
■ RHINO was the University of Bonn’s entry in the
1994 AAAI Robot Competition and Exhibition.
RHINO is a mobile robot designed for indoor navi-
gation and manipulation tasks. The general scien-
tific goal of the RHINO project is the development
and the analysis of autonomous and complex
learning systems. This article briefly describes the
major components of the RHINO control software
as they were exhibited at the competition. It also
sketches the basic philosophy of the RHINO archi-
tecture and discusses some of the lessons that we
learned during the competition.

RHINO, shown in figure 1, is a B21 mobile
robot platform manufactured by Real-
World Interface. It is equipped with 24

sonar proximity sensors, a dual-color camera
system mounted on a pan-tilt unit, and 2 on-
board I486 computers. Sonar information is
obtained at a rate of 1.3 hertz (Hz), and cam-
era images are processed at a rate of 0.7 Hz.
RHINO communicates with external computers
(two Sun SPARCSTATIONs) by a tetherless Ether-
net link.

The RHINO project is generally concerned
with the design of autonomous and complex
learning systems (Thrun 1994). The 1994
AAAI Robot Competition and Exhibition,
sponsored by the American Association for
Artificial Intelligence (AAAI), ended an initial
six-month period of software design. Key fea-
tures of RHINO’s control software, as exhibited
at the competition, are as follows:

Autonomy: RHINO operates completely
autonomously. It has been operated repeated-
ly for durations as long as one hour in popu-
lated office environments without human
intervention.

Learning: To increase the flexibility of the
software, learning mechanisms support the
adaptation of the robot to its sensors and the
environment. For example, neural network

learning is employed to interpret sonar mea-
surements.

Real-time operation: To act continuously
in real time, any-time solutions (Dean and
Boddy 1988) are employed wherever possible.
Any-time algorithms are able to make deci-
sions regardless of the time spent for compu-
tation. The more time that is available, how-
ever, the better the results are.

Reactive control and deliberation: RHINO’s
navigation system integrates a fast, reactive
on-board obstacle-avoidance routine with
knowledge- and computation-intense map
building and planning algorithms.

RHINO’s software consists of a dozen differ-
ent modules. The interface modules (a base-
sonar sensor interface, a camera interface, and
a speech interface) control the basic commu-
nication to and from the hardware compo-
nents of the robot. On top of these, a fast
obstacle-avoidance routine analyzes sonar
measurements to avoid collisions with obsta-
cles and walls at a speed as high as 90 cen-
timeters a second. Global metric and topolog-
ical maps are constructed on the fly using a
neural network–based approach combined
with a database of maps showing typical
rooms, doors, and hallways. RHINO employs a
dynamic programming planner to explore
unknown terrain and navigate to arbitrary
target locations. It locates itself by continu-
ously analyzing sonar information. In addi-
tion, a fast vision module segments images
from two color cameras to find target objects
and obstacles that block the path of the
robot. RHINO’s control flow is monitored by an
integrated task planner and a central user
interface.

The integration of a dozen different soft-
ware modules, which all exhibit different tim-
ing and response characteristics, requires a
flexible scheme for the flow and synchroniza-
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ule, (2) the modules concerned with sensor
interpretation and map building, (3) the
planner and explorer, and (4) the visual rou-
tines. The article concludes with a discussion
that highlights some of the lessons that were
learned during the AAAI competition.

Fast Obstacle Avoidance
The obstacle avoidance runs on board, inde-
pendent of other software components such
as the planner. Every 0.25 seconds, a new
velocity and motion direction are chosen
according to the most recent sonar measure-
ments. To rapidly adapt to new situations,
only the last three sonar sweeps are consid-
ered. RHINO can react immediately to changes
in the environment and hard-to-see and
moving obstacles such as humans.

The obstacle-avoidance module controls
both the velocity and the motion direction of
the robot. At every instant in time, the veloci-
ty is determined such that no collision will
occur within the next two seconds (two-sec-
ond rule). The motion direction is deter-
mined based on target points, which are gen-
erated by the planner (see discussion later).
To reach a given target, the robot can choose
among different trajectories on which it will
travel with different velocities. RHINO selects
its motion direction by maximizing its trans-
lational velocity, denoted by v, while mini-
mizing the angle to the target point, denoted
by θ.

To determine v, a simplified model of the
robot’s environment is constructed. Proximi-
ty information, obtained from RHINO’s sonar
sensors, is used to construct a two-dimension-
al obstacle line field. Every sonar reading is
converted to a line in this field, as depicted in
figure 2. To avoid collisions with obstacles,
the obstacle-avoidance routine considers a
variety of circular trajectories, one of which is
shown in figure 2. For each trajectory, the dis-
tance between the robot and the closest
obstacle line along the projected trajectory is
computed. This distance determines the
translational velocity v, according to the two-
second rule. The projected angle to the target
point, θ, is calculated for the estimated robot
position and orientation after 0.25 seconds.
For both values v and θ, a smoothed his-
togram is constructed. Because of the dynam-
ic constraints, only a small number of trajec-
tories are reachable within the next 0.25
seconds and are consequently considered in
the histogram. Finally, the trajectory that
maximizes a weighted difference of v and θ is
chosen. To increase the safety of the robot, a

tion of information. The key principles for
the design of RHINO’s software are as follows:

Distributed control and communication:
Each module communicates with several oth-
er modules through Ethernet (Fedor 1993).
There is no single control unit, and commu-
nication is not centralized.

Asynchronous communication: RHINO’s
software lacks a central clock. Each of the
modules runs independently of the other
modules. To resolve conflicts, certain mod-
ules (such as the on-board obstacle-avoidance
module) can take priority over other modules
(such as the planner) in determining the
robot’s motion direction.

Software fault tolerance: RHINO’s software
is designed to accommodate sudden failures
of most of its software components. Almost
all modules can be stopped and restarted at
any time. Effective mechanisms ensure that
restarted modules will immediately obtain
the currently available global information.

The following sections present some of the
key components of the RHINO approach in
more detail: (1) the obstacle-avoidance mod-
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Figure 1. The RHINO Robot from the 
University of Bonn.



security distance of 10 centimeters is kept to
surrounding objects. This security distance is
increased to as much as 30 centimeters as the
robot’s velocity increases.

RHINO’s obstacle-avoidance approach is easi-
ly extendible to other sensors. For example,
prior to the competition, we successfully
employed camera information to identify
small obstacles on the floor that block the
path of the robot, as described later. Each
visually detected obstacle is mapped into a
few lines in the obstacle field, much like the
sonar information described earlier. However,
visual information was not used by the obsta-
cle-avoidance routine during the AAAI com-
petition, basically because sonar information
was fast and accurate enough in the competi-
tion ring.

Map Building and 
Position Control

RHINO’s global-navigation system builds and
uses occupancy maps of the robot’s environ-
ment. More specifically, when traveling
through possibly unknown terrain, RHINO

interprets its sonar readings to generate a
two-dimensional, discrete probabilistic occu-
pancy map. Sonar sensors are interpreted
using an artificial neural network, which esti-
mates the likelihood of occupancy of any
point in a three-meter circle around the robot
(Thrun 1993). Multiple measurements are
integrated using Bayesian inference (Moravec
1993). Figure 3a shows a map that was con-
structed while we manually steered the robot
through the competition arena. This map
describes an area of approximately 30 x 20
meters. The hallways, rooms, large obstacles,
and doors can clearly be recognized.

To navigate based on global metric infor-
mation, it is imperative that the robot be able
to locate itself accurately in its map. RHINO is
equipped with fairly accurate wheel encoders.
However, even small angular errors in dead
reckoning can have devastating effects on the
internal position estimation. To compensate
for such error, the robot continuously match-
es its current sonar readings with its global
occupancy map. If a mismatch is found
between the occupancy map and the obsta-
cles predicted based on the most recent sonar
sweep, the internal position is corrected
accordingly. In addition, RHINO registers the
angular orientation of walls with respect to
its current location to correct more accurately
for rotational errors. This mechanism, which
rests on the assumption that walls are typical-
ly perpendicular or parallel to each other, has

been found to be effective for the detection
of rotational errors at the competition as well
as in various office environments. If RHINO

operates some 30 minutes with velocities as
high as 90 centimeters a second in unknown
terrain, the total error is usually smaller than
30 centimeters. Without correcting the dead
reckoning, this error often accumulates as
much as 30 meters.

To obtain topological information concern-
ing the location of rooms, doors, and hall-
ways, RHINO analyzes its metric occupancy
map continuously. Walls are identified by
thresholding. A large database of examples of
door regions, hallways, and rooms (and parts
thereof) is continuously matched to assign
topological labels to the unoccupied areas in
the occupancy map. By analyzing the con-
nectivity of the labeled map, RHINO is able to
identify doors, hallways, and rooms. An
example of a topologically labeled map is
shown in figure 3b. This map, which is based
on the metric map shown in figure 3a, subdi-
vides the terrain into seven rooms or hall-
ways (gray) and nine door regions (white). As
is easy to see, most of the rooms and hallways
have been identified correctly. In the bottom
left corner of the figure, however, a small
room has not been identified: Because of sen-
sor noise, the occupancy map failed to cap-
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Figure 2. Obstacle Line Field.
Each sonar reading is indicated by a line centered around the robot.

The trajectory, which is finally chosen by RHINO, is also shown.



paths to arbitrary goal locations or, as
described later, to unexplored regions. These
paths are constantly refined and communi-
cated to the obstacle-avoidance routine,
which then determines the final motion
direction and velocity of the robot.

RHINO’s main planning engine consists of a
dynamic programming routine, which computes
trajectories with minimum cost to a goal
location (Howard 1960). The occupancy map
is translated into a cost function, such that
occupied territory results in a high traversal
cost and free territory in a low traversal cost.
Dynamic programming propagates path
information from the goal(s) to arbitrary loca-
tions on the map. Consequently, steepest
descent results in a minimum-cost path to
the “cost-nearest” goal. Control can be gener-
ated at any time without any significant com-
putation. However, deliberation time is trad-
ed for the quality of the resulting path.

ture a small wall—a problem that might par-
ticularly occur with thin walls, such as those
found at the competition.

The topological map analyzer works con-
tinuously. At any point in time, it can be
queried to output a topological map. Howev-
er, the quality of the topological maps
increases with time. The generation of the
labels shown in figure 3b requires approxi-
mately 15 minutes of processing time on a
Sun SPARCSTATION 10. Note that the underlying
database of topological examples consists of
preselected prototypes based on occupancy
maps that were constructed at the University
of Bonn prior to the competition.

Planning and Exploration
In this section, we describe how occupancy
maps are used when controlling the robot.
RHINO’s planner generates minimum-cost
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(a) (b)

unidentified room

Figure 3. Two Views of the Competition Ring.
A. This map of the competition ring was constructed from sonar measurements. Bright regions indicate free space, and dark regions indi-
cate walls and obstacles. Walls and obstacles are enlarged by a robot diameter. B. Shown here is a topological analysis of the map. Obsta-

cles are shown in black. As indicated by the different shading, the free space is divided into seven room-hallways (gray) and 9 door
regions (white). The arrow points to an unidentified room in the competition ring.



Because occupancy maps are often too inac-
curate to generate collision-free motion con-
trol, in dynamic environments, RHINO’s plan-
ner commands only the rough motion
direction, which is then finalized by the colli-
sion-avoidance routine. Consequently, if
unmodeled obstacles block the robot’s path,
the planner is faced with unexpected robot
actions. Dynamic programming preplans for
arbitrary robot locations. Goal information is
propagated for every location in the map, not
just the current location of the robot. Conse-
quently, RHINO can quickly react if it finds
itself to be in an unexpected location and
generate appropriate motion directions with-
out any additional computational effort. This
rapid exception-handling ability provides the
necessary freedom for the collision-avoidance
routine to modify actions commanded by the
planner at its own will.

In both stages of the competition, RHINO

explored and mapped unknown terrain. RHI-
NO’s planning mechanism can easily be
applied to generate explorative paths, lacking
a specific goal point. If the set of goal posi-
tions is defined as the set of positions for
which no map information is available, RHINO

moves straight to the unexplored. Figure 4
illustrates the path of some 15 minutes of
autonomous robot exploration in the compe-
tition ring. In this prototypical example, the
main hallways have already been traversed,
and RHINO continues to explore the unex-
plored rooms. RHINO’s speed on the straight-
line segments of the exploration path was
generally between 50 and 90 centimeters a
second. Further details on planning and
exploration can be found in Thrun (1993).

Vision and Object Recognition
The images from the color camera system are
the input to a four-stage vision system, which
solves two different tasks: First, it has to rec-
ognize important objects typically found in
the environment (for example, objects in an
office environment). Second, it supplies valu-
able information for the robot-navigation
task by providing local occupancy maps to
the map builder and obstacle locations rela-
tive to the robot’s position to the collision-
avoidance module. This second task, howev-
er, was not performed during the final runs at
the competition. Here, map building and
obstacle avoidance relied solely on sonar
information, which turned out to be suffi-
ciently reliable in the competition ring.

In the first stage of low-level processing,
images are low-pass filtered and subsampled

to reduce the data transfer by the radio link
and preprocess the image for the next stage.
This process is performed on one of the on-
board I486 computers. Sampling in space
(image size) and in time (frame rate) is done
dynamically, dependent on the actual veloci-
ty of the robot. Thereby, the transmission-
channel capacity is allocated in a task-driven
way.

The second processing stage is done by an
image-segmentation algorithm that partitions
the transmitted image into homogeneous,
connected regions (figure 5). Homogeneity is
measured by a dissimilarity measure between
neighboring image sites (pixels or blocks of
pixels). For reasons of efficiency, the dissimi-
larity measure is restricted to a weighted
squared sum of color and luminance differ-
ences between sites (with an additional
threshold). Formally, the segmentation task
can be described as a minimization problem
of a cost function, which sums up the local
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Figure 4. Occupancy Map Constructed from Scratch during
15 Minutes of Autonomous Robot Exploration.

The robot’s path, which starts at the upper left corner, is also
shown.



estimated based on the object location calcu-
lated in the third stage of the vision system.
At the competition, we used between 30 and
50 training examples to model each of the 7
object classes. These example images showed
different objects varying in object distance,
lighting conditions, and the choice of the
class representative. The assignment to a class
is done by minimizing the Mahalanobis dis-
tance to the class mean (Duda and Hart
1973). If the likelihood is below a certain
threshold, the candidate object is not accept-
ed as a member of a known class and is con-
sidered unclassified.

Once a target object is found, its location is
communicated to the planner and other
modules concerned with task and motion
control.

Results and Discussion
This article surveys the software architecture
of the fully autonomous RHINO robot, as it was
exhibited at the 1994 AAAI Robot Competi-
tion and Exhibition. RHINO is controlled by a
dozen software modules that work and com-
municate asynchronously. Special emphasis is
put on real-time operation, learning, and the
integration of reactivity and global map
knowledge. RHINO does not require prior
knowledge on the locations of walls or obsta-
cles or the topology of its environment.

In the first stage of the competition (Office
Delivery), RHINO had to move to a designated
target location. This stage consisted of three

inhomogeneities of all regions for a given
partition. To achieve real-time performance
without the need for special hardware, the
segmentation is implemented by a fast
region-merging scheme. The decision about
whether two neighboring regions should be
merged depends on a comparison between
the current costs and the costs after merging.

The third stage takes the segmented image
as an input and seeks to identify and label
certain elements of a typical indoor scene, for
example, the floor, walls, and doors. Impor-
tant additional information for both naviga-
tion and object recognition can be derived:
The distances and sizes of all objects or
regions located on the floor are calculated
based on knowledge of the position, viewing
angle, and so on, of the cameras. This dis-
tance and size information for walls and
objects is incorporated into the occupancy
map.

At the top of RHINO’s vision-processing
architecture, a feature-based object recognizer
detects objects of interest in the environ-
ment. The recognition module is able to learn
from labeled examples of feature vectors
extracted from example images. For every
type object, a Gaussian model (mean and
covariance matrix) is estimated according to
the maximum likelihood principle. Typical
features are the normalized mean and the
variance of object luminance; the mean and
the variance of object color (hue and satura-
tion); and geometric features such as the
absolute size, width, and height of the object,
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Figure 5. In the Second Processing Stage, the Transmitted Image Is Partitioned.
A. The raw image. B. The segmented image in coarse resolution (9 segments).



trials, two of which counted for the final
score. Because we are specifically interested in
navigation without prior information, we
attempted to use the first trial for exploring
and mapping the competition ring and the
remaining two trials for the delivery task.
However, although RHINO traveled fast, we
learned that the arena could not be explored
completely without prior information in the
allotted time. Consequently, we had to “buy”
a metric map for subsequent trials.

One of the major problems we encoun-
tered at the competition was RHINO’s unreli-
able radio link. Unpredictable radio commu-
nication, possibly based on interference with
other radio links, caused RHINO’s on-board
operating system (LINUX, a PC-version of UNIX)
to suspend obstacle avoidance for periods of
10 seconds or more. In the second and third
trial of stage one, RHINO suffered from severe
communication failures and collided repeat-
edly with walls. Thus, the first stage of the
competition could not be completed, and RHI-
NO was excluded from the finals of this stage.

The communication problem was fixed in
the second stage of the competition by mov-
ing the radio link closer to the competition
ring. In this stage (Office Cleanup), RHINO was
required to find and fetch objects such as
soda cans and paper wads, pick them up, and
drop them in groups of three into a nearby
trash bin. Because RHINO is currently not sup-
plied with a manipulator, it indicated its
intention to pick up and drop objects by
voice. RHINO used essentially the same explo-
ration routines as in the first stage but at a
reduced speed. In addition, the visual rou-
tines described earlier were employed for the
identification of obstacles. At the competi-
tion, RHINO found most of the objects in the
starting room and then continued to clean up
the hallway. Here, RHINO scored second,
defeated only by a collaborating team of
three robots (see article by Tucker Balch and
his colleagues, also in this issue).

The AAAI competition ended an initial six-
month period of software engineering. RHI-
NO’s software is generally applicable to
autonomous navigation in indoor environ-
ments. In the future, RHINO will operate 24
hours a day, interrupted only by battery
charging. Our main scientific interest is the
study and the design of autonomous, com-
plex learning systems, which, in the domain
of robotics, includes adaptive approaches to
sensory processing and lifelong robot learn-
ing (Thrun 1994). We are currently imple-
menting various learning techniques that
allow RHINO to adapt to new situations and

acquire new skills necessary for achieving a
broad variety of tasks.
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Florida AI Graduate (MS)
Student Fellowship

The Institute for the Interdisciplinary Study
of Human & Machine Cognition (IHMC) at
the University of West Florida invites your
application for the Fall of 1995. This is a
special research fellowship restricted to
Florida residents.

The IHMC was founded with legislative sup-
port in 1990 as an interdisciplinary research
unit. Additionally, IHMC has succeeded in
securing substantial extramural support and
has established an enviable research and
publication record.  Interdisciplinary
research is underway in the computational
and philosophical foundations of AI, com-
puters in education, knowledge-based sys-
tems, neural networks, internet-based
autonomous agents, cognitive psychology,
and reasoning under uncertainty.

The University is situated in a 1000-acre
protected nature preserve bordering the
Escambia River, and is approximately 14
miles north of the country's finest white-
sand beaches. New Orleans is only 3 hours
away by car.

The successful applicant(s) will have a BS in
Computer Science with outstanding aca-
demic performance, a GRE score of at least
1400, and a strong interests in one or more
of the following areas: AI, cognitive science,
human/machine interaction, or any of sev-
eral other areas.
The Florida AI Graduate Student Fellowship
includes a tuition-waiver and a half-time
graduate research assistantship at the IHMC
while pursuing a MS in Computer Science.

Applicants should email <kford@ai.uwf.
edu> their vita and a letter of application to
Dr. Kenneth Ford, Director, Institute for
Human and Machine Cognition, University
of West Florida, Pensacola, FL 32514.




