
■ This article discusses the use of fast (60 frames per
second) object tracking using the COGNACHROME

VISION SYSTEM, produced by Newton Research Labs.
The authors embedded the vision system in a
small robot base to tie for first place in the Clean
Up the Tennis Court event at the 1996 Annual
AAAI Mobile Robot Competition and Exhibition,
held as part of the Thirteenth National Confer-
ence on Artificial Intelligence. Of particular inter-
est is that the authors’ entry was the only robot
capable of using a gripper to capture and pick up
the motorized, randomly moving squiggle ball.
Other examples of robotic systems using fast
vision tracking are also presented, such as a robot
arm capable of catching thrown objects and the
soccer-playing robot team that won the 1996
Micro Robot World Cup Soccer Tournament in
Taejon, Korea.

The place was the 1996 Annual AAAI
Mobile Robot Competition and Exhibi-
tion, held as part of the Thirteenth

National Conference on Artificial Intelligence
(AAAI-96) in Portland, Oregon. The goal was
to demonstrate a robot that autonomously
collects 15 tennis balls and 2 quickly and ran-
domly moving, self-powered squiggle balls
and delivers them to a holding pen within
the allotted time.

Our robot covers less than a square foot
(.09 m2) of floor space, has a gripper slightly
larger than a single ball, and has a high-per-
formance vision system. It collected all the
balls and received a perfect score for the event
(figure 1). We attribute most of our success to
the COGNACHROME VISION SYSTEM, a portable,
high-performance system capable of very fast
(60 frames per second) tracking of many
objects that are distinguished by color (see
http://www.newtonlabs.com/cognachrome/).
Our perfect score tied us for first place with
another team, led by Sebastian Thrun of
Carnegie Mellon University, whose robot also
used the COGNACHROME VISION SYSTEM.

The Robot Hardware
The prototype robot we used for this contest
is named M1 (figure 2). M1’s basic frame is
constructed from stock aluminum extrusion
to form an open cage 61⁄2” by 8” by 21⁄2” high.
Connected to this frame are two driven
wheels (forming a simple, differential drive); a
caster wheel; eight infrared proximity sensors;
eight contact sensors; a gripper; batteries; a
small video camera; and the vision system,
which also serves as the robot’s controller.

Sensors
Sensors on the robot fall into three categories:
(1) vision, (2) infrared (IR) obstacle detection,
and (3) contact. 

Fast Vision Tracking with the COG-
NACHROME VISION SYSTEM The robot’s pri-
mary sensor is the Newton Research Labs COG-
NACHROME VISION SYSTEM (figure 3). This system
allows very fast (60 frames per second), accu-
rate tracking of many objects that are distin-
guished by color. Tracking by color is a natu-
ral for this contest: The tennis balls are bright
yellow, and the squiggle ball is red. We mark
our goal area with a blue square. For our
robot, fast position data are instrumental for
quickly and accurately servoing to follow and
capture the moving squiggle ball with a grip-
per that is only marginally bigger than the
ball itself. M1 uses a small camera with a wide-
angle lens mounted on a single stepper motor
to permit camera tilt. Camera pan was provid-
ed by pivoting the robot itself.

Infrared Obstacle Detection    To assist in
object or wall avoidance, an array of narrow-
beam IR light-emitting diodes (LEDs) are driv-
en one at a time with a modulation of 40 kilo-
hertz (kHz) (figure 4). The reflected IR light is
detected with a pair of standard IR remote-
control detection modules (Sharp GP1U52X or
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large objects, such as walls, by seeing how
many of the directions appear to have obsta-
cles. The more directions that appear to have
an obstacle, the closer the obstacle probably
is. A fairly robust wall-following behavior was
constructed using only these sensors.

Contact Sensors   Contact sensors around
the periphery of the basic frame detect for-
ward, side, and reverse contact (six bits). In
addition, contact sensors are placed on the
gripper (two bits) because the gripper is the
forwardmost component of the robot. The
robot also uses the gripper contact sensors to
detect and align with the gate before drop-
ping a ball in the goal area.

Actuators and Power
M1 uses a two-wheel differential drive, con-
sisting of a pair of NEMA 23 frame-stepper
motors rated at 6.0 volt (V), 1.0 amp, con-
nected independently to the drive wheels
with a toothed belt and sprocket combina-
tion (figure 5). A third, unpowered caster
wheel completes the basic chassis.

An SGS-Thomson L297/L298 stepper motor
bipolar chopper drive powers the NEMA 23
motors, with the current limit set to 300 mil-
liampere (ma). Even with this low–current-
limit setting, steep accelerations and decelera-
tions are possible. The battery system supplies
30V with a storage capacity of 600 mA-hour
to the chopper drive, which results in an
upper-limit step rate in excess of 6000 half
steps a second. Using stepper motors allows
accurate drive control, and this particular
implementation appears to result in good
performance and low power consumption at
both low and high speeds.

A multiple-output switcher-based power
supply provides 5V and 12V for the electronic
subsystems. An additional 5V linear regulator
is connected to the 12V switcher to provide
power to more ripple-sensitive, but lower-
power demand, electronics. M1 uses a switch-
ing power supply because its efficiency helps
to lower power consumption and increase
battery life. 

A small gripper is mounted on the front of
the robot (figure 6). To capture and keep the
self-propelled squiggle ball, a gripper needs to
be fast and keep a firm grip (otherwise, the
squiggle ball wiggles free). Grasping and
holding a tennis ball is comparatively easy.
To simplify both construction and operation,
the gripper is built with a single activating
motor, a standard model aircraft servo motor.
The single motor actuates both the grasp and
lift actions in sequence—the lift only hap-
pens once the gripper has closed on the

equivalent). The directions of the eight LEDs
are distributed on a horizontal plane over the
forward 180 degrees, with the two IR detectors
facing the two forward quadrants. Each LED is
fired in turn, and the resulting detector data
are latched, providing eight bits in parallel
(one bit each direction) to the controlling pro-
cessor. This system provides reliable obstacle
detection in the 8- to 12-inch (20–30 centime-
ter [cm]) range. Although the system provides
only yes-no information about obstacles in
the eight directions around the front half of
the robot, in fact, crude distance measure-
ments can be made between the robot and
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Figure 1. M1 Carries a Tennis Ball during Its Winning Run at the 1996
Annual AAAI Mobile Robot Competition and Exhibition.



object, regardless of the size of the object (the
tennis balls and squiggle balls are different
sizes). This dual actuation is accomplished by
attaching the motor’s pull point such that the
grasp action is favored over the lift action.
Once the grasp tightens on the ball, contin-
ued motor action lifts the ball (figure 7).

The Robot Software
In many applications, the COGNACHROME VISION

SYSTEM outputs its tracking data to another
central processing unit. However, for this
robot, we decided to interface the robot sen-
sors and actuators to spare input-output on
the vision board and write our control soft-
ware on the vision board itself. We wrote a
fairly simple, reactive controller for our robot.

Reactive High-Level Control
With the hard part (the vision tracking)
already taken care of by the vision system’s
built-in functions, we spent several weeks
(including a few days at the last minute at
AAAI-96) writing and testing a simple, reac-
tive control system.

The control system has four basic states:
(1) find and approach ball, (2) lift ball, (3)
find and approach goal, and (4) drop ball.
Each state has several substates, as shown in
figure 8.

Substates of Interest  Two substates of
interest are approach ball and follow wall.

Approach ball: Approach ball is active
when a ball is seen in the Find and Approach
Ball state, and the ball isn’t already within
gripper grasping range. If more than one ball
is seen, the closest ball is generally chosen,
with some hysteresis to prevent oscillation
between two balls of similar distance.

M1 must approach a ball in such a way that
it enters the gripper area from the front. If the
ball is directly to the left or right of the grip-
per, M1 backs up until the ball clears the grip-
per’s side. Otherwise, M1 approaches the ball
with a simple feedback loop: Set M1’s rotation-
al velocity to be proportional to the angle
required to bring the ball directly in front of
M1. If the ball is close enough to being directly
in front of M1, move forward with a velocity
inversely proportional to some function of the
angle error.

Follow Wall (in Find and Approach Ball):
While the follow-wall substate in the Find and
Approach Ball state is active, M1 will stop and
pivot back and forth at a certain period. (Dur-
ing the first half of the contest, M1 pivots every
12 seconds, and during the second half, M1
pivots every 6 seconds.) The purpose of the

wall follow is to help guarantee that the entire
region is searched. However, in larger rooms,
following the wall isn’t adequate enough to
search the entire room. The pivot behavior
forces M1 to look toward the center of the
room every so often, extending the distance
from the wall at which balls can be seen.

Although it isn’t shown in the diagram,
each of the four states has special time-outs
to try to detect if the robot isn’t making
progress. In this case, the robot might stop
and then start again (in case a stepper motor

Articles

SPRING 1997   67

Figure 2. Our Robot, M1.

Figure 3. The COGNACHROME VISION SYSTEM.



had stalled) or might back up (in case the
robot had somehow gotten itself into a tangle
of some sort). 

Camera Calibration
M1 uses the vision system to detect balls on
the floor and the blue marking on the gate.
Given the location of a ball in the field of
view and the assumption that the ball is on
the floor, M1 can compute the position of the
ball relative to the robot.

M1 uses a fairly wide-angle lens (about 90
degrees). Such a lens results in a pronounced
fish-eye effect. Typically, we make the simpli-
fying assumption that the (x,y) coordinates
returned from the vision system map linearly
onto a virtual plane that is perpendicular to
the axis of the camera. However, for this
application, we decided we needed more
accuracy. (Given that we find ball positions
by computing the intersection of the floor
with a line from the camera and that the
camera is fairly close to the floor, small angle
errors can lead to large position errors.)

Therefore, we needed to calibrate the cam-
era. That is, we wanted a function that takes
(x,y) coordinates from the vision system and
returns coordinates in a physical coordinate
system we could deal with. (We actually use
spherical coordinates rather than planar.) We
started to deduce the proper mathematical
form of the function describing this mapping
for the particular wide-angle lens we used but
found it was easier (and more accurate) to
just use least squares fits to create two bivari-
ate quadratics (where the variables are the x
and y coordinates), one for the horizontal
angle and one for the vertical angle.

To generate the calibration data for the
least squares fit, we set up a vision target a
distance away from the robot. We then had
the robot pivot from side to side and rotate
the camera up and down in a predefined grid
pattern, recording the (x,y) coordinates of the
target given by the vision system at each step.
(The target was far enough away to allow the
simplifying assumption that the camera did
not change position, only orientation, de-
spite the fact that the camera was not on the
robot’s pivoting axis.)

This method of gathering the data worked
well because of our precise control of the
robot’s position and camera angle (made pos-
sible in part by using stepper motors).

Low-Level Motor Control
M1 uses stepper motors to drive its wheels.
One problem with stepper motors is that if
you try to run them past their limits (run
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Figure 4. M1’s Right Half Infrared Sensor Array.

Figure 5. M1’s Drive Train.

Figure 6. M1’s Gripper.



them too fast or accelerate or decelerate too
quickly), they stall. M1 has no stall-detection
sensors. M1 does have stall-recovery behaviors
in place (that is, if the control software
decides that no progress has been made for
long enough, it will slow to a stop, which
recovers from the stall), but it is much better
to avoid stalls in the first place.

For this reason, there is a layer of software
between the high-level control and the motors.
Whenever the high-level control software com-
mands a speed, the low level smoothly acceler-
ates or decelerates to this speed, within the
safety parameters of the motors.

Other Applications for 
Fast Vision Tracking

Making a winning entry for the Clean Up the
Tennis Court event was made much easier by
having a vision system that was capable of
quickly tracking targets of interest. We believe
that fast vision tracking has the potential to
help many other applications as well. Includ-
ed here are an assortment of projects for
which the COGNACHROME VISION SYSTEM is cur-
rently used. 

Playing Robot Soccer
We entered (and won) the first International
Micro Robot World Cup Soccer Tournament
(MIROSOT) held by the Korea Advanced
Institute of Science and Technology in Tae-
jon, Korea, in November 1996 (figure 9) (Sar-
gent et al. 1996). We used the COGNACHROME

VISION SYSTEM to track our three robots (posi-
tion and orientation), the soccer ball, and the
three opposing robots. The 60-Hz update rate
from the vision system was instrumental in
our success; other teams obtained robot and
ball position data in the 2- to 10-Hz range.
Our robots could literally run circles around
their opponents. 

Because of the small size of the robots
(each fit into a cube 7.5 cm on a side), we
opted for a single vision system connected to
a camera facing down on the field instead of
a vision system in each robot. (In fact, the
rules of the contest required markings on the
top of the robot that encouraged off-board
vision; all but one of the teams likewise used
a single camera above the playing field. The
odd team out decided not to use vision at all,
which severely limited its capability.)

Please see http://www.newtonlabs.com/soc-
cer for video footage, stills, and technical
information about our entry. The MIROSOT
organizers’ site, http://www.mirosot.org,
describes the contest.
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Figure 7. Sequence of M1 Picking Up a Tennis Ball.



Catching Balls and Paper Airplanes
Two COGNACHROME VISION SYSTEMs (Hong 1995;
Hong and Slotine 1995) were integrated in
the new version of the Adaptive Robot-Catch-
ing Project led by Jean-Jacques Slotine of the
Massachusetts Institute of Technology (MIT).
The project uses an advanced manipulator
and fast-eye gimbals developed under Ken-
neth Salisbury of the MIT AI Lab.

Using two-dimensional stereo data from a
pair of COGNACHROME VISION SYSTEMs, they pre-
dict the three-dimensional trajectory of an
object in flight and control their fast robot
arm (the whole-arm manipulator [WAM]) to
intercept and grasp the object. (Please see
http://www.ai.mit.edu/projects/wam/index.ht
ml#S2.2 for more information and anima-
tions of the arm catching various objects).

Performance Robotics
Performance artist and roboticist Barry Werg-
er creates performance robotics pieces using
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Figure 8. Detailed State Diagram for High-Level Control of M1.

Figure 9. FORCE, MASS (the Goalie), and ACCELERATION are Three Members of
the Newton Labs World Champion Robot Soccer Team.

In the foreground is the soccer ball (actually an orange golf ball).



Pioneer mobile robots equipped with the
COGNACHROME VISION SYSTEM (Please see www.
activmedia.com/RealWorld/ for more infor-
mation. RWI resells the COGNACHROME VISION

SYSTEM as the FAST TRACK vision system). By
providing the robot and human players with
appropriately colored tags, the robots can
interact with each other, and humans, at a
distance in a theatrically interesting way.
Please see www.cs.brandeis.edu/~barry/perfor-
mance.html for more information (including
information about future performances.)

Group Behavior and 
ocial Interaction of Robots
Maja Mataric, Werger, Dani Goldberg, and
Francois Michaud at the Volen Center for
Complex Systems at Brandeis University
study group behavior and social interaction
of robots (please see http://www.cs.brandeis.
edu/~agents/projects.html and http://www.
cs.brandeis.edu/~barry/research.html for
more information). Along with other robots,
they use Pioneer mobile robots outfitted with
COGNACHROME VISION SYSTEMs. 

In conjunction with shorter-range, or less
specific, sensors, such as sonar, the Pioneers use
color-based tracking to help recognize other
robots, obstacles, and goals. Werger says:

I have combined these two [vision-based
long-range obstacle avoidance and vi-
sion-based following of intermittently
blocked objects] to address some of the
problems we have in our mixed robot
environment. ...that is, the Pioneers are
faster and bigger than our other, more
fragile robots; the long range avoidance
allows them to keep a safe distance from
other robots, even in fairly dynamic
environments, when following a dynam-
ic target. The vision allows us to make
these distinctions very easily, which the
sonar does not [private communication,
22 November 1996, with R. Sargent].

Autonomous Docking of Spacecraft
The University of Maryland (UMD) Space Sys-
tems Laboratory and the KISS Institute for
Practical Robotics have simulated auton-
omous spacecraft docking in a neutral buoy-
ancy tank for inclusion on the UMD Ranger
space vehicle (figure 10). Using a composite
target of three brightly colored objects
designed by David P. Miller (Miller and
Wright 1995), the spacecraft knows its dis-
tance and orientation and can servo to arbi-
trary positions around the target (figure 11).
(See http://www.kipr.org/robots/scamp.html
for more information and pictures.)
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Figure 10. The SCAMP Underwater Vehicle Positions Itself 
Relative to the Target.

Figure 11. The Target Is Composed of Three Parts: 
L, C, and R (left, center, and right).

X is the position of the camera. Note that θ is measured in the plane of LRX,
not LRC.

Relationships yielding the 3-dimensional position of the robot relative to the
target, given the 2-dimensional positions (in camera space) of the three target
elements as viewed from the robot.  xl, yl, xc, yc, xr, yr are the positions, in cam-
era space, of the left, center, and right targets, respectively, as viewed from the
robot. 
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Conclusions
We have found through the AAAI competi-
tion, as well as many other applications, that
a fast vision tracking system can be a useful
sensor for robotic systems. For this particular
contest, fast vision tracking worked especially
well. The data from the vision system were
appropriate for the problem at hand and
allowed us to use a simple reactive system for
control. The vision system’s fast update rate
was crucial in being able to follow and catch
the squiggle ball. We look forward to future
opportunities to apply fast vision tracking to
other problems.
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