the situat-
ed action work. At issue in this discussion is
the potential size of the decision structure
that maps percepts into actions. Universal
plans make this issue especially prominent by
being equivalent to a decision tree whose
outcomes are names of effector actions and
whose decision nodes are labeled with envi-
ronmental conditions (whose perception and
retention is ignored). A universal plan is exe-
cuted by repeatedly starting at the top of the
decision tree, testing the conditions encoun-
tered on the way down, branching right or
left as appropriate, then executing the action
found at the bottom. Thus, universal plans
amount to deeply nested if-then-elses inside a
do-forever. (A universal plan is also equiva-
lent to a small set of production rules or to a
simple control system.) Because at every test,
both outcomes eventually lead to some
action, it follows that a universal plan inher-
ently cover every possible world state of the
relevant domain. However, this coverage
might be trivial, perhaps making only a
single distinction and splitting the domain
into only two sets of world states. 

The plan structure is also capable, though—
at least in principle—of distinguishing each
possible situation from every other and
selecting a unique reaction for every possible
world state. This capability is indispensible if
the plan structure is to be plausible as a cache
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of discovering suitable constructs for a
higher-level language. In devising universal
plans, I postulated classification (of perceptu-
al states) as one of the essentials of a language
for building situated agents and found a way
of doing such classification with a data struc-
ture that was also manipulable by a planning
program. Hence, I describe this work as being
about reaction plans—plans consisting of
simple reactions to possible situations—
despite the fact that universal plans are the
first programs in this category for which the
word plan is really appropriate.

On the other side is work on the problem
of planning and replanning when the plan-
ner has only a limited amount of time (Chen
1985; Dean and Boddy 1988; Hayes-Roth
1987; Lesser, Pavlin, and Durfee 1988; Masui,
McDermott, and Sobel 1983; Ow, Smith, and
Thiriez 1988; Wesson 1977). There is a plan,
but it is constantly being revised. Here, it is
the plan synthesizer that must adapt itself to
the pressures of the domain. This work is
properly labeled reactive planning.

(This distinction is not a permanent one. A
universal plans planner that adjusted its rea-
soning to take deadlines into account would
fall into both categories and might be labeled
a reactive reaction planner.)

Ginsberg’s misgivings are about the use of
reaction plans, most of which contain—in
some form—a classifier that maps possible
perceptual states into appropriate responses.
Therefore, from now on, I talk about classi-
fiers and reaction plans in general and use the
name universal plans to mean only my work.
To facilitate the rest of this discussion, let me
introduce some other terminology:

A feature pi is a Boolean variable, that is, pi =
{0,1}. A situation is a vector of Boolean values
b1,b2,...bn, where bi denotes the value of the
feature pi so that bi ε pi . A condition is a vector
c1,c2,...cn in which some entries are “don’t
care,” that is, ciε piU {x}. Two conditions are
disjoint if and only if for some feature, one
condition specifies 0, and the other condition
specifies 1; otherwise, the two conditions
overlap. A decision rule is a pair
<condition,outcome>. Two rules are inconsis-
tent if and only if they overlap and specify
different outcomes; otherwise, they are consis-
tent. A classifier is a set of decision rules that
are pairwise consistent. A classifier is universal
if every possible situation is matched by the
condition element of some decision rule.

In an embedded agent, features can corre-
spond to tests on sensory input or tests on
previously computed data. The outcomes of
decision rules control the agent’s actions:
Some actions can move effectors, and some

can compute data for later input to features.
(In some relevant work, outcomes can be small
procedures [Firby 1989; Georgeff and Lansky
1987]). Reaction plans are usually universal.

There are (at least) two ways to construct an
agent using classifiers: An outcome can be a
subset of the actions available to the agent, so
that a single outcome can control several
effectors, or there can be many classifiers, one
for each action, so that outcomes reduce to
on-off signals. The former is more convenient
for programming purposes; the latter makes it
more obvious how a situated agent’s classifier
relates to Boolean functions. Unless I indicate
otherwise, I assume there is a single classifier
whose outcomes indicate sets of actions.

Restatement of Ginsberg’s 
Argument

In referring to cognitive actions, Ginsberg was
distinguishing reaction plans that can be 
supplemented with run-time planning from
those which cannot. However, for his argu-
ment, the presence or absence of planning is
not important. What matters is whether the
reaction plan contains an action that can
somehow displace and subsume numerous
effector actions (as might happen if this
action were called PLAN); if so, the reaction
plan can be made smaller than it would be if
the displaced effector actions were an explicit
part of the plan. Thus, Ginsberg would be
better served by distinguishing implicit action
selection from explicit action selection, as fol-
lows: A reaction plan is explicit if effector actions
cannot be performed except by being named
in the outcome of the active decision rule.

Rather than talking about plans containing
cognitive actions, I talk about plans that can
select actions implicitly (the latter are a subset
of the former). In so doing, I am strengthen-
ing Ginsberg’s argument because permitting
cognitive actions enlarges both the number of
actions and the number of sensors.

There is also the issue of whether the situat-
ed agent’s classifier is exact or underfitted.
That is, given that the classifier is universal,
does it always select a suitable reaction (effec-
tor or cognitive) for every possible situation,
or does it fail to properly discriminate some
situations, thus assigning some situations an
incorrect or poor choice of action(s) but win-
ning a reduction in the complexity of the
classifier?

Ginsberg’s argument is mainly with explicit
reaction plans, even if they are underfitted as
classifiers. For such reaction plans, it is easy to
show that a hardware implementation might

. . . Ginsberg
would be
better served
by distin-
guishing
implicit
action 
selection from
explicit action 
selection . . .
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Nine Possible Answers
There are many answers to Ginsberg’s argu-
ments. The first group of answers addresses
the gate complexity argument and shows it
to be misguided and, probably, moot.

Answer 1
Consider any arbitrary program that does not
reason about its own activity. The vast major-
ity of programs are of this kind, including
many expert systems. Production systems are
an especially good example because, like reac-
tion plans, they map a large number of fea-
tures (ground literals potentially in working
memory) into a response (some set of rules to
be fired). Ginsberg’s argument transfers as the
conclusion that production systems might
need a number of rules which is exponential
in the number of features (possible ground
literals); therefore, production systems—and
indeed, all nonplanning programs—are a bad
idea. Because there are many useful nonplan-
ning programs in the world, it is obvious that
Ginsberg has overlooked something: vari-
ables, which allow a fixed program to
respond to arbitrarily large amounts of data.
Variables (of an indexical-functional sort)
allow the PENGI program (Agre and Chapman
1987) to cope with a world containing any
number of bees and ice blocks. In addition,
variables support recursion, by which means
a universal plan capable of building a tower
of three blocks can also build towers of arbi-
trary height (Schoppers 1989) (compare
Waldinger’s recursive plans [Manna and
Waldinger 1987]). Many builders of reaction
plans allow the use of variables in their situ-
ated agents. The run-time use of variables
causes the domain-size problem to manifest
itself not as a plan-size problem but as a plan-
ning-time problem.

Answer 2

This answer and the next comprise an infor-
mal argument to the effect that even the
average Boolean function is well beyond the
execution capabilities of our (unaided) human
brain-machine. That is, because our brains
seem quite unable by themselves to use even
mildly complex Boolean functions, robots
shouldn’t need them either, and fears of
exponential gate complexities are premature.

Let us momentarily adopt the view that
each action comes with its own classifier
which decides on the appropriateness of this
individual action; the situated agent contains
o such classifiers, each of which is a Boolean
function of the s sensors.3 It is a startling fact

require exponentially large numbers of gates.
However, Ginsberg’s calculation is incom-
plete, answering the question, “How many
gates does it take to ensure that it is possible
to build any one of the possible reaction
plans from s sensors to o actions?” or, more
succinctly, “How many gates are needed to
build the worst possible Boolean function
having s inputs and o outputs?” This ques-
tion is rather different than the more appro-
priate one: “Given a fixed (randomly
selected) Boolean function having s inputs
and a outputs, how many gates does it need?”
Although Ginsberg did not make the connec-
tion clear, the argument can be salvaged.
Indeed, a sharp version of the same argument
was first advanced by Claude Shannon
(1949), whose argument applied to Boolean
functions with only one output, roughly as
follows:

• There are 22s
Boolean functions of s variables.

• With g binary gates, it is possible to build at
most (16(g + s + 2)2)g Boolean functions on
s input. 

• If we happen to set g = 2s / 4s, the above
bound is ((2s/s)2)g = 22sg / s2g = 2(2s/2) / s2g,
which is much smaller than 22s

; that is,
even with an exponential number of gates,
you can build circuits for only a small frac-
tion of the possible Boolean functions.

• Because each circuit computes only one
function, the vast majority of Boolean
functions require circuits of size larger than
2s / 4s.

You can make this argument apply to reac-
tion plans by merely regarding them as a col-
lection of o Boolean functions of s input each.

Ginsberg then anticipates two answers:
First, reaction plans are not randomly select-
ed classifiers; that is, they can be simpler than
the average case. Second, reaction plans can
be underfitted classifiers, so that again they
can be simpler than the average case.

Ginsberg counters both answers by pushing
up the number of sensors and, hence, strives
to remain pessimistic about the utility of all
explicit reaction plans, whether or not they
are underfitted.

Finally, Ginsberg considers reaction plans
that initiate planning, perhaps by means of a
cognitive action called PLAN.2 For these reac-
tion plans, Ginsberg’s argument changes;
now, he expects that the vast majority of the
agent’s time will be spent on this planning,
so that the effector actions—and the reaction
plan itself and, indeed, the whole reaction
plan enterprise—are in danger of being super-
fluous and irrelevant.
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that computational complexity theorists have
been unable (to date, after about 20 years of
concerted effort) to identify any Boolean
function whose realization in hardware
requires a number of binary gates which
grows worse than linearly with the number of
inputs (Redkin 1970; Blum 1984; Boppana
and Sipser 1988; Wegener 1987).4 The most
complex functions identified to date are
parity and threshold functions, for which
lower bounds of 3N or 4N gates have been
proved; the 4N result was obtained by restrict-
ing the gate types to AND, OR, and NOT. What-
ever the reason behind the lack of progress by
complexity theorists, their continued perplex-
ity is one argument that humans have no
pressing need for Boolean functions with non-
linear gate complexities.

Answer 3

Against the previous answer, it can be argued
that if reaction plans are taken as objectively
given by a domain and not somehow mathe-
matically convenient or natural to humans,
then the gate complexity of reaction plans
might be exponential after all. However, this
argument fares badly in light of results from
the field of automatic concept induction. For
some chess end games, it is possible to con-
struct a complete table of legal positions and
associate each position with the won-lost-
drawn outcome that would be obtained under
optimal play. This table can then be fed
through an automatic induction algorithm
such as Quinlan’s (1983) ID3, which will
come out with a decision tree that classifies
every position of the end game. This decision
tree might be regarded as a reaction plan for
the end game: It tests for the presence (or
absence) of certain positional features and
then indicates whether the appropriate
response is to play on (won), resign (lost), or
offer a draw. 

There is no reason to expect that such a
decision tree will be easily interpretable by
human beings because it arises from the rules
of the game through a potentially lengthy
lookahead. In fact, in one experiment, the
automatically induced decision tree was not
only quite unintelligible to humans but ran
about five times faster than the best equiva-

lent program that could be constructed by the
experimenter, despite his having considerable
programming skills and subsequently spend-
ing several months trying to catch up (Michie
1983; Quinlan 1982). Thus, the chess end-
game arena contains reaction plans that are
not at all natural to human cognition. 

Nevertheless, the use of interactive struc-
tured induction techniques has allowed the
synthesis of intelligible decision trees for such
cognitively unfriendly end games (Shapiro
and Niblett 1982; Shapiro 1983; Michie 1982).
These decision trees look quite different from
the one that enjoyed the fivefold speed
advantage, however. In fact, these decision
trees are linear; that is, they can be realized
with a number of gates which is roughly
equal to the number of relevant positional
features. Thus, even when a classifier is objec-
tively so foreign to human cognition that we
cannot approximate it for trying, the func-
tion encoded by this classifier can still be
learned and used by humans; however, this
learning only takes place at the expense of
selecting new positional features and con-
structing a different classifier that is of
approximately linear size in the number of
features. This evidence further strengthens
the argument that human cognition is funda-
mentally limited to conceiving and construct-
ing reaction plans (or other classifiers) which
grow at most linearly in the number of rele-
vant inputs. Unless robots must be inherently
more complex than people, fears of exponen-
tial gate complexities are currently unfounded.

Answer 4

When considering the possibility that many
useful functions might be encodable in less
than an exponential amount of circuitry,
Ginsberg responds by enlarging the number
of relevant problem features (for example, by
introducing more blocks and more factors in
deciding how to control the baby). However,
clearly, such an enlargement is not a serious
threat if circuit size (or space consumption) is
only a small polynomial in the number of
features. Indeed, the fact that humans are
capable of reasoning with surprisingly large
numbers of domain-dependent features is yet
further evidence that we need not be con-
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Answer 6

With Ginsberg’s argument applied to ordi-
nary programs once again, suppose you have
a program that is capable of both retrieving
some precomputed results and computing
new ones. Ginsberg’s expectation is that if
such a program is allowed to compute new
results, then such computing will so predom-
inate that the precomputed results will
seldom be needed. However, the program I
just described is common; it is a program that
has built up a cache of previous responses.
Although there are certainly some general
issues about what computations are worth
caching, Ginsberg seems to be asking for evi-
dence that caching could ever be helpful.
Alternatively, he considers that in real life,
activities recur so infrequently that there is
never any reason to cache a reaction. This
expectation flies in the face of common
experience, which can be so routine that it
becomes boring. How many cups of tea (or
coffee) does a person make in a lifetime?
After some practice, the tea can be made even
while the tea maker is thinking of some other
event or fact. The existence of routine behav-
ior is the foundation on which the situated
action work rests.

Answer 7

Remember that when faced with a persistent
tower-destroying baby, a reaction plan for
building block towers might continue trying
to build the block tower, no matter how long
the baby continued to interfere. This problem
has been dubbed futile looping (Firby 1989).
Ginsberg used this scenario as an argument
that reaction plans might need large numbers
of features; however, I argue that the flexibili-
ty Ginsberg seems to demand is more easily
obtained from reaction plans than from a
planner. Suppose we were to replace the reac-
tion plan with a classical planner and execu-
tion monitor. Such a system would respond
to the baby’s destructive tendencies by revis-
ing the plan, which would then try to com-
plete the tower; of course, though, the baby
would interfere again, and the planner would
be forced to replan again, ad infinitum. I
know of no planning system capable of either
recognizing repeated interference or doing
something about it.8 Persistent interference is
a problem for present-day planners and reac-
tion plans alike; it is merely more obvious in
reaction plans because they can recover with-
out replanning—and, incidentally, without
the comparatively horrendous replanning
costs of a classical planner. Indeed, in reac-
tion plans, it is possible to detect interfer-

cerned with either the number of features or
the consequent space consumption; there are
psychological data on this issue, again in the
domain of chess. Master-level players are
capable of reconstructing a single unseen,
randomly selected (but naturally occurring)
chess position by asking about 70 yes-no
questions on average (Nievergelt 1977).
Because the positional features needed to
complete a given position can depend on the
features already known, it follows that the
total number of features available for use by
master-level players is probably many times
70. Even so, a mere 70 features—if they are
independent—already allow for 270 ≅ 1021

possible positions; and it has been estimated
that only about 1015 positions occur in prac-
tice (Jongman 1968). 

Thus, it appears that a reaction plan for
chess is not as implausible as one might
think. Indeed, such a reaction plan is not
only theoretically within the bounds of
human capability, but there is some evidence
that it is already being constructed in the
heads of chess masters. It has been estimated
that masters use a repertoire of about 30,000
features to classify and identify positions
(Simon and Gilmartin 1973).5 Using these
features, masters can both encode and
remember a randomly selected, plausible
position after studying it for only about five
seconds (Chase and Simon 1973; DeGroot
1965).6 In five seconds, amateurs observe and
remember little, but masters are nearly flaw-
less, suggesting that the masters have devel-
oped most of the identification and
recognition capabilities needed for a reaction
plan for chess (as they experience it).7

Answer 5

To the best of my knowledge, neither I nor
any of my colleagues has vowed to limit our-
selves to explicit reaction plans. Hence, the
gate complexity issue is probably moot.

Now I turn to Ginsberg’s second argument;
namely, if a reaction plan is supplemented
with planning, the planning will be so pre-
dominant that the reaction plan itself is
barely useful.
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ence, respond to it on (say) the third occur-
rence, and then try something else (Firby
1989); so, planners are somewhat behind on
this issue.

Even if I were inclined to give planners the
benefit of the doubt—suppose it was easy for
a planner to recognize and terminate repeated
interference—the problem does not end here.
Whether the baby is our own, she or he will
probably be back to randomize our abode
again. Does it seem reasonable that the plan-
ner should have to build the same piece of
plan (for terminating interference) many
times over? The issue is forced by the fact that
an important difference exists between a situ-
ated agent and a planner: Real life is not over
when the problem is solved. Clearly, we come
to a choice between enlarging a reaction plan
once or planning the same counterinterfer-
ence steps many times—this is the classic
time-space trade-off. The situated action com-
munity prefers a middle ground.

Answer 8

In arguing that reaction plans should be
defended as a compaction technique, Gins-
berg overlooked the time savings afforded by
a precomputed classifier. Nevertheless, even
without such time savings, reaction plans
would be well worth researching because they
significantly reduce the space required to
cache plans, as I now show.

In classical planning, the domain is con-
ceived as a state-space graph, a (linear) plan is
a path through the state-space graph from a
start node to a goal node, and planning is a
heuristic search for such a path. Let me refer
to such plans as path plans. Finding a path
from every possible start node to a goal
node—which is the competence of a reaction
plan—requires that the planner traverse every
node of the state-space graph at least once.
Therefore, if the domain permits N possible
states, a naive approach to caching requires
space of O(N). (For the sake of a simple analy-
sis for both path plans and reaction plans, I
disallow such space-saving tricks as variabliz-
ing, along with such use of abstraction as
would require searching to reconstruct a com-
plete plan; under these conditions, path plan-
ners cannot cover and cache the entire
domain in less than O(N) space.) The task of a
reaction plan planner is not to traverse the
state-space graph to find paths but to parti-
tion it into groups of states such that all states
in a given group require the same reaction.
The expected cardinality of a randomly select-
ed partition on N objects is O(N/log N) (Haigh
1972). That is, the average reaction plan for a

domain containing N world states has O(N/log
N) decision rules. This is a marginal improve-
ment; a domain of 1012 states would require 4
x 1010 decision rules. However, now it turns
out that reaction plans can exploit abstrac-
tion in a way unavailable to path plans. The
caching of abstractions of path plans only
saves space if the most detailed abstraction
levels can be omitted from the cache. Such
caching would require searching to recover a
complete plan, and I just outlawed such com-
putation. When using abstract reaction plans,
however, the domain can be partitioned with
the most abstract features, then each of these
partitions can be partitioned again and again,
down to the bottom of the abstraction hierar-
chy. A reaction plan with abstraction hierar-
chies will (on average) partition N states into
only O (N2/3) groups of states.9 This savings is
more significant: It means that a domain of
1012 states can be covered with 108 decision
rules. Thus, reaction plans can require only
0.01 percent of the space required to cache
path plans of equivalent competence. (Note:
This result must be qualified by the possibility
that some storage reduction techniques might
be more effec- tive with path plans than with
reaction plans.)

Answer 9

To convince Ginsberg that the compaction
afforded by reaction plans is not only numeri-
cally significant but also technologically sig-
nificant, I must convince him there will be
many domains in which reaction plans can
be used and in each such domain many reac-
tions worth caching.10 Answer 8 suggests that
reaction plans should be considered whenev-
er reactions are worth caching, even if there
are only a few. Whether it is worthwhile to
cache any particular reaction is an open ques-
tion, but caching is more likely to be worth-
while for agents that must repeatedly achieve
the same goal from many starting conditions.11

This criterion is met when (1) the domain is
so dynamic that the agent can encounter
many world states in the course of a single
attempt on the goal and (2) when the domain
is just dynamic enough to make the initial
state vary from one attempt to the next.

An example of the first point is driving; an
example of the second is making a cup of tea.
Situated agents are more likely than most to
encounter both kinds of tasks; the ubiquity of
routine is eloquently described by Agre (1988).
To put it more strongly, even if answer 8 were
ignored completely—that is, if reaction plans
afforded no compaction whatsoever—then
reaction plans should still be researched for
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Notes
1. In Schoppers (1987), I give some arguments for

why building an entire plan might not be as
bad as it first appears.

2. Reaction plans containing plan actions are not
quite the complement of explicit reaction plans
because reaction plans can be explicit and initi-
ate planning; however, it is assumed that
implicit reaction plans must resort to planning.

3. A Boolean function has only one binary output
signal, so multiplication circuits (for example)
are excluded; however, circuits that test
whether one number is a product of two others
are allowed.

4. Because the Boolean function must be defined
for any number of inputs, the function is actu-
ally an infinite set of functions, but the descrip-
tion of the function must obviously remain of
finite size.

5. In theory, 134 features suffice to distinguish
each of the 1040 legal chess positions. Why
masters learn to recognize such an abundance
of theoretically superfluous features is
explained by answer 3.

6. Five seconds is too short to be creating new fea-
tures on the fly, which is evidenced by the fact
that when they are reconstructing implausible
positions, grand masters perform as poorly as
amateurs.

7. Lest the reader wonder why anyone would
bother to construct a reaction plan for chess,
remember that masters become masters only by
devoting their lives to the game.

8. That is, I know of no planner capable of notic-
ing that its plan has failed not once but several
times over.

9. In a draft of this article, I included appendixes
in which I showed that the expected cardinality
c(N) satisfied c(N)c(N) < e(N-1) and derived the
N2/3 result. Copies of this draft are available
from the librarian at Advanced Decision Sys-
tems.

10. A cached reaction is significantly more useful
than a cached plan because a reaction can be
used independently of what happened just
before or after it.

11. Michie (1977) measures the computational util-
ity of a whole cache, and Barnett (1984) mea-
sures the value of particular pieces of advice,
but both approaches ignore the urgency of the
problem situation and the frequency of use of
the cached advice. Natarajan and Tadepalli
(1988) give sufficient conditions on the possi-
bility (not the utility) of learning for perfor-
mance improvement.

12. In arguing that the reaction plans approach is
in trouble even if planning costs are ignored,
Ginsberg is thereby ignoring the very problem
on which reaction plans are an assault.

13. Although points 2, 3, and 4 might change the
system’s behavior, they differ as follows:
Restructurable control (point 2) requires no

their ability to reduce total planning time,
the survival value of a ready response, and
the potential to automate the construction of
knowledge-based reactive systems.12

Note that I am not, as Ginsberg suggests,
“making an extremely strong claim—that the
planning problems encountered by
autonomous agents will be of the type for
which universal plans can be represented.” I
clearly do expect that some parts of some
domains can be solved with reaction plans,
but I am willing to let the applicability of
reaction plans be an empirical issue.

Meanwhile, I expect the situated action
enterprise to produce (at least) the following
new abilities:

1. Formal analysis of the information content
of embedded systems, with a view to pro-
viding guarantees on the reasonableness
and safety of the behavior that might result
(Rosenschein and Kaelbling 1985, 1988)

2. Run-time problem solving, which might
significantly extend system competence
and complexity (still subject to the just-
mentioned guarantees) and might con-
verge with work on restructurable control
systems (systems that can compensate for
malfunctioning effectors [Montoya 1982])

3. Techniques for the automatic construction
of parts of rule-based and embedded sys-
tems (Schoppers 1989) (when done in par-
allel with plan execution, such
construction supports automatic and incre-
mental acquisition of new competence)

4. Automatic refinement of domain models
(that is, improving control reliability by
learning about the plant being controlled
[Carbonell and Gil 1987; Kadie 1988;
Mason, Christiansen, and Mitchell 1989]),
with subsequent revision of the system’s
behavior.13

5. Interaction with human supervisors con-
cerning current control constraints, poli-
cies, and intentions and the reasoning
behind them
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dynamic extension of the reaction plan (point
3) nor learning about the domain (point 4).
Dynamic extension of the plan (point 3) might
happen for reasons of plan completeness, but
learning about the domain (point 4) implies
that even a complete plan might need revising.
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