
state information to the near-total exclusion
of local sensor data (for example, Nilsson
[1980]). Reactive approaches, brandishing slo-
gans such as “the world is its own best
model,” prefer local sensor data and tend to
avoid the use of internal state whenever pos-
sible (for example, Connell [1989]).

Reactive approaches arose as a sort of “pop-
ular revolt” backlash against the shortcom-
ings of traditional sense-plan-act
architectures. When the slow, plodding oper-
ation of traditional approaches proved inef-
fective at dealing with the realities of reality,
Rodney Brooks turned the problem sideways:
Instead of general-purpose functional mod-
ules, Brooks proposed an architecture based
on special-purpose, task-oriented modules
that coupled sensors directly to actuators.
The dramatic result of Brooks’s work was that
many tasks that had previously been thought
to be difficult (most notably, the task of colli-
sion-free navigation) turned out to be achiev-
able using simple control mechanisms
(Brooks 1986).

In the subsequent euphoria, internal state
was somehow transformed into a greater vil-
lain than Brooks ever intended.1 No reactive
architecture advocates the wholesale elimina-
tion of internal state. Internal state is neces-
sary, reactivists readily concede, but a few
odd bytes scattered here and there should suf-
fice. It is classical planning, along with its
associated centralized world models, abstrac-
tions, and large linked data structures, that

■ This article informally examines the role of
stored internal state (that is, memory) in the con-
trol of autonomous mobile robots. The difficul-
ties associated with using stored internal state are
reviewed. It is argued that the underlying cause
of these problems is the implicit predictions con-
tained within the state, and, therefore, many of
the problems can be solved by taking care that
the internal state contains information only
about predictable aspects of the environment.
One way of accomplishing this is to maintain
internal state only at a high level of abstraction.
The resulting information can be used to guide
the actions of a robot but should not be used to
control these actions directly; local sensor infor-
mation is still necessary for immediate control. A
mechanism to detect and recover from failures is
also required. A control architecture embodying
these design principles is briefly described. This
architecture was successfully used to control real-
world and simulated real-world autonomous
mobile robots performing complex navigation
tasks. The architecture is able to incorporate stan-
dard AI planning and world-modeling algorithms
into a real-time situated framework.

Controlling autonomous mobile robots
consists of generating actuator com-
mands in response to local sensor

information and stored internal state (that is,
memory). Researchers differ about the rela-
tive importance of these two factors. Classical
approaches, in which robots construct com-
plete plans prior to taking any action, rely on

Articles

64 AI MAGAZINE

On the Role of
Stored Internal State

in the Control of
Autonomous

Mobile Robots
Erann Gat

Copyright © 1993, AAAI. All rights reserved. 0738-4602-1993 / $2.00

AI Magazine Volume 14 Number 1 (1993) (© AAAI)

the reactivists would do away with, to be
replaced by distributed networks of small
finite-state machines or something similar.

Unfortunately, the line between where a
few odd bytes of internal state leave off and
large, centralized linked data structures begin
is fuzzy. Because it is possible to embed arbi-
trary computations in (potentially infinite)
networks of finite-state machines, it is possi-
ble for the evils of planning to arise in reac-
tive architectures if one is not careful.
Furthermore, even small amounts of isolated
internal state can cause problems. If an erro-
neous sensor datum, say, is stored in memory
and is used to control the actions of the
robot, then this error persists for longer than
it would have if the robot’s actions had been
based on updated information. (This argu-
ment was one of the original ones in favor of
reactive architectures.)

In this article, I argue that the ongoing
debate about planning versus reacting is
really an argument about the proper use of
internal state information, which is, in turn,
an argument about making predictions about
the world. I further argue that although the
indiscriminate use of internal state can lead
to problems, the solution is not to eschew
internal state but, rather, to manage it more
carefully. In particular, I argue that internal
state should be maintained at a high level of
abstraction and that it should be used to
guide a robot’s actions but not to control
these actions directly. I also argue that plan-
ning can usefully be viewed as merely anoth-
er form of sensor processing, and therefore,
the problem of deciding when to plan is the
same as deciding when to sense. (This obser-
vation does not simplify either of these diffi-
cult problems, but it does allow them to be
consolidated.)

To illustrate these issues, consider a person
driving a car to an unfamiliar destination.
This task is impossible using local sensor
information alone because in most places, no
information is available locally to indicate
where the destination is. Some state informa-
tion (that is, a world model) is required: a
map, prior knowledge about the layout of the
streets, and so on. However, local sensors are
necessary because there are many details that
an a priori world model cannot supply—the
locations of other cars, for example. In gener-
al, people use state information to construct
rough plans at high levels of abstraction and
local sensor information to fill in the details
at run time. I might plan to, say, turn left at
Main Street, but I don’t need to know in
advance precisely how far it is to Main Street;

I just count intersections or drive until I see
the sign.

The informal arguments and observations
presented in this article were used to guide
the design of a robot-control architecture that
was demonstrated on a variety of real-world
and simulated real-world robots performing
complex tasks. The architecture is unique in
that it incorporates unaltered classical plan-
ning techniques into a situated framework
that operates in real time in an unpredictable
environment. This work is briefly described at
the end of the article.

Planning and Internal State
Let us begin by stipulating what is meant by
the terms planning and plan. Classically, a
plan is a sequence of operators, and planning
is the process of constructing such sequences
that will bring about certain desired effects
given certain initial conditions. However, as
Agre and Chapman (1990) pointed out, these
definitions are not adequate to account for
many of the phenomena that one might intu-
itively call planning; so, the meanings of the
terms plan and planning must be broadened.
McDermott (1991) recently defined a plan as
any sort of construct that constrains or pro-
vides guidance for the actions of a robot.
Thus, plans can be anything from a data
structure to an analog control circuit, and
planning can be anything from classical STRIPS

planning to circuit design. I adopt this notion
of planning in this article.

Under this broad view of planning, it is
useful to distinguish between offline planning,
which is done before the robot engages in the
performance of any task, and online planning,
which occurs during the performance of a
task. Offline planning can be done by either
the robot (or other computer) or a human
designer. Offline planning is typically not
subject to strict time constraints and is usual-
ly of greatest utility when it makes as few
assumptions as possible about the task and
the state of the world. (Note: Classical plan-
ning has almost always been tacitly consid-
ered offline; the quality or optimality of a
classical plan is invariably judged by consider-
ing only the plan and not the time or effort
required to produce the plan.)

By contrast, online planning is planning
done by the robot during the performance of
a task. This article is concerned mainly with
online planning. Online planning can be clas-
sical; that is, the robot can plan a complete
course of action and then execute the plan.
However, it is now clear that this simple

In this article,
I argue that
the ongoing
debate about
planning
versus react-
ing is really
an argument
about the
proper use of
internal state
information

Articles

SPRING 1993 65

obstacle-avoidance algorithm can fail, for
example, if it relies on a time-consuming
stereo-matching algorithm for input. If
objects in the world move between the time a
frame is grabbed and the time the stereo
matching is complete, then a collision is pos-
sible even though no planning took place.

The reactivists’ solution to these problems
is to minimize the lifetime and the quantity
of internally stored data by eliminating time-
consuming sequential computations and
stored world models. However, by examining
more closely the underlying cause of the
problems, we can do better. It is not necessary
to abandon planning and world models, only
to be a bit more careful about how they are
used.

Internal State and Predictions
The root of the difficulties caused by internal
state is not anything inherent in the state
itself but, rather, in the implicit predictions
made by the storage of internal state informa-
tion. Every piece of internal state carries with
it an implicit prediction that the information
contained in this state will continue to be
valid for some time to come. These predic-
tions (whether implicit or explicit), coupled
with the unpredictability of the world, are
the root of the problem.

Let us consider two examples to clarify this
point. Consider a simple forward-searching
linear planner that expands a world-state
node on its search tree. The prediction in this
case is explicit: The planner is predicting that
the performance of a certain action under a
certain set of circumstances will cause certain
changes in the state of the world. This is an
explicit prediction about the outcome of per-
forming an action. There is also an implicit
prediction about the way the world will
evolve until the time comes to perform the
action.

As a second example, consider a single
sonar range reading stored in a memory loca-
tion. The prediction made by this internal
state depends on how it is used. Suppose, for
example, that the robot now moves in the
direction of this reading for some distance
less than the reading (with the intention that
the robot not collide with obstacles). Under
such circumstances, there are implicit predic-
tions that the obstacle detected by the sonar
will not move toward the robot and that no
new obstacles will enter the robot’s path.
(There is also the assumption that the range
reading was correct to begin with.) In most
real-world environments, none of these pre-

approach does not work well. A number of
variations on the classical theme have
emerged to support online planning, usually
involving some sort of interleaving of classi-
cal planning and the execution of the result-
ing plans. Because online planning occurs
during the execution of a task, it is usually
subject to more stringent time constraints
than offline planning and can often make
more assumptions about the robot’s task and
current state than an offline planner can.

Online planning is problematic for three
main reasons: First, planning is time consum-
ing. It can cause the robot to miss deadlines
or fail to respond in a timely manner to con-
tingencies. (Oncoming trucks wait for no the-
orem prover.) Second, most planners require
a world model at a level of completeness and
fidelity that current sensor technology
cannot provide. Third, while the robot is
planning, the world can change in a way that
invalidates the plan (for example, passing a
critical exit while planning a route on the
freeway).

The first problem can be solved by operat-
ing the planner in parallel with a process that
deals with contingencies. This solution still
leaves the second problem and exacerbates
the third because the robot can now take
actions while planning that the planner did
not anticipate. Note, however, that both of
these remaining problems now arise because
of difficulties in maintaining internal state
information. The second problem involves
the explicit state contained in the world
model, and the third problem involves the
implicit state contained in the execution
thread of the planner.

Note two important points: First, the prob-
lems manifest themselves only when the
information contained in the internal state
does not match the actual state of affairs in
the environment. If the world is completely
predictable, and the world model is always
correct, then classical online planning is fea-
sible. Problems arise when there is a mis-
match, for any reason, between the semantics
of some piece of stored internal state and the
actual state of affairs in the world.

Second, these difficulties are not unique to
planning but apply to all sequential compu-
tations. Any sequential computation gener-
ates internal state that persists for the
duration of the computation (otherwise, it is
not a sequential computation). Thus, any
time-consuming computation, planning or
otherwise, is a potential source of difficulty if
something unexpected happens in the world
while the computation is going on. A reactive

If the world is
completely

predictable,
and the world

model is
always

correct, then
classical

online
planning is

feasible

Articles

66 AI MAGAZINE

dictions is likely to be correct, and the use of
such internal state is likely to cause problems.
Note that these problems arose entirely with-
out any classical planning or other time-con-
suming computations and without any
complex, centralized, linked world models;
the mere use of a stored sensor datum can
cause persistent errors in the robot’s actions.

Viewed in this way, avoiding internal state
is tantamount to assuming that nothing
about the world can usefully be predicted,
which is plainly not the case. Internal state,
planning, world models, and the associated
classical computational mechanisms might
yet be salvageable if we take care to ensure
that the predictions made by the internal
state contained within them are reasonable
predictions about the world. In the next sec-
tion, I suggest one way of ensuring reasonable
predictions.

Predictions and Abstraction
One way to make predictions that are likely
to remain valid for the lifetime of the internal
state of the system is to make predictions at a
high level of abstraction. Abstraction, like
internal state, has been vilified unfairly by
reactivists. An abstraction is simply a descrip-
tion of something. The level of an abstraction
is simply an inverse measure of the precision
of the description. A higher-level abstraction
is a less precise description. Abstraction is
enormously useful for making predictions
because the accuracy of an imprecise descrip-
tion is unaffected by small variations in the
state of affairs. Thus, for example, a predic-
tion such as “I will be in my office this after-
noon” is more likely to be correct than “I will
be seated at my computer at 2:49 PM typing
the third line of the fourth section of my AI
Magazine article.”

Humans tend to remember such abstracted
information about the world. In my own
internal state, I store, for example, the loca-
tion of my house. By remembering this fact, I
make the implicit prediction that my house
will remain (more or less) in the same place.
However, I don’t really know exactly where
my house is; all I know is the topological
layout of the streets surrounding it together
with some rather rough metric information.
For all I know, my house and the surrounding
neighborhood might move several meters in
random directions whenever I am at work.
Items within the house actually do tend to
move around mysteriously while I am away.
Nevertheless, I am able to find my house and
my belongings because I have a world model

that describes the state of affairs at a high
level of abstraction: My house is on Margaret
Drive, which is the first left after turning onto
El Nido from Colorado Boulevard; the mus-
tard is in the refrigerator, which is in the
kitchen.

This imprecise stored information is crucial
to almost everything people do. I go to the
refrigerator when I want mustard not because
any local sensor information tells me that the
mustard is there but because I remember that
it is there. However, sensor data are crucial to
fill in the details that the world model does
not provide. Once I open the refrigerator, I
usually have to hunt for the mustard because
it tends to wander around between uses. I
can’t drive with my eyes closed because there
are aspects of the world that cannot be
included in my world model even in principle
because they are impossible to predict (for
example, the state of traffic lights).

Of course, world models are sometimes
wrong even at high levels of abstraction. Some-
times, a street on the way to my house is
closed for construction. Sometimes, my wife
uses the last of the mustard and forgets to tell
me. Thus, actions based on stored state some-
times fail. In humans, occasional errors of this
sort are not a problem for two reasons: First,
people use the information in their world
models to guide their actions but not to con-
trol them directly. Second, people can tell
when things go wrong and can take corrective
action. This ability to fail cognizantly is the
main reason that people manage to get along
in the world. People make mistakes all the
time. Usually, they are able to detect these mis-
takes and recover. We carefully engineer our
environment to eliminate the opportunity to
make the sort of mistakes that are difficult to
recover from—falling off cliffs and the like.

Abstract descriptions of the world allow the
unpredictable aspects of the world to be
abstracted away. What remains is incomplete
but is nevertheless useful information that
can be used to guide a robot’s actions. For the
resulting system to be robust, it is important
to ensure that the system is able to detect fail-
ures when they occur, as they inevitably will.
In the next section, I describe an implement-
ed robot control system that successfully inte-
grates classical planning into a real-time
situated robot-control system by following
these guidelines.

A Robot-Control Architecture
This article proposes a number of principles
to guide the design of autonomous robot-con-

One way to
make predic-
tions that are
likely to
remain valid
for the life-
time of the
internal state
of the system
is to make
predictions at
a high level of
abstraction

Articles

SPRING 1993 67

First, a set of transfer functions is designed for
the controller that produces a set of useful
primitive behaviors to be used as building
blocks for more complex activities. Examples
of primitives are following walls, avoiding
obstacles, and going through doors. Each
primitive is engineered to fail cognizantly,
that is, to detect failures when they occur. For
example, a wall-following primitive should be
engineered to detect when the robot reaches
the end of the wall or when the robot loses
its alignment with the wall because of accu-
mulated sensor errors.

Primitive activities are then used as build-
ing blocks to construct highly conditional
sequences of primitives that accomplish more
complex goals under a larger variety of cir-
cumstances. An example of such a higher-
level activity is moving to a destination given
a set of directions. This process might involve
generating a lengthy sequence of following
walls, going through doors, and registering
landmarks. Many of the steps in the sequence
might be contingent on things that happen
at run time. For example, if a wall that the
robot wanted to follow turned out to be
blocked by an obstacle, the robot might have
to invoke a contingency procedure to get
around the obstacle.

Deliberative computations are performed
only when some information is needed by
the sequencer, which requires time-consum-
ing computations. For example, if a robot is
given multiple tasks, it might invoke a task
planner to decide which task it should per-
form next to make efficient use of its
resources. The deliberator might also be
called on to perform time-consuming sensor
processing and world modeling such as stereo
vision processing.

Experiments
ATLANTIS was used to control a number of real-
world robots (three to date) and a simulated
real-world robot. Detailed accounts of these
experiments can be found in Gat (1991,
1992). To give a flavor of the system’s capabil-
ities, two snapshots of a simulator experi-
ment are shown in figures 1 and 2. The
simulator is a fairly accurate simulation of
ROBBIE, the Jet Propulsion Laboratory plane-
tary rover test bed. In this experiment, the
robot is given three tasks: collect and deliver
rock samples of various colors, keep the robot
fueled, and photograph martians (the M-
shaped figures) that move about in semiran-
dom ways. The world is full of obstacles
(shaded rectangles) that the robot has no
advance knowledge of. Its primary sensor is a

trol architectures. To review briefly, these are
to (1) maintain state information and con-
struct plans at a high level of abstraction, (2)
use the results to guide the robot’s actions but
not to control them, and (3) provide a mech-
anism to detect and recover from failures.
These design principles were incorporated
into the ATLANTIS control architecture (Gat
1991, 1992), which was successfully used to
control a variety of autonomous mobile
robots in both the real world and simulated
real-world conditions.

The Architecture
The architecture consists of three compo-
nents: the controller, the sequencer, and the
deliberator.

The controller is responsible for moment-by-
moment control of the robot’s actuators in
response to the current values of the robot’s
sensors. The controller is a purely reactive con-
trol system. Because of the data flow nature of
this component, a special programming lan-
guage called ALFA was developed to program it.

The sequencer is responsible for selecting
which of several transfer functions the con-
troller is to compute and parameterizing this
transfer function as appropriate. The
sequencer is also responsible for taking cor-
rective actions in the event of failures.

The deliberator is responsible for maintain-
ing world models and constructing plans. The
deliberator performs all manner of time-con-
suming computations. These computations
occur at a high level of abstraction (see Exper-
iments for an example), and the results are
not used to control the robot directly. Instead,
results of deliberative computations are placed
in a database, where they are used as an addi-
tional source of input data by the sequencer.
(See Mataric [1990] for an example of a reac-
tive architecture, where the results of plan-
ning are used to control the robot directly.)

The ATLANTIS sequencer is modeled after
Firby’s (1989) RAP system and is the prime
mover in the architecture. All the activity in
the controller, as well as the deliberator, is
controlled by the sequencer. This control
structure is a consequence of the observation
that a structural parallel exists between plan-
ning and sensor processing: Both are time-
consuming and resource-consuming
processes that produce information to guide
the robot’s actions (Rosenschein and Kael-
bling 1986).

Design Methodology
The design methodology associated with the
architecture advocates bottom-up design.

Primitive
activities are

used as
building
blocks to
construct

highly
conditional

sequences of
primitives

that
accomplish

more complex
goals under a

larger
variety of

circumstances

Articles

68 AI MAGAZINE

fairly slow and unreliable stereo vision
system2 that the robot must actively control
to scan areas of interest. The circles are obsta-
cles that the robot detected.

The sequencer in this experiment con-
trolled two physical processes running in the
controller—(1) controlling the robot’s speed
and direction and (2) aiming the
camera—and five computational processes
running in the deliberator—(1) local naviga-
tion (using an algorithm similar to Slack

[1990]), (2) task planning (using a stripped-
down version of the planner in Miller [1985]),
(3) stereo vision processing, (4) global map
maintenance and route planning, and (5) the
computation of intercept trajectories for the
martians. The system runs three times faster
than real time, including the central process-
ing unit time needed to run the simulation.
The simulator gives a fairly high-fidelity simu-
lation of a real robot and is able to reproduce
results obtained on the real robot.

Articles

SPRING 1993 69

HOME-BASE

GREENSOURCE

BLUESOURCE

REDSOURCE

Figure 1. A Snapshot of a Typical Run of the ATLANTIS System.
After visiting two of the robot’s three destinations, the deliberator determines that there is not enough fuel to visit the third destination
and return home safely. The plan produced by the deliberator says simply, “Return home.” All the details are filled in at run time by the
reactive components, allowing the plan to remain valid even though unexpected obstacles (which were not detected because of sensor
noise) are encountered along the way.

danger of running out of fuel if it tried to get
the red rock first.

The task planner in this experiment chose
the robot’s next destination based on how
much fuel it had available; how much rock
storage space remained; what color rocks it
had already collected; and, roughly, what the
travel time was between locations. The global
route planner simply assigned spins to obsta-
cle groups; that is, it decided whether to tra-
verse an obstacle to the right or the left. All

The course of events shown in figure 1 is
particularly interesting because it demon-
strates a behavior that is difficult to achieve
without planning. In this figure, the robot
has the task of collecting one blue rock, one
green rock, and one red rock and returning
them to the home base. The robot begins by
picking up a blue and a green rock. However,
before picking up a red rock, the robot
returns to the home base because the task
planner determined that the robot was in

Articles

70 AI MAGAZINE

Figure 2. The Continuation of the Snapshot in Figure 1.
After refueling, the robot proceeds to its third destination. An unexpected obstacle blocks the robot’s route, requiring a dramatic
change in route but no change in the global plan. (Compare the locations of known obstacles—designated by circles—in this
figure and figure 1.)

HOME-BASE

GREENSOURCE

BLUESOURCE

REDSOURCE

the details of controlling the robot’s exact
path were left to the controller, which contin-
uously readjusted the robot’s course. Some-
times, there were failures, such as when the
robot tried to squeeze between two obstacle
groups that led to a dead end (figure 2). In
this case, the failure was detected, and the
robot chose a new global route.

This experiment demonstrates that by
maintaining internal state and planning at
high levels of abstraction, classical planning
algorithms can be integrated usefully into a
situated control architecture operating in real
time in realistic environments. There is no
need to abandon classical planning to control
mobile robots.

Modularity
One of the benefits of the ATLANTIS architec-
ture is that it provides a clean separation
between symbolic computations and control
of actions. This separation makes it easy to
make modifications to the symbolic computa-
tions to improve or modify the robot’s perfor-

mance under varying circumstances. For
example, in the previous illustration, the
robot maintains a world model that contains
information about previously encountered
obstacles. Thus, if the robot were again asked
to go from its home base to the red rock
quarry, it would not go into the dead end.
However, avoiding the dead end is the right
thing to do only if obstacles never move. If
there is a possibility that something might
move one of the obstacles out of the way,
then it would be worthwhile to go back into
the dead end to check it now and then.

Similarly, built into the robot’s navigation
strategy is the assumption that areas that
have not yet been seen are free of obstacles,
which can sometimes lead to inefficient
behavior. For example, figure 3 shows the per-
formance of the original navigation strategy
on a simplified task. The robot starts at the
home base and proceeds to the blue rock
quarry through the opening on the right. At
this point, only the right half of the wall has
been seen, which makes it appear that the

Articles

SPRING 1993 71

HOME-BASE

BLUESOURCE

Figure 3. The Original Route Planner Used in the System Assumed That Unknown Areas Were Free of Obstacles.
This assumption can produce inefficient behavior. In this run, the robot went through the opening on the right to reach its destination.
On the return trip, it travels toward the unknown left side of the figure. If there were not a second opening in the wall, this strategy
would have resulted in an extremely inefficient path.

but that it was incorporated into the existing
ATLANTIS framework with no modifications
whatsoever to existing code (other than
removing the old high-level planner). The
fast installation of a new planner was possible
because the two planners produced the same
sort of output—general advice to guide the
rest of the system about where to go next.

Conclusions
I made the following argument in this article:
Online planning (and control of mobile
robots in general) requires the maintenance
of internal state. Internal state contains
implicit predictions about the world. It is
important to ensure that these implicit pre-
dictions are at least usually correct. One way
to make this assurance is to store internal
state information (and, therefore, to plan) at
a high level of abstraction. The resulting
plans and world models can usefully be
employed to guide the actions of an

fastest way home is to proceed to the left.
However, this strategy is risky because the
wall might extend for an arbitrary distance to
the left.

In a world of long walls, a different naviga-
tion strategy is needed. To demonstrate the
ease with which such a strategy can be inte-
grated into ATLANTIS, a completely new high-
level planner was written that not only
implemented a different navigation strategy
but a different world-modeling scheme as
well. The new planner modeled the world as
a collection of corridors, narrow openings
between two nearby obstacles. A topological
network of corridor sequences between adja-
cent destinations was maintained, and a
simple best-first search planner operated on
this model. The resulting behavior was that
the robot tended to move between destina-
tions using routes that it had previously trav-
eled (figure 4).

The main point is not that this algorithm
is a particularly effective navigation strategy

Articles

72 AI MAGAZINE

HOME-BASE

BLUESOURCE

Figure 4. Because Plans in ATLANTIS Are Used Only as Advice,
It Is Easy to Interchange Different Planning and World-Modeling Strategies.

In this run, a completely new planner is being used that builds a map of corridors, narrow openings between obstacles. This planner
prefers paths through known corridors over paths through unknown regions. It took less than a day to integrate this new planner with
the rest of the system, which was not changed.

autonomous mobile robot but not to control
its actions directly. Because the predictions
implicit in the internal state can be wrong
even when maintained at high levels of
abstraction, the immediate control of the
robot must ultimately rely on local sensor
data. A robot can’t drive with its eyes closed,
but neither can it reach its destination know-
ing nothing about the surroundings beyond
what is locally perceptible.

These observations were embodied in a
robot-control architecture that was imple-
mented on several real robots and a simula-
tion of a real-world robot. The architecture is
capable of controlling these robots in the per-
formance of multiple, complex tasks in real
time with high reliability using fairly simple
algorithms. The system does classical plan-
ning at high levels of abstraction and uses the
results to guide a reactive controller that uses
local sensor information to directly control
the robot’s actuators. Robustness is achieved
through the mechanism of cognizant failure,
which allows the robot to detect and recover
from unexpected problems.

Acknowledgments
Some of the ideas in this article grew out of
discussions with Rodney Brooks, Paul Viola,
David P. Miller, Marc Slack, and Jim Firby.
Portions of the simulator and navigation soft-
ware were written by Jim Firby and Marc
Slack. This work was performed in part by the
Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the
National Aeronautics and Space Administra-
tion and in part by the Massachusetts Insti-
tute of Technology Artificial Intelligence
Laboratory under the sponsorship of Rodney
Brooks.

Notes
1. Rodney Brooks, Massachusetts Institute of Tech-
nology, 1990, conversation with Erann Gatt.

2. The vision system on the real robot is actually
quite good. Extra noise is introduced artificially
into the simulated vision to ensure that the system
will work with noisy data.

References
Agre, P., and Chapman, D. 1990. What Are Plans
For? Robotics and Autonomous Systems 6:17–34.

Brooks, R. 1986. A Robust Layered Control System
for a Mobile Robot. IEEE Journal on Robotics and
Automation RA-2(1): 14–23.

Connell, J. 1989. A Colony Architecture for an Arti-
ficial Creature, Technical Report, 1151, Artificial
Intelligence Laboratory, Massachusetts Institute of
Technology.

Firby, R. 1989. Adaptive Execution in Complex

Dynamic Worlds, Technical Report,
YALEU/CSD/RR672, Dept. of Computer Science,
Yale Univ.

Gat, E. 1992. Integrating Reaction and Planning in
a Heterogeneous Asynchronous Architecture for
Controlling Real-World Mobile Robots. In Proceed-
ings of the Tenth National Conference on Artificial
Intelligence, 810–815. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Gat, E. 1991. Robust Task-Directed Reactive Control
of Autonomous Mobile Robots. Ph.D. diss., Dept. of
Computer Science, Virginia Polytechnic Institute
and State University.

McDermott, D. 1991. Robot Planning. Invited pre-
sentation given at the Tenth National Conference
on Artificial Intelligence, Anaheim, California,
14–19 July.

Mataric, M. 1990. A Distributed Model for Mobile
Robot Environment Learning and Navigation,
Technical Report, 1228, Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology.

Miller, D. 1985. Planning by Search through Simu-
lations, Technical Report, YALEU/CSD/RR423, Dept.
of Computer Science, Yale Univ.

Nilsson, N. 1980. Principles of Artificial Intelligence.
San Mateo, Calif.: Morgan Kaufmann.

Rosenschein, S., and Kaelbling, L. 1986. The Syn-
thesis of Digital Machines with Provable Epistemic
Properties, Technical Note 412, Artificial Intelli-
gence Center, SRI International.

Slack, M. 1990. Situationally Driven Local Naviga-
tion for Mobile Robots, JPL Publication 90-17, Jet
Propulsion Laboratory, California Institute of Tech-
nology.

Erann Gat received a Ph.D. from the
Virginia Polytechnic Institute and
State University in 1991. He is cur-
rently a member of the technical staff
at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, where
he has been working on autonomous

mobile robots since 1988.

Articles

SPRING 1993 73

