
■ Real-time problem solving is not only reasoning
about time, it is also reasoning in time. This abili-
ty is becoming increasingly critical in systems
that monitor and control complex processes in
semiautonomous, ill-structured, real-world envi-
ronments. Many techniques, mostly ad hoc, have
been developed in both the real-time community
and the AI community for solving problems
within time constraints. However, a coherent,
holistic picture does not exist. This article is an
attempt to step back from the details and exam-
ine the entire issue of real-time problem solving
from first principles. We examine the degrees of
freedom available in structuring the problem
space and the search process to reduce problem-
solving variations and produce satisficing solu-
tions within the time available. This structured
approach aids in understanding and sorting out
the relevance and utility of different real-time
problem-solving techniques.

As computers become more ubiquitous,
they are increasingly being used in
applications that sense the environ-

ment and directly influence it through action.
Such applications are subject to the real-time
constraints of the environments in which
they operate. These systems, which have
deadlines on their processing requirements,
are referred to as real-time systems. Their
functional correctness depends not only on
the logical correctness of the results but also
on the timeliness. These systems include
manufacturing, control, transportation,
aerospace, robotics, and military systems.

Historically, these systems were relatively
simple, operating in well-characterized envi-
ronments. However, the emerging generation
of increasingly sophisticated real-time sys-
tems will be required to deal with complex,
incompletely specified, dynamic environ-
ments in an increasingly autonomous fashion

(Laffey et al. 1988). To do so requires that
time-constrained problem-solving techniques
be incorporated into real-time systems.
According to the problem-space hypothesis
posited by Newell and Simon (1972), problem
solving is defined as search in a problem
space. They define a problem space as a set of
states and a set of operators linking one state
with the next. A problem instance is a problem
space with an initial state and a set of goal
states. Extending this notion, we define real-
time problem solving as time-constrained
search in a problem space.

In the field of cognitive psychology, a study
of air traffic controllers conducted by the
Rand Corporation is the first known attempt
to characterize human problem-solving
behavior when subject to real-time con-
straints (Chapman et al. 1959). In the field of
AI, the roots of real-time problem solving can
be traced to the development of search-based
programs to play chess, with time constraints
being placed on each move. Current tech-
niques have evolved from these early studies
and applications.

Real-time systems tend to be critical in
nature, where the impact of failures can have
serious consequences. Before the next genera-
tion of real-time problem-solving systems can
be deployed in the real world, it is necessary
to be able to predict the performance of the
system and make statements about the sys-
tem’s ability to meet timing constraints.
There is currently no coherent theory of real-
time problem solving. The existing real-time
problem-solving systems are, at best, coinci-
dentally real time (Laffey et al. 1988).

The problem of building real-time problem-
solving systems has been approached by both
the real-time community and the AI commu-
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problem, we examine the fundamental differ-
ences between conventional real-time tasks
and problem-solving tasks and discuss how
these differences affect the execution-time
variations of these tasks.

First, let us consider the execution-time
variations of conventional real-time tasks.
Typical real-time signal-processing algorithms
have little to no variation associated with
their execution times: Regardless of the com-
plexity and size of most signal-processing
algorithms (for example, fast Fourier trans-
forms, filters), generally no data dependen-
cies can cause the execution times to vary.
The input data are simply processed in a uni-
form, deterministic fashion. However, con-
trol-oriented, real-time tasks often have data
dependencies. As the system to be controlled
increases in complexity, the number of data
dependencies will likely increase, resulting in
increased variations in the execution time of
real-time tasks.

Next, let us consider the execution-time
variations of problem solving in the context
of the problem-space hypothesis advocated
by Newell and Simon (1972). Figure 1 illus-
trates a continuum of tasks that range from
knowledge poor to knowledge rich. On the
far left, knowledge-rich tasks are fully charac-
terized, and an explicit algorithm exists that
transforms a given set of input into an appro-
priate output. There is no notion of search or
backtracking at this end of the spectrum.
Variations in execution time are associated
solely with data dependencies, as is the case
for conventional real-time tasks.

As one moves to the right, either the task
characteristics or their interactions with the
environment are not completely known.
Heuristics are now required to search the
state space for an appropriate result. At the
far right, there is no knowledge to direct the
search, resulting in a blind search. In this
case, one would expect to have a large varia-
tion in execution time. Most potential appli-
cations fall between the two extremes shown
in figure 1. As one moves back to the left,
increasing knowledge can be applied to
reduce the variations caused by search.

Observations: 1. Execution-time variations
because of data dependency and execution-
time variations as a result of search and back-
tracking are orthogonal. 2. The combination
of execution-time variations because of data
dependency and search results in real-time
problem-solving tasks that tend to have
much larger execution-time variations than
conventional real-time tasks. 3. Execution-
time variation is a true measure of the quality

nity. The real-time community has taken a
system approach, integrating AI tasks into
existing real-time systems. The AI community
has concentrated primarily on developing
techniques and architectures to facilitate
time-constrained problem solving. A number
of techniques have been developed in both
the real-time community and the AI commu-
nity, each with their respective terminology.
A study of the current literature leaves one
confused about techniques and terminology.
It is also not clear how the techniques from
the two research communities can be com-
bined in solving a given problem.

This article attempts to sort out the termi-
nology and the techniques developed in the
two communities and provides a common,
integrated approach to real-time problem
solving. The basic premise of this article is
that a structured approach to real-time prob-
lem solving exists based on the fundamental
degrees of freedom available in using domain
knowledge to structure the problem space
and the search process to produce best-so-far
solutions in limited time. Existing real-time
problem-solving techniques are shown to be
compositions of these fundamental degrees of
freedom.

This article is organized as follows: First,
The Problem provides a background on the
current state of the art in real-time problem
solving and introduces some of the existing
real-time problem-solving techniques. The
second section discusses the relationships
between deadlines, computation time, and
solution quality. The sections entitled A
Structured Approach and Knowledge
Retrieval introduce our structured approach.
Mapping Existing Techniques examines relat-
ed work in real-time problem solving and the
kinds of problem tackled. The final section
explores the limitations of this work and pro-
poses future research.

The Problem
The challenge with real-time problem-solving
tasks is that the worst-case execution time is
often unknown or is much larger than the
average-case execution time. Although con-
ventional real-time tasks have execution-time
variations because of data dependencies, real-
time problem-solving tasks have additional
variations because of search and backtracking
(Paul et al. 1991). A blind application of con-
ventional real-time scheduling theory to real-
time problem-solving tasks results in systems
that either cannot be scheduled or have low-
average resource utilization. To tackle this
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of domain knowledge available and the effi-
ciency of its use. (If a particular application is
knowledge rich and still has a lot of execu-
tion-time variations, then it is a poorly con-
structed system.)

In the discussion that follows, whenever
we refer to search, we mean generalized
search with backtracking (see side bar). Other
forms of search are referred to as iterative
algorithms. Generalized search occurs in a
problem space. Although some domains have
natural problem spaces (chess, for example),
most real-world problems are made perversely
difficult because one has to discover how to
treat them as search problems in the first
place. Then the initial representation (initial
problem space, the operators, the start state,
and the goal state) is derived from the prob-
lem specification.

Throughout the remainder of this article,
we use an application example to illustrate
the abstract ideas we present. The application
example we consider is a car-tracking system.
In large cities such as New York, antitheft
devices now include beacons installed in cars,
which allow the police to track down a stolen
car. The tracker has a display that indicates
the approximate direction and range to the
target stolen car. For any given combination
of current tracker location and current target
location, there is no procedural way to deter-
mine the path from the tracker to the target.
The solution requires search. Further, the
stolen vehicle is being driven by an intelli-

gent person in an unpredictable fashion. This
dynamic aspect of the example problem is
common to most interesting real-time prob-
lem-solving domains. For this application,
the search space is the set of all road intersec-
tions, represented as a graph with edges cor-
responding to road segments. The operators
correspond to the intersections encountered
in daily life: turn right, turn left, go straight
ahead, turn around. The direction and range
information can be used as a heuristic func-
tion to guide the search process.

Deadlines, Computation Time,
and Solution Quality

In this section, we explore the origin of time
constraints in real-time problem solving and
the way that these time constraints translate
into deadlines. We highlight the effect of exe-
cution-time variations of real-time problem-
solving tasks on the determination of system
timing correctness using real-time scheduling
theory. We then discuss how the required
computation times, deadlines, and available
computation time determine the solution
quality that can be guaranteed.

Deadlines
Time constraints in real-time problem solving
can manifest themselves in a variety of ways
(Dodhiawala et al. 1989; Laffey 1988;
Stankovic 1988). They can be either static or
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determining what computation time is
required to satisfy the functions of each task
and (2) determining whether the set of tasks
can be scheduled such that each task’s com-
putation-time requirements can be satisfied
before its deadline.

Determining the computation time
required to support conventional real-time
tasks is generally straightforward. Determin-
ing the computation time required to support
real-time problem-solving tasks highlights the
fundamental problem of scheduling them,
that is, their potentially large execution-time
variations. For well-structured and well-
understood applications rich in domain
knowledge, accurate estimates can be
obtained. As the application becomes less
well characterized, the execution-time esti-
mates become increasingly pessimistic. For
highly dynamic and unstructured applica-
tions, reasonable estimates might not even be
possible.

Given the worst-case execution times of a
set of tasks, real-time scheduling theory can
then be applied to determine whether the
deadlines of the tasks will be met. One such
approach is the earliest deadline scheduling
approach (Liu and Layland 1973), which
orders task scheduling by deadline. According
to the Liu and Layland equation, a real-time
task set scheduled using the earliest deadline
scheduling algorithm is guaranteed to meet
all deadlines if

where the Ci’s represent the worst-case com-
putation times of a set of n conventional real-
time tasks, and Cai

j ’s represent the worst-case
computation times of a set of m periodic real-
time problem-solving tasks. The Ti’s represent
the periods of the tasks (deadlines are
assumed to be the same as the periods). The
larger the variations between the average-case
execution time and the worst-case execution
time, the more pessimistic the value of Cai

j is
and the lower the average-case resource uti-
lization (Paul et al. 1991).

An introduction to real-time scheduling
theory can be found in Sha and Goodman
(1990) and Sprunt (1989). For a summary of
fixed-priority scheduling in real-time systems,
see VanTilburg and Koob (1991). For recent
work on dynamic priority scheduling, see
Schwan and Zou (1992) and Jeffay, Stanat,
and Martel (1991).

dynamic. In conventional real-time systems,
deadlines are known time quantities and are
generally directly related to environmental
constraints (Wensley et al. 1978). In our car-
tracker example, tasks associated with engine
control, automatic braking, and so on, are
conventional real-time tasks with hard dead-
lines directly tied to the physics and dynam-
ics of the underlying environment. The exe-
cution properties of these tasks are well
behaved, and the deadlines tend to be con-
stant and known.

In other cases, the deadlines of tasks can be
dynamic. In our example application, the
deadline of the real-time problem-solving
tracking task is derived from the requirement
that the tracker proceed at normal speed lim-
its at all times. Thus, as the tracker moves
between states (intersections) in the problem
space, he/she must determine which operator
(right, left, and so on) to execute before
he/she gets to the next intersection. The
deadlines of these real-time problem-solving
path-planning tasks are dynamically variable,
depending on the vehicle speed and the dis-
tance to the next intersection. Note that the
dynamic nature of the stolen car precludes
the tracker from path planning far into the
future (multiple intersections ahead).

Another source of deadlines in the example
application would be at the system level,
such as levying a requirement that the tracker
must capture the stolen car within 20 min-
utes. Although such deadlines are easily
levied, it is difficult or impossible to guaran-
tee their being satisfied in highly dynamic
environments.

Computation Time
If a real-time problem-solving task were the
only task on the computer, the computation
time available to the task would be the entire
computation time from the current time to
the deadline. More often, a real-time prob-
lem-solving task must share the computing
resource not only with other real-time prob-
lem-solving tasks but also with conventional
real-time tasks. In the application example,
the real-time problem-solving task associated
with finding a path to the stolen vehicle
might have to share the central processing
unit with vehicle control functions that have
tight real-time constraints. Further, if we
extend the tracker problem to support track-
ing of multiple stolen cars simultaneously,
then multiple real-time problem-solving tasks
and multiple conventional real-time tasks
would have to coexist on the same resource.

There are two aspects to the problem: (1)
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Solution Quality
Let us now compare the computation time
available with the computational require-
ments of the task. If the computation time
available is greater than the worst-case execu-
tion time of the task, the task can be guaran-
teed to generate the optimal solution before
its deadline for all valid input in its design
space. Because real-time problem-solving
tasks have large execution-time variations as
a result of search, it is often not possible to
guarantee that the time available for compu-
tation would be greater than the worst-case
execution time of the task (Paul et al. 1991).
If the computation time available is less than
the worst-case execution time, we could
either declare the task set unable to be sched-
uled or attempt to generate acceptable solu-
tions of lower quality (satisficing solutions).

Satisficing solution: A satisficing solution is
one whose solution quality is greater than an
acceptable threshold. The notion of a satisfic-
ing solution places no restriction on the man-
ner in which the solution is generated or on
the evolution of the solution quality as a func-
tion of time. A satisficing solution necessarily
implies a compromise in solution quality.

The task can be guaranteed to generate sat-
isficing solutions if the worst-case time
required to generate satisficing solutions for
all valid input in the design space is less than
the computation time available. If there is
insufficient computation time to guarantee
satisficing solutions for all valid input or if
the deadline itself is unknown, the only
option is to structure the search space and
the search process to generate best-so-far
solutions.

Best-so-far: A best-so-far solution defines a
search evolution that generates intermediate
results whose expected solution quality
improves monotonically. We note that the
property of best-so-far evolution is indepen-
dent of generating satisficing solutions
because satisficing solutions can be generated
by processes that do not produce any useful
intermediate results.

The next section examines the degrees of
freedom and shows how existing real-time
problem-solving techniques are compositions
of the fundamental degrees of freedom.

A Structured Approach
When attacking any complex real-time sys-
tem problem, conventional or AI, it is imper-
ative to structure the solution strategy in
such a way as to achieve the required
response-time goals. To deal with the com-

plexity of such systems, the overall problem
is decomposed into a set of subproblems. We
assume that this process of decomposition is
applied recursively until we end up with a
collection of basic subproblems, some of
which are procedural, and some of which are
search based. The basic subproblems indicat-
ed here are the smallest computational enti-
ties that can be treated independently (that
is, can produce a result and be scheduled as
an independent computational entity).

Any representation of a problem forms an
abstraction of the actual problem. Moving
from one level of abstraction to another
involves a change in the number of charac-
teristics considered. Higher levels of abstrac-
tion space look at progressively fewer but rel-
atively important characteristics. Techniques
such as ordered monotonic refinement
(Knoblock 1990) are useful in developing
abstraction hierarchies. Abstraction hierar-
chies at the problem level guide the partition-
ing of a problem into subproblems. The fol-
lowing discussion assumes a specific
definition of subproblem that we use in this
article.

Subproblem: Each search-based sub-
problem operates at a single level of
abstraction and has a search space with
an initial state, a goal state, and some
number of intermediate states connected
by operators.

The single level of abstraction constraint
enables us to make unambiguous assertions
about the timing properties of the various
techniques addressed later in this article. It
also allows us to regard the transition from
one level of abstraction to another as moving
from one subproblem to the next. Real-time
search issues are dealt with at this level.
Because search involves selecting and apply-
ing the operators until the solution is found,
the deadlines at this level fall into two cate-
gories: (1) a deadline to solve the search-
based subproblem and (2) intermediate dead-
lines to select and apply operators during the
search process.

We define a problem and its relation to
subproblems as follows:

Problem: A problem is a set of sub-
problems connected by a set of intersub-
problem operators that trigger subprob-
lem transitions between one subproblem
and the next. These transitions occur
when the goal state of a subproblem is
reached.

We use the problem level to discuss issues
relating to multiple subproblems, transitions
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solving strategies fall within this framework
and exploit some of these degrees of freedom.
Each of these degrees of freedom manifests
itself at both the problem level and the sub-
problem level and has different effects on the
worst-case execution time and the ability to
generate best-so-far solutions.

Pruning is a fundamental method for reduc-
ing the number of states searched. Pruning
manifests itself in a number of forms, both
during run time and at design time. Partition-
ing, problem decomposition, and abstraction are
forms of pruning that manifest themselves
when setting up and structuring the search
space. If a satisficing solution is acceptable,
then approximation can be used to reduce the
maximum number of states searched in the
worst case. Scoping determines the fraction of
the search space that will be searched and is
useful in generating solutions of improving
quality with time. Ordering determines the
sequence in which the states are searched giv-
en a search space. We elaborate on these dis-
tinctions as we describe each of these tech-
niques in the following subsections.

Pruning
Definition: Pruning is the technique of
using domain knowledge to eliminate
portions of the search space that are
known not to contain the goal state.

Pruning comes in two forms. First is static
pruning (pruning at design time). Static prun-
ing requires a priori knowledge that certain
portions of the search space need not be
searched. At the problem level, static pruning
manifests itself in the form of partitioning,
problem decomposition, and abstraction.
Static pruning is used to set up the search
space for the search process.

Partitioning is based on the notion that
solving a collection of smaller problems is
usually better than solving the whole prob-
lem in a single step. This divide-and-conquer
technique assumes the availability of domain
knowledge to break up the original problem
into smaller parts and combine the solution
of the smaller parts into a coherent solution
of the entire problem.

At the problem level, partitioning can be
used to divide the problem into subproblems.
Run-time indexing is used to a priori deter-
mine which parts of the data or knowledge
will be applicable in different situations. For
example, the tracking problem illustrated in
figure 2 can be partitioned into a set of small-
er subproblems: finding the path from the
current location of the tracker to the high-
way, finding a highway connecting the

between subproblems, the scheduling and
executing of different subproblems in
sequence or in parallel, and the mixing of
procedural and search-based subproblems.
The timing constraints at this level are to
solve the end-to-end problem.

In large application domains, this defini-
tion of problems and subproblems can be
generalized to arbitrary levels of nesting. In
dynamic environments, it might be necessary
to determine the decomposition of the prob-
lem into subproblems at run time. However,
for a particular problem instance, the
assumption of a subproblem being at a single
level of abstraction is not a restrictive
assumption.

We now develop a framework for real-time
problem solving by identifying the degrees of
freedom available in structuring the problem
space and the search process to provide solu-
tions of increasing quality as a function of
time. We then evaluate the effect of this
approach on the execution-time variations of
the problem-solving tasks and illustrate this
effect using qualitative examples. This work
was motivated by the need for an integrated
approach to real-time problem solving in the
development of real-world applications (Paul
et al. 1992) and extends our initial work in
reducing problem-solving variations to
improve the timing predictability of real-time
AI systems (Paul et al. 1991). Additional
details of the structured approach can be
found in Paul (1993).

Our structured approach manages the large
execution-time variations of real-time prob-
lem solving in two ways. First, we try to
reduce the execution-time variations by using
domain knowledge to reduce the maximum
number of states searched in the worst case.
After having reduced the number of states
searched in the worst case, if the residual vari-
ations are still large or if the deadline itself is
unknown, the only option left is to structure
the search space and the search process to
produce solutions of improving quality as a
function of time (best-so-far property) using
the fundamental degrees of freedom.

We postulate that the best one can do in
managing problem-solving variations is to
use domain knowledge for pruning, ordering,
approximating, and scoping. Generic tech-
niques that fall under this framework are as
follows: static pruning, dynamic pruning
(pruning); best-first heuristic search (order-
ing); value approximation, function approxi-
mation, aggregation (approximating); and
scoping in time, scoping in space (scoping).

We find that existing real-time problem-
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neighborhood of the tracker to the neighbor-
hood of the target, and finding a path from
the highway to the actual location of the tar-
get. This problem partitioning is illustrated in
figure 3. Within the subproblem of finding a
path from the current location of the tracker
to the highway, we need only consider those
intersections and street segments in the
neighborhood of the tracker. Information
about intersections, street segments, and traf-
fic flow information from other neighbor-
hoods is not relevant and can be pruned (par-

titioned) away. The worst-case execution time
for this subproblem would then be the time to
search through all the intersections and street
segments of the particular neighborhood.

The second form of pruning is dynamic
pruning (pruning at run time). This type of
pruning happens during the search process
and is based on information that is available
only during run time to prune the size of the
search space.

Within a subproblem, dynamic pruning is
the use of run-time knowledge to eliminate
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Figure 2. Sample Detailed Map for the Tracker Application.
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operators applicable at a given state. In the
tracking example, using current traffic infor-
mation to rule out some of the operator
choices would be an example of dynamic
pruning. At the problem level, dynamic prun-
ing manifests itself in the deletion of specific
subproblems (or their partitions) from consid-
eration for the solution of a particular prob-
lem instance.

We bind pruning to the availability of per-
fect domain knowledge. Hence, pruning
using imperfect information or heuristics
would not constitute valid pruning in our
approach. Subject to these assumptions,
pruning (in one of its many forms) is the
only way to reduce the worst-case execution
time without compromising the goal state or
the solution quality.

In the case of static pruning, a priori analy-
sis of the worst-case execution time is possible
because the maximum number of states can
be estimated at design time. In dynamic prun-
ing, the reduction in the number of states
searched is instance dependent. Hence, a pri-
ori analysis of the execution-time reduction as
a result of dynamic pruning is difficult.

Ordering
Definition: Ordering is the technique of
looking earlier at the entities (states or
subproblems) that are more likely to lie
along the solution path.

This type of ordering corresponds to the
classical best-first search technique. The A*
algorithm (Korf 1987) and most of its deriva-
tives fall into this category, where some form
of heuristic function is used to order the eval-
uation of states. For example, in the tracking
application, ordering of operators and states
can be done within a subproblem based on
the compass heading and the range to the
target. At the problem level, the ordering is
deterministic: finding a path from the tracker
to the main highway; finding a path along
the main highways to the neighborhood
where the target is; and, finally, finding a
path within the target neighborhood to the
target. In the more general case, ordering at
the problem level is a form of prioritization
of evaluation, with higher priority given to
those subproblems that are expected to have
the highest impact on the overall solution.

The better the search heuristic, the lower
the average-case execution time is. We bind
ordering to the use of imperfect knowledge.
Ordering only changes the probability that a
particular state will be visited, evaluated, and
expanded. Thus, the worst-case execution
time is not affected.

Approximation
Definition: Approximation is the tech-
nique of reducing the accuracy of a char-
acteristic under consideration.

Approximations at the subproblem level
are usually value approximations, but
approximations at the problem level tend to
be method or function approximations.

Let us assume that the solution to a generic
problem can be expressed as

Solution = φ(a1, a2, a3, … an) ,
where A = {a1, a2, … an} represents the set of
characteristics that influence the final solu-
tion, and f represents the functional relation-
ship between the characteristics.

Let A1 represent the set of admissible values
for a discrete variable a1 with cardinality
η(A1). In the tracking example, the values of
valid speed limits are 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, and 65. Thus, the set of
speed limits has a cardinality of 13. Approxi-
mation is a technique for reducing the cardi-
nality of the set of admissible values for a
variable. (For continuous variables, approxi-
mation can be seen to reduce the number of
distinct regions in which a continuous vari-
able might lie). In this case, a sample approxi-
mation would constitute a mapping from this
set of speed limits to values of low speed,
medium speed, and high speed. The new
approximate set now has a cardinality of only
3. We use the following representation: Let
A(a)

1 represent the set of admissible approxi-
mate values for the variable a1 such that
η(A(a)

1 ) < η(A1). An approximation function is
defined from the original set A1 to the
approximate set A(a)

1 such that all elements of
the original set are mapped to elements in
the approximate set.

The approximation function reduces the
total number of states η(Papp) that need to be
searched in the approximate space Papp.
Hence, the worst-case execution time of the
task is less than the worst-case execution time
in the base space:

C(Papp) < C(Pbase)  .
With approximations, we note that approx-

imation changes the problem definition; the
original problem space, the initial state, the
goal state, and the operators are all potentially
affected. The implication is that one is willing
to accept a less precise goal state.

Approximation methods use different
approximate models of the underlying
domain, each with a different level of accura-
cy (figure 4). As the approximation increases,
search space size decreases. In the approximate
processing technique proposed by Lesser,
Pavlin, and Durfee (1988), the system esti-
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to the actual location of the target, then
approximate processing fails as an end-to-end
approach. We need to work with the detailed
map in the initial subproblem and the final
subproblem to avoid compromising the goal
state.

The effects of approximation on execution
time can be summarized as follows: (1) the
worst-case execution time decreases because
the total number of states decreases; (2) the
average-case execution time is also expected
to decrease; (3) because approximation can
involve aggregation, the number of data ele-
ments processed is potentially lower; (4)
approximation of the evaluation function (by
linearization, for example) can reduce its
complexity (and the associated state-evalua-
tion time); (5) some approximations allow
incremental refinement with additional time,
but others require the problem be solved
again with a different level of approximation;
(6) nonrefinable approximations require us to
accurately estimate the amount of time
required to generate the solution and then

mates the amount of time available and uses
a decision process to determine the best level
of approximation for the time available.
This approach works well as long as the sys-
tem does not underestimate the amount of
time available.

For example, in path planning at the level
of roads, using a map of highways only is an
approximation. This set of roads has a lesser
cardinality than the set of all roads on the
detailed map. Note that approximation is
reducing the cardinality of the given charac-
teristic (roads).

We also note from the application example
that if we use an approximate map for doing
the overall planning, then we end up redefin-
ing the problem (the problem space, the ini-
tial state, and the goal state) to less accurate
states. With the approximate map, the best
one can do is to get to the vicinity of the tar-
get, as shown in figure 5. If the approximate
solution is good enough, then approximate
processing is acceptable. If the resulting solu-
tion is unacceptable, and the intent is to get
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pick the level of approximation that maxi-
mizes the expected accuracy for the given
allocation of computation time; and (7) the
decision process itself needs to be bounded to
allow the problem-solving segment enough
time to run.

Scoping
Definition: Scoping is the technique of
controlling (in time and space) the maxi-
mum lookahead when choosing the next
operator.

Scoping is applicable within a subproblem

level in choosing the next move (operator).
The initial state and the goal state are not
affected; what changes is the manner in
which the operators are selected and applied.
Figure 6 illustrates scoping in the tracking
example. It is possible to trade the increase in
scope in range (time) for the increase in scope
in azimuth (space). The narrow scope illus-
trated in the figure allows us to consider lesser
information with each move, but we can look
ahead more moves (within a fixed-computa-
tion time window). The wide scope illustrated
in the figure is an example of increased scop-
ing in azimuth (space). Because we consider
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Figure 5. An Approximate Map.
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Consider now the situation where the
tracker cannot plan the entire route before
starting and must plan the route while mov-
ing. For this case, the degree of scoping in
time (intersections ahead) and space
(azimuth of roads under consideration)
should simply be maximized. The trade-off
between time and space would be a function
of the regularity of the environment. In our
example, if the streets were perfectly rectilin-
ear, then one would evaluate a relatively
small azimuth and look as far forward in time
as possible. Conversely, if the streets were
highly irregular—corresponding to many
dead-end streets, one-way streets, and other

more information with each move, we can
only look a few moves ahead within the time
available. Both scopes bring additional
knowledge and information to bear on the
next move, and each approach can be the
preferred approach based on circumstances.

If it were possible to plan the entire path
from the start state to the goal state before
starting execution, then scoping would not
be necessary. Such an approach is possible in
purely static environments. In our applica-
tion example, this situation would corre-
spond to the target vehicle being parked. The
tracker could plan his/her entire route before
he/she started.
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obstacles—then one would need to examine a
wider azimuth to find the best route. To
avoid backtracking, the level of scope should
be such that it includes the irregularities that
can affect the solution.

Dynamic problem solving (solving as you
go) in static environments (parked target
vehicle) allows one to trade storage for
decreased execution time. In cases where one
has to backtrack, the information about inter-
sections evaluated previously but not taken
can be stored. However, in dynamic environ-
ments corresponding to the target vehicle
moving in an unpredictable fashion, the val-
ue of stored information about previously
expanded nodes degrades with time. The
appropriate level of scoping is now a function
of both the regularity and the dynamics of
the environment. In our car tracker example,
it is not useful to plan a route too far ahead
(in time) because the target will have
changed position before you get there. In
highly dynamic environments, one is forced
to completely replan after each move. In the
dynamic tracker example, this replanning
corresponds to a new evaluation of the inter-
sections within a given scope at every inter-
section, even though they might have been
in your previous scoping window. The target
has moved, and the relative value of follow-
ing the path might have changed.

Some problem spaces can be structured
naturally for increasing scope in time and
space. Path-planning problems and schedul-
ing problems fall in this category. For prob-
lem spaces that satisfy this property, the
behavior of the actual solution quality is a
function of whether an exact or a heuristic
evaluation function (or error function) is
available. If only a heuristic evaluation func-
tion is available, then one can at best guaran-
tee that the expected solution quality, not the
actual solution quality, will improve with
time.

With scoping, we note the following: 1.
The initial state and the goal state are not
affected; what changes is the manner in
which the goal state is approached. 2. In
some cases, the problem space might have to
be coerced to exhibit this property, which can
potentially increase the worst-case or the
average-case execution time of the task. The
benefit of partial solutions along the way
might or might not mitigate the increased
response times. 3. This technique has the
most impact on the selection of the next
operator (move). In most real-time applica-
tions, it would be difficult to plan a static
path from the current location of the tracker

to the target. Because of unpredictable move-
ment of the target and changing data, the
path will have to be replanned after every
move. In such cases, scoping has a large effect
on limiting the time to select an operator for
the next move. 4. Increasing the scope brings
additional knowledge and information to
bear on the choice of the next move, thereby
increasing the probability that the right move
is made. Increasing the probability of a cor-
rect move reduces the probability of back-
tracking and can potentially reduce the aver-
age-case execution time.

We also note that scoping is fundamentally
different from approximating. In scoping, a
given map is processed, but increasing infor-
mation is brought to bear on the decision. In
approximating, the map itself is modified.
Hence, the resulting solution using approxi-
mating is necessarily less accurate, even if suf-
ficient time was available to complete the
search process.

Scoping is also different from pruning and
ordering. Scoping determines the maximum
fraction of the search space that will be
searched. Thus, pruning and ordering are
independently applied on the states that fall
within a given scope.

Knowledge Retrieval
In the previous section, we considered the
use of domain knowledge to reduce search
variations at the problem-level search space
or problem space. At each state in the prob-
lem space, knowledge was used to evaluate
the operators in the current state and deter-
mine the next-best state. The process of
extracting knowledge from the knowledge
base and making it available to the search
process at the problem-space level is called
knowledge retrieval. It occurs at each state of
the problem space, as shown in figure 7.

In analyzing the execution-time variations
that are the result of search and backtracking
at the problem-space level, we made the
implicit assumption that the knowledge
retrieval process at each problem-space state
was bounded and took unit time. Unfortu-
nately, in real-world systems, the knowledge
retrieval time varies from one problem-space
state to another and is difficult to character-
ize. Typical bounds for knowledge retrieval
time tend to be exponential bounds, which
are of no practical value in predicting the
actual execution time (Forgy 1982).

We now consider the execution-time char-
acteristics of the knowledge retrieval process,
which occurs at each state of the problem
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applied at design time. Thus, the nature of
knowledge retrieval search and the availabili-
ty of domain knowledge to control the
knowledge retrieval search are different from
the availability of domain knowledge to con-
trol the search at the problem-space level.

Observation: The problem-level search
space allows the use of both dynamic and
static domain knowledge in reducing prob-
lem-solving variations, whereas the immedi-
ate knowledge retrieval process in nonlearn-
ing systems allows the use of only static
domain knowledge. Learning systems have
the potential to acquire knowledge during
run time and apply it to reduce execution-
time variations of the knowledge retrieval
process, but this research challenge remains
open.

In the previous section, we hypothesized
that the only way to manage search varia-
tions is to use domain knowledge for prun-
ing, ordering, approximating, and scoping.
Because using run-time knowledge is difficult,
a viable approach to using domain knowl-
edge is to partition the data and the knowl-
edge base so that relevant data can be
matched with the relevant partitions. The
implications for managing the execution-
time variations at the knowledge retrieval lev-
el are examined in the following subsections.

space. To understand this issue and evaluate
the options in reducing search variations at
this level, let us first consider the nature of
knowledge retrieval processing. We restrict
our attention to immediate knowledge
retrieval (that is, retrieving knowledge from
the knowledge base or rule base only). All ref-
erences to knowledge retrieval within the
context of this article are limited to immedi-
ate knowledge retrieval only.

The primary function of the immediate
knowledge retrieval process is to find all rele-
vant domain knowledge that is applicable for
evaluating a given state at the problem-space
level. This process involves comparing the
current state of the world (consisting of rele-
vant observed data patterns) with the knowl-
edge stored in the knowledge base (consisting
of relevant and valid data patterns). This
comparison requires pattern matching,
which can be viewed as a search process. If
domain knowledge had to be made available
at run time to this (knowledge retrieval)
search process, the process would require its
own nested knowledge retrieval search, and
so on, to infinity. To avoid an architecture
that allows infinite nesting of knowledge
retrieval search processes, we find that any
domain knowledge that can be used to
restrict knowledge retrieval search is best

Problem Space Level

Knowledge
Retrieval
Level

Figure 7. Search Spaces in Problem Solving.



Recent research in real-time production sys-
tems evaluates statistical approaches to pre-
dict the run time of the knowledge retrieval
process (Barachini, Mistelberger, and Gupta
1992).

Knowledge Retrieval Pruning
The amount of processing required in the
knowledge retrieval phase depends on the
amount of knowledge in the system, the size
of the state (data), and the amount of data to
which each piece of knowledge is potentially
applicable. In many systems, the process of
knowledge retrieval is essentially a pattern-
matching process: finding valid patterns in
data elements as a function of the patterns
stored in the knowledge base (Acharya and
Kalb 1989; Nayak, Gupta, and Rosenbloom
1988; Scales 1986; Forgy 1984). Thus, the pat-
tern-match time is a function of the number
of data elements, the set of possible relations,
and the number of elements in the knowl-
edge base. To reduce the total work at this
level, there are only three degrees of freedom:
(1) reduce the relations in the knowledge base
(using knowledge partitioning), (2) reduce
the data elements (using data partitioning),
and (3) reduce the relations that are possible
in the first place by restricting the language
(Tambe and Rosenbloom 1989) (restricting
expressiveness).

Doing the partitioning ensures that only
the relevant data are matched with the rele-
vant knowledge base. One of the primary
causes of large execution-time variations in
knowledge retrieval, as well as one of the
biggest sources of inefficiency, is unnecessary
match processing that is later discarded
(Tambe and Rosenbloom 1989). The unneces-
sary match processing is because the knowl-
edge retrieval inference engine retrieves all
possible instantiations for a particular rule
and then selects one by conflict resolution.
The rest are not used in the current inference
cycle. The search to find the instantiations is
essentially a blind search and has limited aid
from domain knowledge. Restricting the
expressiveness of the language or moving the
search from the knowledge retrieval space to
the problem-space level, in addition to parti-
tioning, would limit unwanted search at the
knowledge retrieval level.

As a guiding principle, by applying a rele-
vance filter to both the data and the knowl-
edge base, we hope to limit the match pro-
cessing to only useful processing, resulting in
the following options:

Partitioning the knowledge space: By
partitioning the knowledge space, we are able

to avoid searching sections of the knowledge
space that contain knowledge that is a priori
known to not be applicable to particular
pieces of data. In the tracking example, the
knowledge base contains knowledge about
intersections, road segments, and their con-
nectivity. When processing a subproblem at
the level of a neighborhood, it is not neces-
sary to consider intersections and road seg-
ments in other neighborhoods. Thus, parti-
tioning the knowledge base by neighborhood
can restrict the knowledge retrieval time.
Also, although it is easy to talk about parti-
tioning a fact base (for example, partitioning
streets by neighborhoods), it is more difficult
to partition higher forms of knowledge (for
example, active relationships and rules of
inference) that could have application across
multiple partitions.

Partitioning the data: Many pieces of
knowledge express relations, desired or other-
wise, between multiple pieces of data. Parti-
tioning the data allows us to avoid consider-
ing sets of data that are a priori known to not
belong to the relation. In the tracking exam-
ple, continuous traffic information for all
road segments is flowing into the system.
Processing all this information all the time
can be expensive computationally and
unnecessary. (Besides, the data are getting
stale anyway, so why process them if they are
not currently required?) Partitioning these
data by neighborhood and processing the
data for the current neighborhood would
restrict the knowledge-processing time.

Restricting expressiveness: Highly expres-
sive knowledge representations allow a large
number of relations to be represented. When
a part of the state changes, a large number of
potential relations with the rest of the state
have to be checked. Representation for-
malisms that restrict expressiveness a priori
restrict the number of relations that need to
be checked during every state change. In the
tracking example, we could use a representa-
tion formalism that allows unstructured sets
to be represented in working memory. How-
ever, if we use structured sets (for example,
intersection I1 is north of intersection I3 as
opposed to intersection I1, which is adjacent
to intersection I3), the number of potential
relations that have to be checked at run time
is limited, allowing polynomial bounds on
knowledge retrieval time (Tambe and Rosen-
bloom 1989).

Knowledge Retrieval Ordering
Run-time ordering of states based on domain-
specific heuristic evaluation functions is not
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er, these notions can effectively be exploited
at the problem-space level. Structuring the
process to move the search from the knowl-
edge-space level to the problem-space level is
the solution to this problem and alleviates
the need for knowledge approximations.

Knowledge Retrieval Scoping
There is no notion of scoping at the knowl-
edge retrieval level. Any attempt to imple-
ment scoping results in arbitrary restrictions
on the match process, resulting in potential
correctness and completeness problems.

Thus, domain knowledge can be used at
design time to prune, order, and structure the
knowledge retrieval space. We now examine
how existing approaches map to our struc-
tured approach. The existing real-time prob-
lem-solving strategies are mapped to the
degrees of freedom that they exploit.

Mapping Existing Techniques
Over the past few years, various techniques
have been developed by the AI and real-time
communities for generating satisficing
solutions in limited time for search and non-
search problems. These techniques include
imprecise computation (Chung, Liu, and Lin
1990), real-time search (Korf 1990), anytime
algorithms (Dean and Boddy 1988), and
approximate processing (Lesser, Pavlin, and
Durfee 1988). Our structured view is an
attempt to map the nature of the entire
design space. Each technique represents a dif-
ferent point in the design space of real-time
AI systems. Our attempt to map these tech-
niques is made difficult by the terminology
differences between the real-time community
and the AI community and the lack of precise
definitions in some cases. In this section, we
examine these techniques in greater detail
and attempt to map them to the structured
view of real-time problem solving. Figure 8
summarizes the techniques and the degrees
of freedom they exploit.

Real-Time Search Algorithms
A number of algorithms have been developed
to address searches in real time. In the real-
time heuristic search techniques proposed by
Korf (1990), a time constraint is associated
with node expansion, which determines the
amount of lookahead in making a decision
for the node. These techniques rely on the
least-commitment strategy, allowing them to
be applicable equally in static, as well as
dynamic, environments (Ishida and Korf
1991). Once all the nodes within the search

possible at the knowledge retrieval level. At
best, some knowledge-lean, domain-indepen-
dent heuristics can be applied. Hence, the
options for ordering at this level are more
restricted than at the problem-level search
space.

However, even though domain knowledge
cannot be used to order the processing at run
time, an implicit ordering in the evaluation
can be built into the match process (because
of the serialization of processing). A program-
mer writing application code can use this
knowledge, along with knowledge of the
application domain, to tailor the application
code to reduce knowledge retrieval search at
run time.

Knowledge Retrieval Approximation
Approximation is another technique that
works at the problem-space level. In dealing
with approximation at the knowledge
retrieval level, we first distinguish between
knowledge of an approximation and an
approximation of knowledge. Knowledge of an
approximation is knowledge to deal with data
clusters and knowledge to deal with data
approximations. Approximation of knowledge is
the deliberate ignoring of more specific or
corroboratory knowledge because of limita-
tions in time. 

Providing support at the knowledge
retrieval level to different forms of approxi-
mation is equivalent to providing support for
different rule-set partitions because the
knowledge retrieval level cannot distinguish
between knowledge of approximations and
other forms of knowledge.

However, to support approximation of
knowledge at run time, the knowledge
retrieval process must have the ability to
determine (at run time) the level of approxi-
mation that is appropriate for a given situa-
tion. Given the nature of the knowledge
retrieval process, approximation will require
domain knowledge to be hard coded into the
knowledge retrieval search as well as make
the knowledge retrieval process arbitrarily
complex. Also, an approximation of knowl-
edge could be counterproductive because the
knowledge that is ignored could potentially
cause unnecessary states to be visited at the
problem-space level (each requiring a whole
knowledge retrieval step) as opposed to the
current step and the incremental knowledge
retrieval time that would be required to com-
plete processing.

We feel that exploiting notions of time and
approximation at the knowledge retrieval lev-
el is hard and of questionable value. Howev-
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horizon are evaluated, a single move is made
in the direction of the best next state; the
entire process is repeated under the assump-
tion that after committing the first move,
additional information from an expanded
search frontier can result in a different choice
for the second move than was indicated by
the first search. These techniques map to
search within a subproblem at a single level
of abstraction, using scoping in time (range)
at each state to perform the lookahead. Scop-
ing in space (azimuth) is kept at a maximum.
Because these searches have to commit to a
move before the entire solution is found,
optimality of the overall solution-execution
sequence is not guaranteed. The search tech-
niques for optimization in limited time pro-
posed by Chu and Wah (1991) look for the
solution with the best ascertained approxima-
tion degree. The search space is reduced using
an approximation function to eliminate
nodes that deviate beyond a threshold from
the current best solution. Their approach can
be viewed as a way of implementing scoping
in our framework. These search techniques
are applied within a subproblem at a single
level of abstraction. The approximations to
the evaluation function change the scope of
the search and do not affect the nature of the

search space. Hence, they do not count as
approximations in our structured view.
Because the approximations are used to per-
form pruning, the optimal solution can be
pruned away. The goal state is compromised
because the optimal solution is not always
found, with the assumption that the nonopti-
mal solution that is found is acceptable. Also,
by its very nature, these techniques are appli-
cable to problems that are static as the search
proceeds. Dynamic situations require restart-
ing the search process with a new set of data.

Other techniques, such as static upper
band search and dynamic band search pro-
posed by Chu and Wah (1992), restrict the
breadth and depth of the search and are mod-
ified forms of beam search. In our framework,
these techniques are applicable within a sub-
problem at a single level of abstraction. Even
though these techniques restrict the breadth
and depth of the search (by limiting the
nodes in the active list), the decision at each
node is made only after considering the
immediate successor nodes. Hence, these
techniques do not implement the type of
scoping we discuss in our framework (which
is a lookahead to a certain breadth and depth
for each move). These techniques are only
applicable in domains that are static. If the
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At the problem level, the approximate pro-
cessing approach relies on making method
approximations. Method approximation
relies primarily on function simplification.

The mapping of approximate processing is
illustrated using the tracking example. Figure
9 shows how the tracking example can be
made to conform to the model of approxi-
mate processing (Garvey and Lesser 1992).
We note the similarities between subproblem
2 in figure 9 and in figure 4. Approximation
within a subproblem is illustrated in the dif-
ferent problem spaces generated at the levels
of approximation of highways only; high-
ways and major roads; and, the most detailed
version, all roads. Method approximation is
illustrated by the presence of the arc bypass-
ing the solution of subproblem 2 using a
default solution instead. (The default solution
might have been generated in the previous
pass using older data). In the example illus-
trated, the only viable reason for skipping
subproblem 2 entirely is when the target is in
the same neighborhood as the tracker. Skip-
ping an entire subproblem is possible in situ-
ations in which the input and the output of
the skipped subproblem have the same form.

Imprecise Computation
Imprecise computation relies on making results
that are of poorer but acceptable quality
available on a timely basis when results of the
desired quality cannot be produced in time.
This approach, as formally defined in Chung,
Liu, and Lin (1990), is applicable to those
processes that are designed to be monotone
(a process is called a monotone process if the
accuracy of its intermediate result is nonde-
creasing as more time is spent to produce the
result). Thus, imprecise computation exploits
well-defined error functions that guarantee
monotonicity.

As such, the imprecise computation
approach maps well to iterative processes.
Even though this technique originally had no
relation to AI, of late, the interpretation of
this technique is being extended to address
search-based processes. Note that error-func-
tion formalities originally associated with
imprecise computation are sacrificed because
monotonicity cannot be guaranteed in
search-based domains.

Anytime Algorithms
Anytime algorithms are algorithms that return
some answer for any allocation of computa-
tion time and are expected to return better
answers when given more time (Dean and
Boddy 1988). This approach requires an ini-

domain is dynamic (for example, target
moves), the searches have to be restarted with
a new set of data.

Progressive Reasoning
Progressive reasoning is a technique to analyze
the situation to depth 1, then depth 2, then
depth 3, and so on, until the deadline is
reached (Winston 1984). Another variant of
this approach is depth-first iterative deepening
(Korf 1985), in which the search is restarted
from the root node with an incremental
depth bound after the current depth bound is
reached. Within a given subproblem, these
techniques can be mapped to scoping in
time, with maximum scoping in space (that
is, the azimuth is at a maximum; only the
range is increased with additional time). Pro-
gressive reasoning has also been used to
include incremental detail as the search pro-
gresses. In our structure, progressive reason-
ing maps to using multiple subproblems,
each at a different level of abstraction, and
structuring the search process to progressively
traverse the abstraction levels. In our tracking
example, moving between subproblem 2 (at
the level of highways) to subproblem 3 (in
the neighborhood of the tracker) would be an
instance of this approach.

Approximate Processing
In its broad sense, approximate processing is a
collection of techniques for dealing with
inference under uncertainty, in which the
underlying logic is approximate or probabilis-
tic rather than exact or deterministic (Zadeh
1985). Approximate processing is relevant in
situations in which there is not enough time
to find the optimal solution. A number of
techniques (Lesser, Pavlin, and Durfee 1988;
Decker, Lesser, and Whitehair 1990) have
been developed in this area to make trade-
offs in solution quality along three axes: (1)
completeness, (2) precision, and (3) certainty.
These techniques compromise the accuracy
with which the goal state is achieved.

This approach exploits the approximation
degree of freedom described in the structured
view. At the subproblem level, approximation
in precision can be mapped to value approxi-
mation and the reducing of the cardinality of a
given characteristic. Approximation in com-
pleteness can be mapped to ignoring some of
the characteristics on which the solution is
dependent. Approximation in certainty can be
mapped to a combination of the simplification
of the functional relationship between the
characteristics and the ignoring of some of the
characteristics on which the solution is based.
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tial solution whose cost is known and some
measure of how this cost is expected to
improve with deliberation time. The primary
contribution of the anytime algorithm
approach is the introduction of time as an
additional degree of freedom in allocating
resources for computation.

Because of its rather broad definition, any-
time algorithms appear more to be an
attempt to define an anytime property for
real-time problem-solving systems than a spe-
cific technique. As such, the techniques pub-
lished under the anytime umbrella march
across the full spectrum and exploit various
combinations of the fundamental degrees of
freedom. It would be possible to map specific
implementations of anytime algorithms to
the structured view. The robot path-planning
example described in Boddy and Dean (1989)
breaks the problem into subproblems that
exploit scoping in time and space. Delibera-
tion scheduling was used to implement deci-
sion making. Major contributions of this
work include the specification of deliberation
scheduling as a sequential decision-making

problem and the use of expectations in the
form of performance profiles to guide search.

Over the last few years, a lot of work has
gone into defining interesting special cases of
performance profiles (for example, Zilberstein
and Horvitz). One of the difficulties in imple-
menting anytime algorithms is generating
performance profiles that are an integral part
of most anytime algorithms. In search-based
domains, performance profiles are difficult to
generate because of the large variance in the
execution time of the search process. The
large variance results in a wide spread
between the upper and lower bounds of the
performance profile, resulting in low pre-
dictability. Conditional performance profiles
help mitigate some of the problems in cir-
cumstances where the initial conditions do
not allow for accurate low-variance perfor-
mance predictions.

In nonsearch domains with well-defined
error functions, more precise performance
profiles are possible because of lower execu-
tion-time variations. In these domains, this
approach is similar to the imprecise computa-
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Search-based problems fall into two broad classes:
iterative search algorithms and 
generalized search processes.

Iterative search algorithms
Iterative search algorithms (search without backtracking), such as
the binary search of a dictionary and the Newton-Raphson
method, are search techniques in domains where a perfect evalua-
tion function (or an exact error function) is available. At each
step, the evaluation function guarantees taking you closer along
the path to the goal state. There is no backtracking—only iterative
convergence. Hence, it is possible to guarantee the monotonicity
of the actual solution quality. Execution-time variations are solely
the result of data dependencies: start state and goal state. Bounds
on the worst-case execution time typically grow logarithmically as
a function of the size of the problem space. The imprecise compu-
tation approach (Chung, Liu, and Lin 1990) developed in the real-
time community falls into this category.

Generalized search processes
Generalized search processes (search with backtracking), such as
heuristic search, are search techniques in domains where only an
inexact, heuristic evaluation function (or error function) is avail-
able. At each step, the heuristic evaluation function takes you clos-
er to the goal state in an expected sense. However, it is possible to
be wrong, requiring backtracking. Therefore, it is not possible to
guarantee the monotonicity of the actual solution quality. At best,
heuristic search functions can only improve the expected solution
quality in a monotonic fashion. Execution-time variations are a
function of both data dependencies and backtracking. Bounds on
the worst-case execution time typically grow exponentially as a
function of the size of the problem space. The deliberation
scheduling technique (Boddy and Dean 1989) developed in the AI
community assumes a class of underlying anytime algorithms that
provide monotonically improving solution quality. Although the
anytime algorithm approach can monotonically improve the
expected solution quality, the actual solution quality cannot be
guaranteed to improve monotonically because of backtracking.
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tion approach without the mandatory com-
putation assumption. In real life, it is not
clear to what extent this difference is a defin-
ing one. Most applications require some com-
putation time before even a feasible default
solution can be generated. In general, the
default solution at time zero could be to
ensure safety; for example, the robot could
stop moving or a plane could continue flying
in the same direction, although in both cases,
it would be difficult to ensure that the default
solution indeed guarantees safety.

Thus, all techniques, whatever their label,
attempt to find satisficing solutions in limit-
ed time. We mapped real-time search tech-
niques to be applicable within a single level
of abstraction. Approximate processing tech-
niques span multiple levels of abstraction.
The distinction between imprecise computa-
tion and anytime algorithms continues to
blur as the interpretation of imprecise com-
putation continues to broaden. The current
trend seems to distinguish the two based on
the presence or absence of a mandatory com-
putation-time requirement, but we believe
that this difference is purely cosmetic. We
find that existing techniques exploit different
combinations of the fundamental degrees of
freedom in generating satisficing solutions in
limited time.

Summary and Limitations
The key challenge in real-time problem solv-
ing is constraining the execution time of nat-
urally exponential search problems in a best-
so-far fashion such that satisficing solutions
can be guaranteed in time without severe
underuse of system resources (Paul et al.
1991). This article examined the execution-
time variations of real-time problem solving
within the context of the Newell-Simon prob-
lem-space hypothesis. We conjectured that
there are at least four degrees of freedom in
reducing search variations and structuring
the search space and the search process to
produce best-so-far solutions. We considered
the two levels of problem-solving search: (1)
the problem-level search space and (2) the
knowledge retrieval level. The problem-level
search space was divided into smaller search
spaces called subproblems. Each subproblem
was defined to be at a single level of abstrac-
tion. The effect of each of these degrees of
freedom on the execution time of the task
was discussed using a tracking example as a
conceptual aid.

In evaluating execution-time effects, we
find that pruning in its many manifestations

is the only technique that reduces the worst-
case execution time without compromising
the goal state. Approximate processing can
reduce the worst case but compromises the
goal state. Other techniques, such as scoping,
reduce the average-case execution time and
provide a best-so-far solution property. We
also examined the application of these
degrees of freedom at the knowledge retrieval
level. We find that partitioning is the most
effective technique at this level because of
limitations in using domain knowledge.

We then examined existing approaches to
real-time problem solving and mapped them
to our structured approach based on the fun-
damental degrees of freedom. Within this
context, the different techniques were shown
to exploit compositions of these fundamental
degrees of freedom.
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