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Is Robot Learning
a New Subfield?
The Robolearn-96 Workshop

Henry Hexmoor, Lisa Meeden, and Robin R. Murphy

Learning takes place when the
system makes changes to its in-
ternal structure so as to improve
some metric on its long-term fu-
ture performance, as measured
by a fixed standard (Russell 1991,
p. 141).

Let us take “learning” to mean,
roughly, the improvement of a
system’s behavior by making it
more appropriate for the envi-
ronment in which it is embedded
(Kaelbling 1993, p. 3).

Ithough both definitions given
Ahere, offered by Stuart Russell
and Leslie Kaelbling, describe
learning as an improvement in exter-
nal performance, they differ in how
this improvement is measured. Rather
than employing a fixed standard, for
Kaelbling, learning is evaluated by
how appropriate the resulting behav-
ior is for a particular environment.
This focus on the situatedness of the
learning system being embedded in its
environment reflects the recent expe-
rience gained by much direct experi-
mentation with physical robots.
Learning to control a physical robot
has proved to be a challenge because of
the unpredictableness of the real world
coupled with the inaccuracies inherent
in physical sensors and actuators. The
recent Robolearn-96 Workshop! (Hex-
moor and Meeden 1996) focused on
learning as it is applied to real robots to
try to examine why successful learning
algorithms from the machine-learning
tradition do not seem to translate well
to robot-learning domains.
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This article is a position paper on
the role of robot learning relative to
other disciplines. Our discussion re-
flects the sentiments expressed at the
Robolearn-96 Workshop on this topic.
Robot learning is most closely related
to the fields of machine learning and
robotics but also encompasses aspects
of Al and various social sciences such
as cognitive psychology. We believe
that robot learning is not a proper
subset of any of these current fields. A

I

This article posits the idea of robot learning
as a new subfield. The results of the
Robolearn-96 Workshop provide evidence
that learning in modern robotics is distinct
from traditional machine learning. The ar-
ticle examines the role of robotics in the
social and natural sciences and the poten-
tial impact of learning on robotics, gener-
ating both a continuum of research issues
and a description of the divergent termi-
nology, target domains, and standards of
proof associated with robot learning. The
article argues that although robot learning
is a new subfield, there is significant poten-
tial for synergy with traditional machine
learning if the differences in research cul-
tures can be overcome.

fundamental question we address is,
Why is robot learning a distinct field
of research?

The first section describes the role
that robotics can play in the social
and natural sciences. The second sec-
tion clarifies the distinctions between
robotics and robot learning, suggest-
ing that they represent extremes on a
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continuum of domain knowledge.
The third section argues that the ma-
chine-learning and robotics commu-
nities reflect different cultures, target
domains, terminology, and accept-
able proofs that result in a de facto
separation. The unique constraints
placed on representation by robot
learning are characterized in the
fourth section. Finally, we close with
some concluding remarks.

Robotics in the Social and
Natural Sciences

Robotics is the study and practice of
building robots, but robots can be use-
ful beyond their specific applications
within robotics. Robots are general
tools that can profitably be used by
many other disciplines, including psy-
chology and biology. Building robots
helps us think about the workings of
biological systems. For example, from
the mechanics of robots, we can learn
about the mechanics of limbs, power
transfer, and locomotion; from the or-
ganization of robot software and hard-
ware components, we can learn about
the biological circuitry of sensing and
acting; from path planning and navi-
gation, we can learn about search
strategies; from the endowing of
agents with mental attributes such as
goals, desires, and feelings, we can
better understand aspects of cogni-
tion, awareness, and emotions; and
from group behavior among robots,
we can learn about dynamics of coop-
eration, communication, coordina-
tion, and other social interactions.
Just as the development of pumps ul-
timately made it possible to under-
stand the working of the heart, robots
are technologically anchored systems
that might one day help us under-
stand the working of biological sys-
tems (Michie, Ambler, and Ross 1974).

Although robots can be useful tools
for gaining an understanding of bio-
logical systems, they should not be
seen as merely tools. Robots are inter-
esting models in their own right. Just
as airplanes are their own best models
of mechanical flight and not of bio-
logical flight, robots are important
models for exploring control behav-
iors and learning in machines.
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Figure 1. The Continuum of Domain Knowledge for Robot Learning.

Robotics Versus
Robot Learning

As our mobile robots become
more and more complex and as
we attempt to make them more
sophisticated, perhaps by incor-
porating more sensors for greater
perceptual acuity or by adding
more actuators for finer dexteri-
ty, the software can become
severely strained in trying to deal
with so many inputs and out-
puts. One area of research is to
investigate how, when, and
where learning algorithms can be
incorporated into a robot’s
intelligence system to alleviate
the programmer’s burden (Jones
and Flynn 1993, p. 272).

As the quote suggests, for the typi-
cal roboticist, learning is incorporated
into the control system only when en-
gineering a solution becomes too com-
plex. Roboticists tend to strive for ad-
vances in hardware and software to
solve robotics problems because this
route to success is still more direct
than the use of learning. In contrast,
advocates of robot learning predict
that eventually, the human designer
will be the bottleneck in the design
process of robotics systems. Thus,
even though learning is currently a
less efficient mechanism for building a
robot control system, it is crucial to
begin examining ways to improve its
effectiveness now.

Robots are being developed for a
wide variety of purposes: from indus-
trial robots that are designed for repet-
itive tasks in highly structured envi-
ronments to mobile office robots that
are designed to interact with humans
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in a more natural, open-ended setting.
The engineering approach is well suit-
ed to the clearly defined tasks of a fac-
tory robot working on an assembly
line, but as we push toward more au-
tonomous robots, the tasks become in-
creasingly less defined, and the ability
of a robot to adapt becomes essential.
Robot learning can mean varying de-
grees of change to internal structure
and external behavior. It is difficult to
catalog all the different types of learn-
ing, but briefly they might include (1)
changing values of parameters in feed-
back loops, (2) building topological
models, (3) developing fine-grained
perceptual or motor skills, (4) encod-
ing successful routine associations be-
tween sensing and acting, (5) acquir-
ing new concepts, and (6) learning
architectural features such as coordi-
nations and concurrency.

Figure 1 depicts a continuum of
knowledge. In one extreme, the robots
have complete domain knowledge.
Such a robot is an engineered artifact,
and no learning is necessary. Near this
extreme are examples of robots with
missing parameter values, which are
engineered systems containing control
modules that lack optimal values for
their parameters. Most of the research
presented at the Robolearn-96 Work-
shop fell near this end of the continu-
um. Many of the presenters argued
that to construct a successful system,
learning must be limited in use to por-
tions of the system where the design-
er's knowledge is too incomplete to en-
gineer a solution. Learning from
scratch is too inefficient for any prob-
lem of reasonable complexity. There-
fore, starting with no domain knowl-
edge, the other extreme on the
continuum, was viewed as impractical.

Although beginning with a signifi-
cant amount of domain knowledge is
certainly more practical, there can be a
disadvantage. In a sense, these systems
are given an encoded version of the
possible sensory input. Chris Atkeson
(Georgia Institute of Technology), the
keynote speaker at the workshop,
pointed out that the more interesting
systems are those that discover the ap-
propriate input and output for their
tasks. These systems determine the rel-
evance of sensory information to
tasks, synthesize this sensory informa-
tion, and compose behaviors without
ever being explicitly programmed for
such interactions.

Machine Learning
and Robot Learning:
A Comparison and
Search for Synergy

An objective of the robot-learning
community is to exploit the natural
synergy between machine learning
and robotics. Machine learning sup-
plies roboticists with valuable, robust
tools, but roboticists provide feedback
from situated-agent applications. Ini-
tially, it seemed feasible to simply do
machine learning using robots. How-
ever, the biggest impediment to syner-
gy is the different research cultures.
The differences between machine
learning and robotics reflect the im-
plicit assumptions associated with
their historical traditions. As a result,
machine learning and robot learning
have become nearly as separate as clas-
sical and reactive planning; both are
subfields of Al but have divergent ter-
minology, target domains, and stan-
dards of proof.



Machine learning grew out of a
need to build robust computer pro-
grams that learned a search path, a
game strategy, or a category. These
programs were useful in recording par-
tial paths and successful strategies in
domains that were fully specified.
Time was never a concern. Practically
infinite amounts of training examples
were provided. The training data were
usually unambiguous, ignoring the re-
alities of sensor-based observations:
noise, uncertainty, ambiguity, quality,
and contributions of nonhomoge-
neous sensors. The only requirement
was a before-and-after run of the pro-
gram that showed an improvement in
search time or strategy. In retrospect,
the machine-learning community ap-
pears to have tended toward methods
that act as disembodied software agents:
independent subsystems that do not
have to interact directly with other
agents, can learn offline, and could be
assumed to function in a closed world.

The autonomous robot culture,
however, was always first and fore-
most in the situated-agent tradition. In
this tradition, the robot is viewed as
a physical agent expected to function
robustly in a world too large to ex-
plicitly model. It must operate in real
time to be successful, and because of
limited resources (time limits, energy,
computation, and so on), it might
not be able to collect or process large
training sets. Learning almost always
must be done online to be useful; for
example, consider learning to walk
(Mark Pendrith and Malcolm Ryan
[both of University of New South
Wales]), Andrija Kun and W. Thomas
Miller [both of University of New
Hampshire]), refining behaviors (Tae-
Hoon Choi, Eunbin Yim, and Keith
Doty [all of University of Florida]),
and navigating (Minoru Asada and
Takayuki Nakamura [both of Osaka
University]). The situated-agent tra-
dition offers some advantages for
learning, including being able to test
the sufficiency of learning directly
and immediately (Robin Murphy
[Colorado School of Mines] and Mar-
cel Schoppers [Robotics Research
Harvesting]) and continuing learning
if needed.

Another attribute that distinguishes
robot learning from traditional ma-

chine learning is the role of the hu-
man supervisor. In robotics, semiau-
tonomous control is common; the hu-
man can assume control of the robot
to perform a task beyond the robot’s
capabilities, such as obstacle avoid-
ance (Noel Sharkey, Jan Heemkerk,
and John Neary [all of University of
Sheffield). This provides the robot
with the opportunity to learn by direct
observation of the process as well as by
the result. Humans can also provide
assistance, as seen by the dialog-based
map acquisition of Hideki Asoh,
Yoichi Motomura, Hara, Akaho,
Hayamizu, and Toshi Matsui (all of
Electrotechnical Laboratory, Japan).
In some regards, the machine-learn-
ing and robotics traditions represent
two different paradigms: bottom up
and top down. By and large, the focus
of the machine-learning community
has been on taking specific instances
and generalizing them into rules,
models, and so on, for one applica-
tion. For example, an artificial neural
network for learning to recognize En-
glish spoken by a U.S. native can be
implemented and trained separately
from one learning to recognize En-
glish spoken with a British accent. A
recent research trend in machine
learning is transfer, which attempts to
transfer what has been learned in one
domain to another. Note that this is a
bottom-up approach: First, learn a spe-
cific domain, then try to find the com-
mon elements with a new application.
The needs of robotic learning in prac-
tice have tended to concentrate on us-
ing general strategies to learn specific
instances. This is more of a top-down
approach, where a general strategy ex-
ists but is tailored to the context of
each new application. For example,
the objective of Sven Koenig and Reid
Simmons (both of Carnegie Mellon
University) is to put a brand-new
robot with general office-navigational
capabilities in a new building and
have it learn the particulars of its office
building. The map-and-place learning
systems of Murphy and Schoppers and
Ryohei Nakano, Naonori Ueda, Kazu-
mi Satto (all of NTT, Japan), and Mut-
suni Takahashi (CSK Corporation,
Japan) can also be viewed as specifying
instances rather than generalizing
concepts. There are notable excep-
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tions, of course, including the con-
cept-learning methods of Jun Hakura,
Hiroshi Yokoi, and Yukinori Kakazu
(all of Hokkiado University) and
Klingspor (University of Dortmund).
Also, the acceptable standard of
proof for the robotics community fa-
vors direct demonstrations over simu-
lations for at least two reasons: First, it
is difficult to satisfactorily simulate the
open world, especially the response of
the sensors and emergent properties of
multiple behaviors. Second, as the
price of commercial research robots
has dropped into the $25,000 range,
many researchers now have access to
platforms. Therefore, the burden of
proof for a robot-learning algorithm
favors convincing demonstrations
that either reproduce or closely mimic
the target robot application. This is
not to say that simulations do not
have a important place in robot learn-
ing; consider the work by Alan

Robots are being
developed for a
wide variety of
puUrposes:

from industrial
robots that

are designed for
repetitive tasks
in highly
structured
environments
to mobile

office robots
that are
designed to
interact with
humans in a
more natural,
open-ended
setting.
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Schultz, John Grefenstette, and
William Adams (all of the U.S. Naval
Research Lab) that used a simulator to
learn a complex shepherding behav-
ior, then transferred it to an opera-
tional robot. The point is that simula-
tions are treated as weaker forms of
proof of viability. The theoretical
properties of algorithms, for example,
proof of convergence, are secondary to
the central question: Will it work in
the real world?

Representation and
Learning

Expressiveness versus tractability is
recognized as a fundamental trade-off
in knowledge representation
(Levesque and Brachman 1985). We
posit that for learning systems, an ad-
ditional fundamental feature of the
knowledge representation scheme is
its manipulability. Learning systems
must be able to modify their initial
representations to encode new knowl-
edge. Three primary forms of change
are (1) cumulative, (2) parametric, and
(3) structural. Cumulative change is
simply the gradual accretion of new
knowledge. Parametric change involves
the tuning of control variables to im-
prove performance in a particular en-
vironment. Structural change is the
most drastic and indicates alterations
to the very architecture of the system.
The representation choice for a
robot-learning system is highly depen-
dent on the task to be accomplished.
For example, given the task of devel-
oping a controller for a gripper mech-
anism, one might choose a system
that associates sensory input with ac-
tuator output. The parameters of this
system—the strength of associations
between sensing and acting—are easi-
er to manipulate in a connectionist
framework than in first-order logic. In
contrast, consider the task of develop-
ing controllers for interacting robots
that must cooperate to move heavy
equipment. In this case, a higher-level,
rule-based system that gradually de-
duces new rules would probably be
more successful. The appropriate ma-
nipulability for a robot-learning sys-
tem’s representation scheme is best
judged in the context of the task.
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Conclusions

The breadth of papers presented at the
Robolearn-96 Workshop indicates that
learning is relevant to all aspects of
robotics: improving execution and
control, navigating and map learning,
and general concept learning. Also,
the workshop papers reported on a
wide variety of methods being used,
including reinforcement learning and
genetic algorithms.

Although we argue that the unique
characteristics of robotics has led to
robot learning being distinct from ma-
chine learning, we want to emphasize
that robot learning cannot and should
not proceed in ignorance of machine
learning or robotics. Research in robot
learning should not reinvent the
wheels developed by both fields.
Many of the wheels might not be use-
ful at this nascent time in robot learn-
ing, but this does not preclude their
eventual utility. One potential prob-
lem for robot learning is that many
robotics researchers come from non-Al
backgrounds; they might not be famil-
iar with the breadth of the machine-
learning field. The popular push in
robotics for empirical demonstrations
must be balanced with the well-devel-
oped metrics from machine learning,
especially the theoretical analysis of
the learning properties. The consensus
of the Robolearn-96 participants was
that continuing with yearly work-
shops dedicated to robot learning,
providing a forum for the machine
learning and robotics communities to
learn from each other, is highly desir-
able. In accordance with this consen-
sus, Robolearn-97 continued some of
these discussions (see www.cs.buffa-
lo.edu/~hexmoor/robolearn97-
cfp.html).

Note

1. Information about the workshop and re-
lated discussions can be obtained at
www.cs.buffalo.edu/~hexmoor/robolearn9
6.html.
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