
■ DERVISH won the Office Delivery event of the 1994
Robot Competition and Exhibition, held as part
of the Thirteenth National Conferennce on Arti-
ficial Intelligence. Although the contest required
DERVISH to navigate in an artificial office environ-
ment, the official goal of the contest was to push
the technology of robot navigation in real office
buildings with minimal domain information.
DERVISH navigates reliably using retractable
assumptions that simplify the planning problem.
In this article, we present a short description of
DERVISH’s hardware and low-level motion mod-
ules. We then discuss this assumptive system in
more detail.

The judges are ready, and DERVISH knows
its mission: Exit the room in which it
has been placed, navigate down the

artificial hallways to one of the goal room’s
two doors, and enter the goal room. DERVISH

begins by exiting the room. Turning to align
itself with the hallway, it begins to move
toward the near door of the goal room, which
is just a few feet in front. This run should be
easy, so the robot thinks. Oops! DERVISH sees a
hallway on its left and knows that the hall-
way is opposite the door. DERVISH must have
missed the door. DERVISH backs up to where
the door must be and searches back and forth
a few feet, looking for an opening. Finding
none, DERVISH decides that this door must be
closed; replans to the far door of the goal
room; and begins to move down the hallway
again, heading for the far door. Uh-oh! A
large object is in front, blocking the robot’s
path. DERVISH searches to find a way around
the object but to no avail; it must be a block-
ade, so DERVISH plans to use another hallway.
After successfully traveling to the other side
of the office building, DERVISH reaches the
final hallway, slowly but surely approaching

the far door. DERVISH reaches the door and
keeps going. The audience gasps in despair,
thinking for an instant that DERVISH has
missed the door, but DERVISH stops, backs up
to the door, and enters the room. The crowd
cheers.

So it was that DERVISH won the Office Deliv-
ery event of the 1994 Robot Competition and
Exhibition, held as part of the Thirteenth
National Conference on Artificial Intelligence
(AAAI-94). DERVISH was the only robot to suc-
cessfully complete this fourth and final trial. 

Although the contest required DERVISH to
navigate in an artificial office environment,
the official goal of the contest was much
broader: to push the technology of robot nav-
igation in real office buildings with minimal
domain information, such as a topological map
(a connectivity map that contains no distance
information) and approximate hallway and
doorway widths. We designed DERVISH with
this more ambitious goal in mind, and as a
result, DERVISH navigates well in real office
environments, including three separate office
buildings at Stanford University. 

To succeed, DERVISH must never become
unrecoverably lost despite its sensory and
effectory error. To this end, DERVISH maintains
its sense of position in the form of a state set
that contains all the states that the robot
believes are possible. This state set is progressed,
or updated, whenever the robot discerns a new
percept. DERVISH uses an assumptive system that
plans under the assumption that the robot is
in the most likely state in the state set. It then
executes the resultant path while it continual-
ly updates the state set until either the goal is
reached, or the current most likely state is no
longer on the path, at which point it replans.

In this article, we present a short descrip-
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at the height of the original ring and two
near the base of the robot to detect small
obstacles such as paper cups. Additional clus-
ters point left and right at 45-degree angles. A
final cluster, containing two sonars near the
base of the robot pointing upward, is able to
detect obstacles at any level, thereby prevent-
ing decapitation. A weakness of sonar is that
at small angles, a sonar’s sound wave reflects
off the surface without producing a return
echo; to minimize this effect, we vary the
angles of the sonars within each cluster. 

In addition to the sonar clusters, DERVISH

has a pair of sonars on each side, perpendicu-
lar to its direction of travel, and rotational
and translational encoders. These sensors are
essential to DERVISH’s ability to localize in hall-
ways because they facilitate the detection of
parallel walls and the computation of the
robot’s angle with respect to the walls (an
extremely useful parameter in an office envi-
ronment). Unlike most mobile robots but like
most humans, DERVISH has no sensors facing
backward.

DERVISH’s brain is an on-board MACINTOSH

POWERBOOK running Lisp that communicates
by serial link with the robot. A second on-
board POWERBOOK is dedicated to singing and
speech. We have found that using purely on-
board computation has two key advantages:
(1) commands to the robot are never lost
because of electromagnetic interference from
outside sources and (2) the robot’s range of
motion is not restricted by the range of a
radio modem. 

Low-Level Control
Equipped with its new sonar configuration,
DERVISH is capable of wandering aimlessly and
safely throughout an office building, but aim-
less wandering does not an office robot make.
According to the contest rules, the robot
begins in a known room at an unspecified
position and orientation within the room,
and its goal is to navigate to another room
whose identity is known in terms of the topo-
logical map. We decompose this problem into
three distinct tasks: (1) leaving the initial
room, (2) navigating through the hallways,
and (3) entering the goal room. 

The module for leaving the room is a wall-
following routine whose actions are predomi-
nantly determined by current sensor readings.
This module terminates when DERVISH either
detects that it has passed through a doorway
or later determines that it is moving in a long,
straight hallway. When the module termi-
nates, the robot can determine its position

tion of DERVISH’s hardware and low-level
motion modules. We then discuss state-set
progression and the assumptive-planning
mechanism in more detail. 

Hardware
Our original robot, a NOMAD 100, was
equipped with the traditional, planar, 16-
sonar ring. The problem with planar sensor
rings is that robots and office buildings are
not planar. Therefore, any robot with such a
sensor configuration is subject to both trip-
ping over short objects below the ring and
being decapitated by tall objects (for exam-
ple, ledges, shelves, and tables) above the
ring. We abandoned radial symmetry to cre-
ate the nontraditional sonar configuration
shown in figure 1. 

To detect obstacles, DERVISH uses four sepa-
rate sonar clusters. The largest cluster consists
of five sonars pointing straight ahead: three
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Figure 1. DERVISH.



and orientation by analyzing the topological
map because there is only one door to the
initial room, according to the contest rules. 

Later, when the robot finally reaches the
node just outside the goal room, the enter-
room module is called. This simple procedure
aligns the robot with the doorway and then
moves a prespecified distance into the room. 

The most complex module is the hallway
navigator, which moves the robot from its
current position to a specified hallway node
using a path given in terms of intersecting
hallways. As DERVISH moves down a hallway,
this module incorporates raw sensor data to
avoid obstacles in the robot’s path and to test
for the presence of closed doors, open doors,
and open hallways on either side. For exam-
ple, DERVISH detects closed doors as consistent
four-inch depressions in the wall. If DERVISH

detects any of these three features, it com-
bines it with the feature on the other side
(nothing if no feature was detected) to gener-
ate a percept pair. For a more detailed
description of the hallway navigator, see the
sidebar. 

The hallway navigator displays the ability
to execute a single abstract action to move
down the hallway while it detects multiple
percept pairs. Each percept pair allows
DERVISH to update its state set and then
choose the most likely new state as its newly
assumed current state. As long as this state
remains on the path being taken by the cur-
rent plan, execution of the path continues
uninterrupted. Control is relinquished only
if the robot reaches the goal or if the newly
assumed state is incompatible with the
current plan. 

In contrast to many roboticists, we believe
that current simulators are not sufficiently
accurate models of the real world to be of
value for the development of low-level
motion code; therefore, we developed and
tested these three modules exclusively in real
office buildings on the Stanford campus.
Every office building has characteristics that
are peculiar to the particular environment;
by testing in three separate office buildings,
we challenged the robustness of our solution.

Figure 2 depicts the interaction of these
three modules with both the state set and the
dictator, which is the higher-level component
responsible for planning and invoking the
motion modules. The arc from the hallway
navigator module to the dictator enumerates
the possible return conditions of the hallway
navigator, which the dictator uses to decide
whether to replan or transfer control to the
enter-room module. 

High-Level Control
Although the hallway navigator afforded
robust motion in several office buildings,
DERVISH made frequent mistakes recognizing
features in the real world. To navigate robust-
ly, DERVISH needed a higher level of control
that would take potential sensory errors into
account. We implemented such a system by
designing an abstract representation that
allowed DERVISH to associate certainty factors
with possible world states and interleave
planning and execution.

Abstraction
The real world is so finely grained that any
attempt to plan using a highly detailed model
of reality is doomed because of enormous
computational complexity. DERVISH avoids this
pitfall by reasoning about an abstraction of
the real world that is based on a quantization
of the world into a set of states; each state cor-
responds to a node on the topological map or
a hallway segment between two nodes. Figure
3 depicts the quantization of a hallway frag-
ment. The area encompassing a topological
node is labeled with a number, whereas the
area between two topological nodes is labeled
with a dashed number. The state set repre-
sents DERVISH’s positional uncertainty because
it captures all the actual positions at which
the robot believes it could be located. (We
assume no uncertainty about DERVISH’s orienta-
tion once it has left the initial room.) Associ-
ated with each state is a certainty factor, which
represents the relative likelihood of the robot
being in the corresponding state.

Note that the robot’s notion of state con-
sists only of information about its own loca-
tion. For example, the state does not contain
information about whether particular doors
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The following pseudocode and its explanation
describe in detail the execution of one leg of a
path, that is, the navigation down one hallway
to an intersection or doorway. The final para-
graph explains the logic that takes place in
between two path legs. Taken together, the
explanations describe the hallway navigator.

while (!Termination) { 
Hallway_Localize() 
Set_Velocity() 
if New_Percept() Update_State_Set() 
Termination = 
Discern_Termination_Condition()

} 

Hallway_Localize(): While it is moving down
the hallway, the robot establishes its sense of
position in the hallway by maintaining three
parameters: (1) distance to the left wall, (2) dis-
tance to the right wall, and (3) angle with
respect to the hallway. DERVISH’s unusual sonar
configuration greatly facilitates this task because
two sonars point directly at each wall and are
parallel to each other. The distances to the left
and right walls are updated using the robot’s
encoders if the current distances detected by
sonar differ from the expected values by more
than two inches.

Set_Velocity(): At each time step, the hallway
navigator must set the robot’s translational and
rotational velocities. The translational velocity
is determined simply by the amount of open
space in front of the robot. The rotational veloc-
ity involves combining several possibly compet-
ing objectives: (1) avoid obstacles, (2) remain
aligned with the hallway, and (3) stay a reason-
able distance from the walls. In addition, a gov-
ernor limits the angle of the robot with respect
to the hallway to be less than a certain thresh-
old (between 17 and 30 degrees depending on
the environment). The governor’s primary pur-
pose is to minimize the side sonars’ specular
reflection with hallway walls. If the governor
prevents the robot from navigating around a

large obstacle, the robot stops and makes an
explicit search to determine whether the obsta-
cle completely blocks its path. 

if New_Percept() Update_States(): As DERVISH

moves down the hallway, it continually
compares its side sonar readings with the
expected readings based on its projected hall-
way position. The expected readings are gener-
ally accurate within one or two inches, allowing
DERVISH to look for closed doors as consistent
four-inch depressions in a wall. Open doors and
hallways are defined as a string of sonar read-
ings that are consistently longer than expected.
DERVISH distinguishes between the two by mea-
suring the width of the opening using its trans-
lational encoders. Percepts from the left and the
right sides are combined into a percept pair,
which the robot uses to progress the state set.

Discern_Termination_Condition(): The loop
terminates (that is, the termination flag is set)
when any one of four termination conditions is
discerned:

First, in the At_Turn_Node termination condi-
tion, the robot has successfully reached the end
of a path leg.

Second, in the elsewhere termination condi-
tion, the robot is no longer on the path. (This
condition can occur either when the robot over-
shoots a turn or, more rarely, when it relocalizes
to another hallway.)

Third, in the blockade termination condition,
an obstacle completely blocks the robot’s path. 

Fourth, in the lost termination condition, the
state set has become empty (that is, there are no
possible states). This condition is extremely
rare.

If At_Turn_Node is discerned, the hallway
navigator aligns the robot with the new direc-
tion of travel for the next path leg, and the loop
begins again; if there are no more path legs to
be traversed, the hallway navigator returns
At_Doorway to the dictator. If one of the
remaining conditions is encountered, it is
immediately returned to the dictator. 
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mistakenly recognizing it as an open door is
0.10. For each new environment, we empiri-
cally generate a certainty matrix and deter-
mine the closed-door probability. Interesting-
ly, the success of state-set progression is not
dependent on precise values in the certainty
matrix. The certainty matrix for the Comput-
er Science Department is shown in Table 1. In
this example, the probability of any particu-
lar door being closed is 0.6. Entries in the
matrix can be zero, allowing the state set to
collapse when certain percepts are discerned;
however, robustness is limited because in the
real world, anything is possible. 

Now we can reexamine the earlier example
with a more realistic robot using this certain-
ty matrix. Once again, assume that the origi-
nal state set is {1-2, 2-3}. However, now, the
states have certainty factors of 1.0 and 0.2,
respectively. (Only the relative magnitudes of
certainty factors are important.) How will the
state-set progress if the robot simultaneously
detects an open hallway on its left and an
open door on its right? 

State 2-3 will progress potentially to states
3, 3-4, and 4. However, states 3 and 3-4 can
be eliminated because the likelihood of
detecting an open door when the actual fea-
ture is a wall is zero. The likelihood of being
in state 4 is the product of (1) the initial cer-
tainty factor for state 2-3, 0.2; (2) the likeli-
hood of not detecting anything at node 3;
and (3) the likelihood of detecting a hallway
on the left and a door on the right at node 4.

The second likelihood occurs only if
DERVISH fails to detect the door on its left at

are open or closed. Including more informa-
tion would help reduce positional uncertain-
ty over time but would also greatly increase
the size of the state set. Experimentally, we
have found that DERVISH performs well with-
out this additional information. 

State-Set Progression
As the robot moves down a hall, whenever it
discerns a percept pair, it updates the state set
by progressing each state based on the per-
cept pair and the current direction of travel.
Progression of a state involves removing it
from the state set and replacing it with all
possible subsequent states. 

For example, consider a robot with perfect
sensors facing east, with the initial state set
{1-2, 2-3} (figure 3). If this robot were to
detect a hallway on its left and a door on its
right, the percept pair would uniquely deter-
mine its position; that is, its state set would
be the singleton set {2}. Possible state 1-2
would progress to 2, but 2-3 would progress
to the empty set (that is, the percept pair is
impossible if the world state was 2-3). 

Of course, DERVISH does not have perfect
sensors; so, we augment state-set progression
with certainty factors that are computed
using a certainty matrix and the probability
of doors being closed. For each of the five
world features that the robot can encounter,
the certainty matrix assigns a likelihood that
each of the three possible percepts (or
nothing) will be detected. For example, using
the certainty matrix that follows, if DERVISH is
beside an open hallway, the likelihood of

1 1-2 2 3 3-4 42-3

N

Figure 3. The Quantization of a Hall.
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node 3 (either closed or open), [(0.6)(.4) + (1
− 0.6)(.05)], and correctly detects nothing on
its right, .70. 

The third likelihood occurs if DERVISH cor-
rectly identifies the open hallway on its left
at node 4, .90, and mistakes the right hallway
for an open door, .10. 

The final formula, (0.2)[(0.6)(0.4) +
(0.4)(0.05)](0.7)[(0.9)(0.1)], yields a certainty
factor of 0.003276 for state 4. 

State 1-2 will potentially progress to states
2, 2-3, 3, 3-4, and 4. Again, states 2-3, 3, and
3-4 can all be eliminated because the likeli-
hood of detecting an open door when a wall
is present is zero. The likelihood for state 2 is
the product of the initial certainty, (1.0); the
likelihood of detecting the door on its right
as an open door, [(0.6)(0) + (0.4)(0.9)]; and
the likelihood of correctly detecting an open
hallway on its left, 0.9. The certainty factor
for being at state 2 is then (1.0)(0.4)(0.9)(0.9)
= 0.324. In addition, 1-2 will progress to state
4 with a certainty factor of 4.259 × 10–6,
which is added to the certainty factor in the
preceding paragraph to bring the total for
state 4 to 0.00328. DERVISH would then believe
strongly that it is in state 2 but retain the
remote possibility that it is in state 4. 

Assumptive Planning
Given our state-set representation, a tradi-
tional approach to planning would be to con-
duct an exhaustive search in the state-set
transition diagram to create a full conditional
plan that would prescribe action sequences
for every possible series of perceptual input.
Unfortunately, the cost of complete condi-
tional planning is prohibitive for real-world
robot navigation. Some roboticists bypass this

problem by forgoing planning altogether,
using entirely reactive systems (Slack 1993;
Brooks 1986). Still others plan once and then
execute the plan steps using reactive compo-
nents (Gat 1992; Nilsson 1992). Our solution,
however, addresses uncertainty by allowing
for multiple planning instances, effectively
interleaving planning and execution (Gene-
sereth and Nourbakhsh 1993; Olawsky, Krebs-
back, and Gini 1993; Hsu 1990). In our
assumptive-planning strategy, DERVISH plans
by assuming that it is in the most likely state
in its initial state set, then finding a sequen-
tial solution to the goal. Then, DERVISH exe-
cutes the plan while it progresses its state set
until the current most likely state either is at
the goal or is inconsistent with the path. 

To understand our motivation for this
approach, consider an analogy to the way a
human with a car might navigate to a goal.
First, he/she will use an internal map to con-
struct a (possibly partial) path to the goal,
represented as a series of intersecting roads.
Then, he/she will drive along each road and
turn at each appropriate intersection until
he/she reaches the destination. 

Now let’s examine the driver’s thinking
process more closely during the drive down a
particular road. He/she does not waste time
trying to determine the car’s precise location
along the road at every instant; he/she is sat-
isfied with a rough idea of position and the
knowledge that the car is still headed in the
correct direction (that is, making progress
toward the goal). 

What happens if the driver sees a street
sign? If it is an unfamiliar street, he/she sim-
ply continues driving. Although he/she is
familiar with the street, he/she will update

Closed Open Open 
Wall Door Door Hallway Foyer

Nothing detected .70 .40 .05 .001 .30

Closed door detected .30 .60 0 0 .05 

Open door detected 0 0 .90 .10 .15 

Open hallway detected 0 0 .001 .90 .50

Table 1. Certainty Matrix for the Computer Science Department at Stanford University.



his/her sense of position. The act of driving is
not interrupted as long as the driver believes
that he/she is making progress toward the
goal, even if he/she cannot remember passing
a familiar grocery store. However, if the sign
convinces the driver that his/her assumption
about his/her current location is wrong,
he/she will replan. This replanning can occur
if the driver overshot a turn or is not on the
assumed road, perhaps because of an earlier
wrong turn. 

This analogy is almost identical to DERVISH’s
thought process. Because the robot knows its
initial and final locations and has a map of
the world, it constructs only one path to the
goal and begins to traverse this path. When-
ever DERVISH detects a percept, it looks at the
topological map to determine its most likely
position. As long as this new state corre-
sponds to a node along the path, it continues
execution without interruption, even if it
missed some earlier expected percepts. DERVISH

stops and replans when it is no longer on the
path because it either has overshot the turn
or is actually on a different hallway than pre-
viously assumed. 

DERVISH is extremely robust, in part because
state-set progression prevents the robot from
becoming lost as a result of false percepts. A
false or missing percept can cause DERVISH to
temporarily assume the wrong state, but the
correct state is retained in the state set and
becomes the most likely state after one or
more correctly detected percepts. In practice,
DERVISH is often off by one or two nodes when
it is moving down the hallway because its
sensors are unreliable. 

Why does this method work so well? The
robot’s positional uncertainty is almost
always limited to the particular hallway in
which it is located. In addition, because of
the reliability of the hallway detector, the
robot quickly detects when it has overshot a
turn. Therefore, the current action, which is
to move forward, usually moves the robot
toward the goal. This action typically termi-
nates in two situations: (1) when the robot
reaches an intersection and (2) when the
robot believes it is just outside the goal room.
The first situation rarely results in an incor-
rect subsequent plan because the reliability of
the open hallway detector tends to condense
the state set at intersections. In the other situ-
ation, the robot examines the state set to see
if the second most-probable state is also high-
ly likely. If so, the robot proceeds to the end
of the hallway to collapse its state set and
then returns to the goal door. 

The most convincing argument against

using full state-set conditional planning is its
extremely high computational overhead.
Whereas an assumptive planner must search
O(ak) states, a conditional planner must
search O(akpk) states, where there are a possi-
ble actions and p possible percepts, and the
plan length is k. Because we have 4 actions,
our planner must search 410 states for a 10-
step plan. For the same plan length, because
we have 15 percepts, a conditional planner
would be required to search 4101510 = 6010

states, which is an increase of more than 11
orders of magnitude. For a detailed descrip-
tion of conditional planning, interleaved
planning, and execution and their respective
costs, see Genesereth and Nourbakhsh (1993). 

There are, of course, disadvantages to
assumptive planning. First, if the world is
dangerous (for example, if it contains staircas-
es), then, clearly, the assumptive approach
can be deadly. More precisely, assumptive
planning is dangerous any time the robot can
take an irreversible action before realizing
that its assumption is wrong; one partial solu-
tion is to modify the path planner to avoid
dangerous regions. Another serious disadvan-
tage is that an assumptive system usually can-
not guarantee an upper bound on the execu-
tion-path length. Of course, in a real world
with imperfect sensors and effectors, full con-
ditional planning is usually unable to make
any reachability guarantee either. In practice,
assumptive planning produces near-optimal
execution lengths if the initial assumption is
correct and if replanning is rare (that is, if the
sensors operate reasonably well). 

Conclusion
DERVISH navigates well in spite of incomplete
knowledge about the environment because it
maintains a state set that explicitly captures
its uncertainty and because it can retract its
assumptions if they are found to be invalid.
One current weakness is that our state set
does not actually capture all the information
DERVISH has available from the world. A more
complete approach should incorporate metric
information as well as the state of previously
observed doors. 

Another weakness is that DERVISH is unable
to question many of its assumptions. A truly
powerful robot navigator should be able to
retract assumptions at multiple levels of
abstraction; for example, DERVISH ought to be
able to question not only its position but also
the values of the certainty matrix, the stated
width of doorways, the integrity of the topo-
logical map, and so on. 
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Although DERVISH’s assumptive planner
works well in general, in some environments,
actions can have irreversible consequences.
One way to address this shortcoming is to
create a hybrid system that combines
assumptive planning with an analysis of the
state space to avoid dangerous action
sequences. 

DERVISH’s sonar configuration allows it to
perform well in office buildings. However,
sonars suffer from both an array of inherent
weaknesses and a lack of richness. The next
step in our research agenda is the Bookstore
Project, which will combine the assumptive
planning system with purely vision-based
sensors that provide a more complete picture
of the world. We plan to design a system that
can navigate the Stanford campus, coexisting
with high-speed bicyclists and curious
tourists and crossing a busy campus to fetch
books from the Stanford Bookstore. 
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