
■ We present a system, CREWS_NS, that is used in the
long-term scheduling of drivers and guards for the
Dutch Railways. CREWS_NS schedules the work of
about 5000 people. CREWS_NS is built on top of
CREWS, a scheduling tool for speeding the develop-
ment of scheduling applications. CREWS heavily
relies on the use of AI techniques and has been
built as a white-box system, in the sense that the
planner can perceive what is going on, can interact
with the system by proposing alternatives or
querying decisions, and can adapt the behavior of
the system to changing circumstances. Scheduling
can be done in automatic, semiautomatic, or man-
ual mode. CREWS has mechanisms for dealing with
the constant changes that occur in input data, can
identify the consequences of the change, and
guides the planner in accommodating the changes
in the already built schedules (rescheduling).

CREWS_NS is a system that addresses the
long-term scheduling of train crews at
NS, the Dutch Railways (NV Neder-

landse Spoorwegen). Long-term crew schedul-
ing is typically done 6 to 12 months prior to
the execution of the schedule and consists of
arranging the tasks that have to be done by
crew members into duties (sequences of tasks to
be done by one crew member in one day [fig-
ure 1]). A set of duties for the crew members of
a certain personnel base with certain qualifica-
tions is called a schedule. Crew scheduling is
known for its algorithmic complexity. The
problem is even more complicated when the
quality of a solution depends on subjective
constraints that are hard to describe in quanti-
tative terms. Scheduling is usually carried out
manually by a small number of planners who
acquire most of their knowledge through expe-
rience. At the Dutch Railways, long-term
scheduling of crew involved 24 planners, who,
working full time, would take about 6 months

to produce the duties for about 5000 train dri-
vers and guards.

Besides the human skill of efficiently arrang-
ing tasks into duties, crew scheduling deals
with ever-changing data. Despite being done
several months before the execution of the
schedules, time constraints require crew sched-
uling to be started well before its input—the
final timetable and rolling stock scheduling—
have been completed. Moreover, after the
schedules have been completed and execution
has started, the  problem keeps changing,
requiring the data to constantly be updated.
Thus, the schedules have to be revised several
times because of timetable changes as well as
changes in the physical resources associated
with tasks. A human planner not only has to
deal with huge amounts of data within a short
period of time to produce schedules
(scheduling), but he/she also has to handle
changes that pop up constantly (rescheduling),
most of which are produced by different
departments and, thus, are often incomplete
and inconsistent as a whole, and that must be
incorporated into existing schedules with little
disturbance. 

Another aspect that puts a high demand on
planners is the increasing complexity of labor
rules that must comply with the increasing
social benefits given to workers. Scheduling
crew is thus considered by railway companies
to be much more difficult than scheduling
rolling stock (equipment) or producing the
train timetable (scheduling rail track resource).
In short, crew scheduling requires human
skills, knowledge, and hard work.

As a typical resource-allocation problem, we
might be inclined to consider it a job shop
problem (Fox 1987) (Smith 1989), where the
trains are activities, and the resources are indi-
vidual personnel. Indeed, there are some simi-

Articles

SPRING 1998    25

CREWS_NS
Scheduling Train Crews 

in The Netherlands

Ernesto M. Morgado and João P. Martins

Copyright © 1998, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1998 / $2.00

AI Magazine Volume 19 Number 1 (1998) (© AAAI)



Crew scheduling has also been approached
by traditional programming (supported by
operational research, aiming at an optimized
solution), but the results obtained with full
automatic black-box optimization algorithms
had only limited success and proved unsatis-
factory in the following areas: (1) when faced
with a full-size problem, these solutions tend
to need computational resources that far
exceed what is available, and they cannot cope
with the combinatorial explosion; (2) they
cannot provide explanations about the deci-
sions placed in the solution; and (3) solutions
cannot be manipulated by human planners to
adapt them to changing circumstances or to
ill-represented constraints. In summary, crew
scheduling presents several difficulties, some
of which are external to the scheduling prob-
lem itself, others that are internal. 

The external difficulties are related to the
complexity and distribution of data (data are
produced by different departments, at differ-
ent times and are often incomplete and incon-
sistent), to the constantly changing data (data
are not produced once for all; data continue to
change, and it is important to find out the
effect that the changed data have on the work
that was already planned), and to the large
amounts of data involved in the problem (the
problem is too big to be solved as a whole and
by one single planner; it must be partitioned
into manageable partitions, each of which is
handled by one planner). 

The internal difficulties are related to the
combinatorial explosion of the problem and to
the multiple and complex constraints that
have to be satisfied by the duties. These con-
straints include physical constraints (for exam-
ple, temporal continuity in tasks, spatial con-
tinuity in tasks, and compatibility of
frequencies and year periods), labor and social

larities to this problem, but many differences
prevent us from transposing techniques from
one domain to the other. First, besides dealing
with time constraints and other constraints of
the job shop domain (for example, equipment
constraints), crew planners must also deal with
space constraints to prevent space discontinu-
ities in duties, positioning crew where they are
needed, whether as passengers in trains or oth-
er transportation means. Second, crew plan-
ners must also deal with complex train fre-
quencies, such as week frequencies (for
example, a train might only run on weekends),
year periods (for example, only during sum-
mer), and special days (for example, on holi-
days and days before holidays), which put
additional constraints on the combinations of
tasks. These two aspects are critical to the qual-
ity of the final schedules and the efficiency of
the scheduling process, requiring abstraction
techniques to be used extensively. Third, the
work periods of crew do not have fixed times,
as shifts in industry, but can slide during the
day to accommodate the irregularity of the
train operation, although subject to con-
straints. The resource-sliding dynamics make it
difficult to analyze activity demand and
resource contention as is usually done in the
job shop domain (Sadeh and Fox 1991).
Fourth, the labor rules are complex and
change every year because of union pressure.
Worse, to avoid personnel strikes, planners
must account for exceptions to the rules,
which requires a high degree of flexibility in
accommodating exceptions and changing
rules without compromising the efficiency of
the process. It also requires a representation
model to be easily understood by the planners,
different from a constraint representation
model based only on variables and values
(Sadeh and Fox 1991).

Figure 1. Example of Duties.
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constraints (for example, starting and ending
places of a duty, starting and ending times of a
duty, compatibility of rolling stock, transfer
times between different rolling stock, maxi-
mum duty length, meal breaks), and economi-
cal constraints (for example, those that might
minimize the cost of the operation or the
number of resources required). The constraints
might be hard (cannot be violated) or soft (can
be violated, but violations should be avoided
and recorded).

Application Description
Because human planners can build acceptable
schedules where algorithmic solutions clearly
fail, we took the challenge of using AI tech-
niques as an alternative to traditional comput-
er technology. One of our initial goals was to
produce a white-box system, in the sense that
the planner can perceive what is going on, can
interact with the system by proposing alterna-
tives or querying decisions, and can adapt the
behavior of the system to changing circum-
stances. The result is a system that plays the
role of a digital colleague interacting with plan-
ners to build schedules in a cooperative way. 

Furthermore, because crew scheduling has
idiosyncrasies for each company, we took the
additional challenge of building a tool, CREWS,
that contains the basic knowledge for crew
scheduling, remains constant across compa-
nies, and only needs to be extended with the

particularities of each one (domain, labor
rules, scheduling strategies, and objectives).

The system reported here is built on top of
CREWS and is called CREWS_NS. The goals set up
for CREWS_NS were to provide decision support
in personnel scheduling, speed up the schedul-
ing process, make scheduling more reliable,
take a considerable workload from the plan-
ners, and keep the role of planners in making
the decisions.

The scheduling process is divided into three
phases: (1) data management, where an analysis
of data is done to find inconsistencies or
incompleteness, both among input data and
between input and output data (to identify
which schedules have to be changed because
of the change in input data); (2) prescheduling,
where personnel tasks are generated according
to rules that specify the number of personnel
resources required for each type of activity,
sequenced according to criteria that will guide
the scheduling phase, and distributed among
partitions that are scheduled quasi-indepen-
dently; and (3) scheduling, where abstraction is
used to reduce detail in data, heuristic search
considers relevant alternatives to produce
good solutions, and constraint satisfaction is
used to reduce the size of the state space and
guide the search process.

The architecture of CREWS is based on com-
ponents that address these phases: the data
manager, the prescheduler, and the scheduler,
respectively (figure 2). There are other compo-

Figure 2. Architecture of CREWS.

Articles

SPRING 1998   27

Timetable
Planning

Company's mainframe Rolling Stock
Planning

Data
Manager

Pre-scheduler

Scheduler Scheduler Scheduler

CREWS

Schedules

Timetable
Rolling Stock Roster

Filtered data Schedules

Filtered data

Tasks
Sequences
Partitions

Old Schedules
Tasks for a partition

Sequences

Schedules
Assignment

C
h

an
ge

s

Server

1 2 n



work with data pertaining to all classes of per-
sonnel, such as the timetable and rolling stock
roster (generic data manager), or with data that
are specific to a certain class of personnel, for
example, the drivers’ local activities and sched-
ules (specific data manager). This organization
of classes of personnel forms a hierarchy of
data managers, each one operated by users
working at different levels in the company and
validating and installing data for the next low-
er level. Data managers at the bottom level
install data to be used by the corresponding
preschedulers and schedulers.

The Prescheduler
The prescheduler makes the preparations for
scheduling, looking at the problem of a specif-
ic class of personnel from a global perspective.
The prescheduler is composed of the task gen-
erator, the task sequencer, and the task distrib-
utor.

In the description of the prescheduler and
the scheduler, it is important to make the dis-
tinction between activity and task. An activity
is a specific action that provides a service, for
example, a train that allows passengers to trav-
el from one place to another or a shunting
activity that consists of moving cars and
engines within a station to form a train. A
characteristic of an activity is that it requires
resources. An activity can require rolling stock
resources (for example, a train might require

nents, such as the positioning trip generator to
position crew where they are needed and the
CREWS server to support the client-server multi-
user environment. The data manager is con-
nected with outside systems that supply the
timetable, the rolling stock roster, and the cor-
responding updates. After generation of the
schedules, these are sent to the mainframe of
the company that distributes them to the rele-
vant departments.

The Data Manager
The data manager (Cadete and Sousa 1994) sup-
ports the preparation of the input data, han-
dles change in data, enables simulation of
hypothetical data situations, and maintains
the consistency and completeness of data
(both before and during the scheduling
process).

The data manager organizes all data pertain-
ing to the problem in a data set. A data set is a
set of knowledge bases, each one correspond-
ing to a certain concept relevant to the prob-
lem. The entities in the knowledge bases are
linked together by data dependencies that tell
how each concept depends on others and that
can be specified and changed by the trans-
portation company. Data dependencies are
used in the propagation of the effects of
change in input data. These entities are color
coded to tell whether they are correct, incon-
sistent, or incomplete (figure 3). The data man-
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Figure 3. Data Set Dependencies.

ager guarantees that the oth-
er components receive their
data in good condition and
signals what must be
changed to solve the prob-
lem once the initial condi-
tions change. The data man-
ager has an explanation
facility that tells which data
dependencies were violated.

The data manager handles
change by keeping a record
of a sequence of situations. A
situation corresponds to a
state in time of a data set.
The data manager enables
simulations by keeping alter-
native sequences of situa-
tions, which are organized in
a tree of situations. Each
branch of the tree represents
a sequence of situations:
One corresponds to the real
problem, but the others cor-
respond to different simula-
tions.

The data manager can



one engine and eight cars) and personnel
resources (for example, one driver and two
guards) to provide the service associated with
the activity or to operate the rolling stock
resources.  The rolling stock and personnel
resources determine, respectively, what and
who operates the activities. A task (in the sense
presented in this article) is the association of
an activity with personnel resources. For exam-
ple, a train activity might generate one task for
a driver and one or more tasks for guards.

Task Generator The task generator com-
putes the tasks that must be scheduled for a
certain class of personnel. The generation of
personnel tasks is important for computing
the number of drivers and guards to allocate to
each activity. Normally, in a train, only one
driver is needed, but several guards might be
needed, depending on the number and types
of coach. The number of rolling stock units is
derived from the rolling stock rosters and oth-
er sources, using task-generation rules that can
be specified and changed by the transportation
company.

Task Sequencer The task sequencer uses
clustering and abstraction to reduce the
amount of detail the scheduler has to work
with. It groups the personnel tasks into prefer-
ential sequences to be performed by the crew
that suggest one out of several trains as the
best one to follow. In many cases, these
sequences suggest that the personnel follow
the rolling stock, avoiding problems resulting
from train delays; however, there are cases
where they might suggest something else. For
example, if the operation is regular and on
time, it is not important to follow the rolling
stock; it might be more convenient to follow a
train series (a certain number of trains follow-
ing an operation pattern). Sometimes it can be
useful for the preferential sequences to suggest
the patterns of duties produced the year
before, so that changes are minimized. The
preferential sequences are just suggestions and
can be changed later by the scheduler.

The task sequencer produces these se-
quences according to one of the previous crite-
ria. This phase relies heavily on heuristic
knowledge about where and when it is reason-
able to change the crew. This knowledge is
important in guiding the scheduling phase, in
both automatic and manual modes. This phase
also uses abstraction to group sequences at dis-
tinct frequencies into one single sequence at
the union of the frequencies and without
regard for irrelevant differences to reduce the
combinatorial explosion of the automatic
mode and the number of scheduling steps that
the user must perform in constructing the

duties in manual mode. Clustering and
abstraction are guided by sequencing rules,
which can be specified and changed by the
transportation company.

Task Distributor The task distributor
divides the problem into subproblems (parti-
tions) so that they can be managed effectively
by the scheduler. A problem partition can cor-
respond, for example, to a base of a certain
class of personnel. The task distributor deter-
mines which partitions tasks can be preas-
signed to, taking in account, among other
aspects, the rolling stock and network knowl-
edge of the personnel associated with each par-
tition. A task can be preassigned to more than
one partition, allowing subproblems to over-
lap. In this way, several planners can try the
task in their schedules. However, only one of
them will be able to schedule it. Thus, we say
that the task has been assigned (as opposed to
preassigned) to the partition.

In figure 4, we show a screen used in the task
distributor that illustrates some of these
aspects: The available partitions are listed in
the upper left corner, and each partition can be
assigned a color. The constraints used in the
task distribution are shown in the lower left
corner. The sequences of tasks were computed
by the task sequencer; tasks shown with a thin
line are preassigned to the partitions with the
same colors as the lines that correspond to the
tasks. Tasks with more than one thin line are
assigned to more than one partition, and tasks
shown with a thick line are assigned to the
partition with the color of the line correspond-
ing to the task.

When scheduling a partition, the scheduler
only loads the tasks that have been preas-
signed to this partition and that have not yet
been assigned (scheduled) to another parti-
tion. When saving a schedule, its correspond-
ing tasks are assigned to the partition if they
have not yet been assigned to another parti-
tion. Of course, when rescheduling, the sched-
uler also loads the tasks that have already been
assigned (scheduled) to this partition.

Tasks can be preassigned to partitions (col-
ored) either manually by a planner or auto-
matically, following a task-distribution strate-
gy that can be specified and changed by the
transportation company. These two methods
are integrated, allowing the planner and the
system to cooperate in partitioning the tasks.
The strategies use heuristics and constraints
that can be changed by the user. Tasks can also
be swapped between partitions. The system
provides a set of statistics and graphics to
enable the user to evaluate the quality of the
distribution (figure 5).
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changed by the transportation company.
The scheduler resorts to state-space search: It

uses a modified version of beam search (Bisiani
1987) with heuristics. A state is a pair contain-
ing the sequences of tasks that have to be
scheduled (the candidates) and the duties that
have been constructed to this point (the partial
schedule). States are generated by taking one (or
part of one) candidate and placing it in a duty.
A final state is a state where there are no more
candidates, or a predetermined number of
duties have been reached. The search is guided
by a scheduling strategy consisting of (1) a
process for selecting the initial state (for exam-
ple, what kinds of task should be considered,
sequences or groups of sequences) and its con-
struction (just with preferential sequences or
also with abstraction), (2) a set of operators to
generate the successors of a state that resort to
heuristic knowledge to limit the number of suc-
cessors, (3) an evaluation function composed

The Scheduler
The scheduler works from the perspective of a
partition of a given class of personnel, creating
a schedule by grouping the tasks of the parti-
tion into duties according to rules and sugges-
tions regarding the partition. The creation of a
schedule starts with a set of tasks produced by
the task generator, preassigned to a partition
by the task distributor, and grouped in
sequences by the task sequencer. The scheduler
places these sequences, or parts of them, into
duties. A duty is a sequence of tasks to be done
by a crew member at a certain frequency.

Duties have to satisfy several constraints:
The personnel cannot have duties that exceed
a certain number of hours; cannot work con-
tinuously for more than a certain number of
hours without a meal break; must have line,
rolling stock, and train knowledge to operate
the trains; and so on. These constraints are
specified in scheduling rules that can be

Articles

30 AI MAGAZINE
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of cost and heuristic functions, and (4) a test
for deciding whether a final state was reached.
The scheduler provides strategies, each one
appropriate for a certain type of schedule or for
a certain type of operation—scheduling or
rescheduling. The user can add new strategies
to handle new types of schedule. 

The generation of successors can be accom-
plished in four different ways (Morgado and
Martins 1992, 1989): 

First is the manual mode. The user tells the
system the (sub-) sequence of tasks that should
be moved from the candidates to the duties
(figure 6). The system verifies all constraints
imposed on the resulting duty and tells the
user the constraints that are violated by the
operation (we consider both soft constraints
and hard constraints). If  the  planner  chooses
to violate a soft constraint, this violation is
recorded, and the duty is shown with a viola-
tion indication. Clicking on the violation-indi-
cation icon generates a message that explains
the violation (figure 7). In manual mode, the
planner can also move tasks from the existing
duties to the candidates or from duties to other
duties, removing the effect of any previous
decision—an operation called forward back-
tracking—or can do traditional backtracking by
moving into a previous state.

Second is the semiautomatic mode. The sys-
tem gives hints about how the planner should
pursue the schedule, following a strategy that
is selected by the user. In this mode of opera-
tion, the system computes how the duties can
be extended with sequences of tasks from the
candidates, and the role of the user is to select

the proposal that he/she thinks is best. Figure
8 shows some of the alternatives for extending
duty 1 (the number of alternatives presented is
selected by the user).

Third is the automatic mode. The system
decides the sequence of tasks that should be
present in each duty, following a strategy that
is selected by the user. 

Fourth is the mixed mode, which combines
the previous approaches. In mixed mode, the
planner constructs the schedule by resorting to
an arbitrary combination of the other three
modes of operation. Typically, the planner
starts building some duties according to crite-
ria that he/she wants to impose on the final
schedule; then uses the automatic mode to do
the bulk of the work; and, finally, manipulates
(using the manual mode) the resulting duties.

The mixed mode of operation really shows
the decision-support philosophy that was
incorporated into CREWS. In fact, it provides
full cooperation between the planner and the
system, showing what is going on, providing
explanations about the decisions made by the
system (with an explanation facility provided
by the scheduler), enabling the interaction of
the planner on the work being done by the sys-
tem, and taking the bulk of work from the
planner when he/she elects to do so.

In summary, the main innovations offered
by this system are (1) to provide a decision sup-
port system for crew scheduling (as opposed to
the traditional black-box scheduling systems);
(2) to trade the optimal solution for a solution
that is good enough; (3) to give the ability to
the customer to change the behavior of the

Articles

SPRING 1998   31

Figure 5. Task-Distribution Statistics.



Articles

32 AI MAGAZINE

Figure 7. Showing Violations.

Figure 6. Moving Tasks from the Candidates to the Duties (Manual Mode).



system to adapt to new situations, labor rules,
and strategies; (4) to integrate scheduling with
the dynamics of data; and (5) to partition the
problem among several planners.

Working with the Application

For generating the schedules of a company,
several steps must be followed with an applica-
tion built with CREWS:

First, data are received from the outside sys-
tems that supply the timetable, the rolling
stock roster, and other entities, following
CREWS data-interface protocols.

Second, data can also be introduced using
the data-manager interface, but in this case, it
is not considered official and must be validated
later by data coming from the outside systems.

Third, all these data are validated for overall
consistency and completeness. Data that are
consistent and complete are installed for use
by other components of CREWS.

Fourth, this process with the data manager
is hierarchically done in several steps, starting
with the generic data manager and pursuing in
parallel with several specific data managers,
each one for each class of personnel.

Fifth, once data for a specific personnel class
are installed, the planners can start with the
prescheduler to distribute the tasks for the
respective data set among the predefined par-
titions (personnel bases). The task-distribution
process, also called the coloring process, defines
a static partitioning of the problem that condi-

tions the tasks that can be loaded later in each
scheduler session.

Sixth, once tasks have been preassigned (col-
ored) to partitions, several schedulers can start
in a multiuser environment, each one loading
a different partition and building a different
schedule.

Seventh, because partitions can overlap,
planners compete for tasks to build their
schedules. The system assigns a task to the
schedule that first saves the task. When con-
flicts arise, they must be resolved cooperative-
ly. If the owner of the task agrees to release it
for use in another schedule, the planner in
charge of this schedule can schedule it imme-
diately if the task was already preassigned to
his/her partition or must go first to the
prescheduler.

Eighth, scheduling all tasks can involve sev-
eral cycles between the prescheduler and the
scheduler, trying to get the partitioning of the
problem that produces the best composition of
schedules.

Ninth, during this process, planners can
load both the prescheduler and the specific
data manager to check the overall state of the
scheduling process for the corresponding class
of personnel. The planners can check which
tasks have not been scheduled yet and which
schedules are still incomplete. 

Tenth, because data keep changing, this
process is even more complex, involving a
wider cycle than the one described previously
that also includes the data manager. Whenever
some data change, the planners should start
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Figure 8. Duty 1 and Alternatives for Extending Duty 1.



preferential tasks to be used in node expansion
(the most constrained tasks are those that are in
only one partition or that offer less possibility
of combination with other tasks). Constraints
are also used in the prescheduler during the
problem-partitioning phase.

Data dependencies are used in the data
manager to find out what concepts depend on
a given concept. These dependencies are set up
in a way that was influenced by truth-mainte-
nance systems (Martins and Shapiro 1988;
Doyle 1979).

Application Use and Payoff
Before the deployment of the system, NS con-
ducted extensive tests, and the results obtained
were better than our most optimistic expecta-
tions at the beginning of the project. Original-
ly, at NS, there were 24 planners (both for dri-
vers and guards) who would take about 6
months to produce the duties for the compa-
ny. The life-size test, conducted in early 1996,
led us to conclude that the whole scheduling
process can be completed by five planners in
about two weeks (Notermans 1996). NS
intends to use other existing planners for sim-
ulation studies and further improvement of
the schedules. The comparison of the quality
of the schedules produced by CREWS with the
quality of the schedules produced by human
planners points to a yearly reduction in per-
sonnel costs on the order of 6,000,000 Dutch
Guilders (about US$4,000,000) (Linssen 1995).
Thus, in less than one year, just the savings for
the drivers and the guards would pay for the
investment by NS in the system. The directly
quantified gains were realized (van Aarle 1996)
with a 10-fold increase in the speed of the
scheduling process and a reduction in the
required crew members on the order of 3 per-
cent.

Besides the benefits of automatic schedule
generation—speeding up the process and mak-
ing the generation criteria uniform—CREWS_NS,

the whole process, validating and installing
the data changes; generating, sequencing, and
coloring the corresponding tasks; and, finally,
incorporating the changes in the schedules
using rescheduling.

Uses of AI Technology
AI technology is the backbone of the operation
of the system. The most visible part is state-
space search (using a modified version of beam
search). The search tree generated serves as the
unifying media for all modes of operation.
Whenever the planner uses the manual mode,
the system generates the selected successor in
the search tree. If the planner decides to
remove any tasks from the duties, the system
generates a successor of the current state that
corresponds to the removal action (forward
backtracking). If the planner decides to undo
some action, he/she just has to move up in the
tree to backtrack to a previous position from
which he/she can pursue with a different suc-
cessor. The search tree and its states can be
inspected at any moment during the search
process (figure 9).

Abstraction is used in most phases of the
scheduling process to reduce the amount of
detail present in this domain. Without it, none
of the other techniques used in the system
would be capable of coping with the huge
number of alternatives present, many of them
having only minor differences.

The concept of strategy defined previously is
also central to the success of both the automat-
ic and the semiautomatic modes of the sched-
uler. By combining clever heuristics (both in
the generation and the expansion of nodes)
with adequate cost functions, the system can
be fine tuned to optimize the relevant criteria
chosen by the customer.

Another aspect of AI that is omnipresent is
the use of constraints. These constraints are
used by the automatic and semiautomatic
modes to select the most constrained tasks as

Figure 9. Simple Search Tree.
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as an AI-based system, preserves the schedul-
ing knowledge within the company, easing the
training of new planners (using the semiauto-
matic mode); brings a dramatic reduction in
mechanical and tedious work done by plan-
ners; and enables the adaptation to new situa-
tions and the production of alternative solu-
tions.

Another aspect that is currently being
explored by NS is the use of the system in
what-if situations. Such situations will primar-
ily be used for three reasons: First, NS wants to
test the result of the introduction of changes in
labor rules; this tool is valuable in supporting
negotiation with the unions because it can rep-
resent the overall impact of a rule change in
the use and needs of personnel. Second, NS
wants to understand the effect that changes in
the distribution of knowledge skills by differ-
ent personnel bases can have on the existing
schedules. Based on the results of these studies,
training actions can be taken to have qualified
personnel in specific bases or bases can be
closed down and the work transferred to near-
by bases. Third, NS wants to find out other
ways to improve the schedules, using different
strategies and different duty patterns than are
used today.

Application Development 
and Deployment

The initial ideas for developing CREWS started
in 1986 with a crew-scheduling demonstration
prototype for TAP/Air Portugal. Together with
the development of this prototype, Sistemas
Cognitivos, Lda. (SISCOG), began developing a
general crew-scheduling tool, CREWS. Initially,
CREWS was developed on Explorer Lisp ma-
chines using KEE as the underlying AI tool.

In 1988, SISCOG developed a crew-schedul-
ing prototype for the Portuguese Railways, CP,
which was followed by the ESCALAS system in
January 1991. ESCALAS used a preliminary ver-
sion of CREWS that was a single-user system
composed of only one subsystem (except for an
early version of the positioning trip generator);
it included preliminary versions of the sched-
uler, the task generator, and the task sequencer.

After the completion of this system, we start-
ed to understand the restrictions that the use of
a Lisp machine would place on the sale of
CREWS, and we ported CREWS (and ESCALAS) to a
UNIX environment. At the same time, we also
realized the extra cost of KEE (which was even
more dramatic when we considered that only a
small portion of KEE was being used by CREWS),
and we developed a frame-based representation
system, SIKE (SISCOG knowledge environment),

that would make available the knowledge-rep-
resentation characteristics needed by CREWS.

In September 1993, we started the develop-
ment of CREWS_NS, the first product to include
the CREWS system as described in this article.
This project was completed in July 1996 and
started operation in October 1996 after thor-
ough testing.

CREWS_NS was developed in three steps: The
first step was a single-user system that would
work in manual mode. This step included
communication with external systems, manu-
al construction of duties, and the manual
assignment of trains to partitions. The second
step was a multiuser system. This step included
the development of locking mechanisms, the
possibility of swapping tasks among partitions,
and the automatic assignment of trains to par-
titions. The third step was the automatic and
semiautomatic modes. This step included the
development of special-purpose strategies and
the fine tuning of these strategies.

In each of these steps, several partial ver-
sions were delivered to NS that were tested by
the members of the project team. At the end of
each step, documentation about the complet-
ed version was delivered, and a life-size test,
with all the data and a larger number of plan-
ners, was performed.

The development of CREWS_NS and the new
version of CREWS was carried out by a team of
10 programmers and knowledge engineers
from SISCOG, 2 planners from NS, and 1 pro-
grammer from CVI (a software company
daughter of NS and currently part of Electronic
Data Systems). The role of SISCOG was to do
knowledge elicitation and system develop-
ment, the planners from NS supplied schedul-
ing knowledge and tested the several versions
of the system, and the programmer from CVI
led the team from the NS side and implement-
ed the man-machine interface. During the first
year of project development, we had two-day
meetings every other month that were mainly
devoted to knowledge elicitation and version
testing. In the last two years of development,
these meeting were held every three months
and were devoted to knowledge elicitation and
evaluation of system results.

Because SISCOG and NS are about 2000
miles apart, the communication and correc-
tion of bugs (through software patches) was
chiefly done by e-mail, which enabled us to
correct small bugs within 24 hours of their
detection. The use of Lisp clearly helped this
process.

Before deployment, NS had one-week train-
ing sessions divided into two groups of plan-
ners. The first group started operation while
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installation of all data in one single session
and, thus, speeding the overall process.

Second, partitioning of the problem is
much more flexible using a server of tasks
and duties that can serve just those that are
requested at any specific moment by the user
in a distributed fashion. The planner is no
longer constrained to work with just the
tasks that have been preassigned to a base
and the duties that are part of a schedule.

Third, the prescheduler function was incor-
porated into the scheduler, providing only one
module rather than two. This function, togeth-
er with the previous one, prevents users from
jumping between two modules when they
cannot find the tasks they need for a schedule
or when they want to release tasks to be used
by some other user (a result of a bad partition-
ing of the problem).

Fourth, the scheduler can work with more
than one personnel base simultaneously, let-
ting the system choose dynamically the task to
which it should go rather than use a trial-and-
error process between the task distributor and
the scheduler. In this way, the partitions of the
problem are no longer the bases but, rather,
some loose concepts.

Fifth, the sequences of tasks can be generat-
ed manually by the planners and saved as pat-
terns to be used later in subsequent sessions,
improving the quality of the sequences and,
consequently, the quality of the resulting
schedules.

Sixth, scheduling can start from sequences
of tasks organized in a time-space diagram (fig-
ure 10), instead of just a Ghantt chart. Thus,
planners can visualize not only the time rela-
tionships among tasks but also their spatial
relationships, resulting in more efficient ways
of combining tasks into duties.

All these improvements have already been
incorporated into CREWS, together with the
addition of new strategies and heuristics in
CREWS_NS. This version is currently under test-
ing and evaluation, at both SISCOG and the
Dutch Railways, and the results seem promis-
ing, bringing even more benefits to the sched-
uling operation of the Dutch Railways.

New functions will be introduced in the
near future to answer the needs of West Anglia
Great Northern Railway, the Norwegian Rail-
ways (both of which have signed contracts
with SISCOG), and other companies in the
railway as well as other transportation
domains. The amount of interest raised by the
success of CREWS_NS opens up new opportuni-
ties for SISCOG in this domain and is clear
proof of the benefits of using AI techniques in
the real world.

the second group was being trained. The tran-
sition from traditional scheduling to automat-
ed scheduling was done with the emphasis on
the manual mode and gradually moved to the
semiautomatic and automatic modes. The
deployment was done without major problems
and generated a lot of requests  from the plan-
ners for new functions.

Maintenance
The maintenance of CREWS_NS should be con-
sidered from two different perspectives: (1)
planned changes and (2) unforeseen changes.
Planned changes correspond to the changes in
labor rules and scheduling strategies and the
addition-replacement of types of task in the
knowledge base. This maintenance is per-
formed by a technical person at NS who
received training from SISCOG. The unforeseen
changes, such as the needs for additional func-
tions are handled by SISCOG (possibly entail-
ing a change in CREWS itself) as part of a main-
tenance contract. The maintenance contract
considers the delivery of new versions of
CREWS, technical support, and the personnel
who are assigned to work on extra functions
for the system.

Future Directions
Although the development in Lisp and UNIX

workstations has been satisfactory, we feel the
market pressure to use a widespread language
and PCs. For this reason, in January 1997, we
started porting CREWS to C++, running under
WINDOWS NT. This development is expected to
take more than a year, after which we will be
able to offer CREWS in both Lisp and C++. The
performance of this new version and the mar-
ket demands will tell whether we should keep
both versions, or we should only adopt one of
them.

Also, CREWS is being constantly improved to
provide new functions as demanded by the
Dutch Railways or required by other company
realities. We are currently working on a new
version of CREWS that presents a revised archi-
tecture and additional functions, providing
much more flexibility to users and even more
gains in the overall efficiency of the schedul-
ing process and the quality of the resulting
schedules.

The main changes in the architecture con-
cern the following:

First, the data manager can handle all levels
of data (from the most generic to the most spe-
cific) instead of just one (see the previous
description of the data manager), enabling the
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On behalf of the AAAI Special Interest Group in Manufac-
turing (SIGMAN), the National Science Foundation
(NSF), the DOE/Sandia National Laboratories, DARPA,

and NIST, we welcome your participation in the 1998 Artificial
Intelligence and Manufacturing Workshop, to be held in
Albuquerque, New Mexico, August 31 – September 2, 1998. Par-
ticipants from government, industry, and academe are welcome.
This workshop provides a focused gathering of researchers and
practitioners in manufacturing with researchers and practition-
ers in AI to discuss how AI-based technology is used today and
what needs to be done to increase the use of AI for addressing
manufacturing problems. The workshop will provide a forum
for reviewing the state of the art and the state of practice and for
discussing promising new avenues for research and applica-
tions. 

The workshop will be held at the Hilton Hotel, Albuquerque,
New Mexico. Formal proceedings will include juried papers
from the AI community and will be published by AAAI Press.
The workshop will include paper presentations, focused work-
ing sessions, and tours of Sandia National Laboratories and oth-
er local manufacturing sites.

Areas of interest cover the full spectrum of AI as applied to
manufacturing problems, from enterprise modeling to shop
floor control, including (but not limited to):
1. Product and process design, including geometric reasoning

and intelligent CAD, factory floor design, integrated prod-
uct and process design, manufacturing system design, and
product and process redesign

2. Planning and scheduling, including process planning, pro-
duction planning, scheduling, and shop floor control

3. Robotics, machines, sensing, and control, including sensor-
based factory control, process diagnosis and control, micro-
machining, microassembly, advanced robotics for manu-
facturing, intelligent machine tools, multi-machine
coordination, and collective robotics

4. Enterprise integration and architectures, including enter-
prise modeling, supply chain management, architectures
for coordination, collaborative and distributed decision
making, the role of AI in supporting agility, virtual manu-
facturing, machine learning, and systems engineering.

Paper submission deadline is April 6. Visit our web page for
paper submission/participation details or registration information:
www-users.cs.umn.edu/~gini/sigman/ sigman98.html.
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