
■ Interacting with a computer requires adopting
some metaphor to guide our actions and expec-
tations. Most human-computer interfaces can be
classified according to two dominant metaphors:
(1) agent and (2) environment. Interactions
based on an agent metaphor treat the computer
as an intermediary that responds to user requests.
In the environment metaphor, a model of the
task domain is presented for the user to interact
with directly. The term agent has come to refer to
the automation of aspects of human-computer
interaction (HCI), such as anticipating com-
mands or autonomously performing actions.
Norman’s 1984 model of HCI is introduced as
reference to organize and evaluate research in
human-agent interaction (HAI). A wide variety of
heterogeneous research involving HAI is shown
to reflect automation of one of the stages of
action or evaluation within Norman’s model.
Improvements in HAI are expected to result from
a more heterogeneous use of methods that target
multiple stages simultaneously.

Interacting with a computer requires adopt-
ing some metaphor to guide our actions
and expectations. Most human-computer

interfaces can be classified according to two
dominant metaphors: (1) agent and (2) envi-
ronment. Interactions based on an agent
metaphor treat the computer as an intermedi-
ary that responds to user requests. In the envi-
ronment metaphor, a model of the task
domain is presented for the user to interact
with directly.

Command-line and screen editors illustrate
a simple contrast between these approaches. To
change a word in a command-line editor such
as ex, you must (1) instruct the editor to move
to the appropriate line number, then (2) enter
some command such as s/old/new (locate
string old, then substitute for string old string
new). To view this change in the context of the

surrounding text would then require compos-
ing a command such as p .–10,.+20 (print from
10 lines before to 20 lines after the current
location). This same task is far easier with a
screen editor where you simply move the
sprite- using mouse or cursor key to the offend-
ing word, delete it perhaps by backspacing over
it, and type in the replacement. This keystroke
superiority of screen over command-line edit-
ing is a well-known human-computer interac-
tion (HCI) (Card, Moran, and Newell 1983)
result. If the task were changed to “change
every occurrence of old_word to new_word,”
the relative advantage is reversed: An instruc-
tion to an agent such as “g/old/s/old/new”
(locate string old, then substitute for string old
string new for g = every occurrence of string old)
is far simpler than scouring the surrogate doc-
ument for occurrences of old_word, erasing
each, and typing new_word in its place. For this
example, the character of predictable errors
will differ as well; the subject interacting
directly with the document is likely to miss
some occurrences of old_word, but the subject
issuing the global command can suffer unin-
tended consequences such as changing
not_old_word to not_new_word.

In practice, the better features of line editors
such as string searching and global replace
have almost always been retained in screen-ori-
ented editors, leading to interfaces in which
indirect requests can be issued to perform tasks
for which direct manipulation proves too cum-
bersome. The distinction between agent and
environment metaphors is not identical to the
distinction between agent-based and direct
manipulation-based interfaces that has been
much debated (Shneiderman and Maes 1997).
The agent-environment distinction reflects the
semantics (action versus request) of the inter-
action rather than its syntax (command line
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Reference Model
Don Norman (1986) characterizes HCI as the
problem of bridging the twin gulfs of execu-
tion and evaluation. The execution side of the
cycle involves translating a goal into a
sequence of actions for achieving the goal. The
evaluation side involves using feedback from
the domain to compare the result of the action
to the goal. The model is cybernetic, rather
than logical, in that it emphasizes feedback
and incremental action rather than problem
space search or planning. A crucial feature of
this model is that tampering with either side of
the loop can lead to detrimental or unantici-
pated results. If the execution side is automat-
ed, the human might fail to observe effects of
actions and be unable to correct errors or mod-
ulate ongoing behavior. If the evaluation side
is automated, the human might be unable to
track the effect of actions and adjust to their
results.

Norman proposes seven stages of action in
this model to link the user’s goals to the world.
The stages of execution are (1) forming an
intention to act, (2) translating this intention
into a planned sequence of actions, and (3)
executing this sequence. The stages of evalua-
tion are (1) perceiving the state of the world,
(2) interpreting this perception in light of prior
action, and (3) evaluating this change with
respect to the initial goal. The gulfs refer to the
interface-metaphor that separates the user’s
goals from the application domain in which
they must be realized. An example of this form
of analysis is shown in table 1.

Although approximate, rather than precise,
and proposed in the context of early GUIs,
Norman’s model provides a useful reference
for analyzing HCIs of all forms because it iden-
tifies the cognitive processes and the linkages
between them that must be supported for HCIs
to succeed.

We define an agent to be a program that
automates some stage(s) of this human-infor-
mation–processing cycle. This definition does
not apply to software-only agents found in
multiagent systems and excludes HCIs involv-
ing simple direct-manipulation actions or
explicit command-line requests.

Figure 1 shows the Norman reference model
and the ways in which the involved cognitive
processing might be automated. Automated
processes are indicated in italics within dashed
boxes. Serial (nonlooping) automation strate-
gies range from direct aiding, such as action
sequencing or attentional filtering, to execu-
tive functions, such as anticipatory action or
prioritized filtering. Agents that interact con-
tinuously with the domain can be semiau-

versus button press). The binocular icon search
button found on NETSCAPE browsers, for exam-
ple, uses a pushable button to advertise its
availability and means for initiating search but
leaves the task of locating a string to an agent
rather than require the user to search the text
line by line. Task actions communicable using
an environmental metaphor are a proper sub-
set of those that could be specified to an agent
and are just those tasks such as iconic desk-
tops, text editing, draw programs, or geograph-
ic information systems that can provide clear,
literal correspondences between the task
domain and the on-screen representation.

The power of this approach, which provides
advertisement and unique identification and
selectability of available objects and actions, is
reflected in the ascendance of graphic user
interfaces (GUIs). The value of the agent
metaphor to interaction only becomes appar-
ent when objects are not present or fully visu-
alizable, and actions are repetitive, delayed, or
poorly specified. The distinctions between
agent- and environment-based HCI are similar
to those between manual and automated
action in the physical world. It is much
simpler for us to drive a car or set a table than
instruct a robot to do so, but we would rather
adjust a thermostat or program a milling
machine than repeatedly perform these
actions by hand. Although the computer offers
the ultimate in flexible automation, instruct-
ing it do what we want can be arbitrarily hard
for humans, as demonstrated by the difficulty
experienced in using traditional programming
and scripting languages. The growing popular-
ity of agent-based interaction reflects the emer-
gence of an increasingly powerful and com-
plex computing environment, bringing with it
desires to perform flexible tasks involving mul-
tiple or unknown objects by users who do not
want or might not have the ability to program.

Norman’s (1988) ecological model of HCI is
reviewed and utilized to organize research in
human-agent interaction (HAI). Our premise is
that software agents are intended to automate
repetitive, poorly specified, or complex pro-
cesses by bridging the gulfs between a user’s
desires and the actions that could satisfy them.
Tasks, domains, and interaction methods are
categorized according to the uncertainties they
bring to, or reduce at, stages in this model. A
maturing paradigm of HAI is envisioned in
which adaptation, user profiles, demonstra-
tion, and scripting are used, as appropriate, to
facilitate HAIs.
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Goal Improve the appearance of the letter.
Intention Change the paragraph style from indented to blocked; 

replace all new-paragraph commands with skip-line commands.
Action specification Specify sub/.pp/.sp/whole.
Execution Type “sub/.pp/.sp/whole.” 
Perception Each line of text begins at left margin.
Interpretation The paragraphs are blocked.
Evaluation The letter now “looks better”? 

tonomous with or without feedback or can
perform their assistive functions completely
independent of the user. These categories
could be elaborated to incorporate the trans-
parency of automated processes and other
aspects likely to affect HAIs, but these nine
should suffice to suggest some of the structural
complexities and concerns that should inform
the design of agents to assist human users. A
rule of thumb would be that any serial config-
uration that automates a complete side of the
loop isolates the user and can lead to break-
down, as can semiautonomous configurations
that do not explicitly supply appropriate feed-
back.

As shown in figure 1, automation can occur
either through semiautonomous processes set
in motion by the user or by the bypassing of
stages of execution or evaluation that the user
must otherwise perform. An agent that search-
es several databases for a favorable price is an
example of a semiautonomous process. This
form of closed-loop automation is found in
process industries where operators establish a
variety of set points for valves, breakers, and
proportional controllers. For automation of
this sort to succeed, the user needs a relatively
detailed mental model of the domain and
what the automation is to do to program it
(transparency) and, subsequently, would ben-
efit from good displays and methods for mon-
itoring its performance (feedback).

An adaptive agent that volunteers ls –t after
learning that a user invariably types ls –t to see
what the current paper is after changing direc-
tories to Papers automates stages involved in
instantiating a goal, forming intent, and plan-
ning a sequence of actions. An attentional fil-

ter that rings a bell and raises the flag on a
mailbox icon whenever there is mail from
members of the work group (but no one else)
automates the stage involved in perceiving the
domain. Examining other behaviors attributed
to software agents will establish that this mod-
el of closed loops and bridged stages accom-
modates most.

Equating software agent with programs that
automate aspects of interaction agrees with
many popular definitions: Shneiderman
(1995, p. 14) lists adaptive behavior, accepts
vague goal specification, gives you just what
you need (automating execution-evaluation),
works when you don’t, and works where you
aren’t (semiautonomous processes) to charac-
terize agents. On the other side of the argu-
ment, Patti Maes (Shneiderman and Maes
1997) identifies an agent’s characteristics as
removed in time and place (semiautonomous)
and adaptive to user’s habits, performance,
and interests (automating execution-evalua-
tion). Anthropomorphism, a target of Shnei-
derman’s criticisms, is not considered an essen-
tial feature of agents by either Maes or the
present model. She goes on to deny the neces-
sity of personifying or anthropomorphizing
agents and proposes the reliance on user pro-
gramming or machine learning, rather than
traditional AI techniques, as an additional dis-
tinguishing characteristic of successful agents.
Maes (1994) argues for indirect management
(semiautonomous process) alone as distin-
guishing HAIs.

Other theorists (Laurel 1997; Payne and
Edwards 1997; Negroponte 1995) stress the
agent’s assistance in common tasks, rather than
mechanisms used to assist, as the defining char-
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ating typologies of software agents but instead
to examine the potential of agent automation
to facilitate HCI. The basic premise of this
approach is that the greatest impediment to
assisting human users lies in communicating
their intent and making results intelligible to
them.

Today, in almost all cases, the limiting factor
in HCI is not computing cycles or connectivity
to information sources or characteristics of

acteristic. Finally, there are broad and ambitious
taxonomies of agents based on laudatory char-
acteristics such as inferential capability (Brad-
shaw 1997; Milewski and Lewis 1997); degree of
agency, mobility, and intelligence (Gilbert
1997); degree of autonomy, cooperation, and
learning (Nwana 1996); and place within the
universe of biological, robotic, and digital enti-
ties (Franklin and Graesser 1996).

My objective is not to add to these prolifer-
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peripherals (the machine side) but the user’s
ability or willingness to communicate these
desires and sift, organize, and represent the
machine’s response to satisfy them (the
human side). For example, although I have a
PERL interpreter for which I could, in principle,
write a script that would visit a list of web sites,
extract particular information from each, per-
form comparisons, and return the result to my
in box, I will almost certainly not do so. The
effort of prescribing how to navigate, how to
parse HTML at each of the sites, and how to ana-
lyze and return the results is infinitely more
difficult than pushing buttons and following
links on my browser myself. It would probably
remain more difficult even if I had to repeat
the search 10 or 15 times. Even when the time
to search repeatedly equaled the time to pro-
gram, I would still prefer the manual search
because of the lower cognitive effort. As this
example suggests, scripting languages might fit
the definition as maximally powerful
instructable agents, yet they fail miserably in
satisfying Negroponte’s (1995) desire for an
implacable butler or mine for a no-hassle
autonomous web searcher. The problem is a
human variant of a Turing equivalency. Script-
ing languages or, for that matter, assembly
code might meet the letter of a definition of
agents, but the spirit clearly lies in the ease
with which our desires can be communicated.

As this example suggests, there is consider-
able merit in the vaguer definitions, such as
“assistance at common tasks,” which implicit-
ly incorporate ease and utility. To reflect this
insight, the definition of software agent is
amended to a program that automates some
stage(s) of the human information-processing
cycle, leading to a significant decrease in
human effort. This conception is consistent
with Shneiderman and Maes’s (1997, p. 53)
notion that “an agent basically interacts with
the application just like you interact with the
application” in that the locus of agent automa-
tion is on the executive tasks otherwise per-
formed by the human. As in other instances of
pervasive automation, software agents will dis-
appear from notice as their behavior becomes
sufficiently familiar, just as we no longer think
of elevators as automated but instead as direct-
ly controlled.

Tasks and Constraints
As the script versus interpreter contrast sug-
gests, any constraint on the agent’s behavior
from outside reduces both the generality of
possible tasks and the human effort of initiat-
ing them. The arguments for the superiority of

direct-manipulation interfaces (Shneiderman
and Maes 1997; Lanier 1995) rest on just this
point. The presence of buttons, toolbars, drop-
down boxes, and other visible controls makes
the set of possible action goals perceptually
available without relying on memory or other
cognitive resources. In the point-and-click
environment, the problem of planning and
executing sequences of actions is trivialized to
selecting a visible object and executing the
action associated with it. Immediate feedback
is typically provided for selection and opera-
tion, short circuiting the problems of perceiv-
ing and interpreting the action’s effect, leaving
only evaluation as a task for the user. Any less
constrained task becomes a candidate for
automation. Because stages of execution
involving the translation of a goal into an
intention to act and the translation of this
intention into a set of internal commands are
unobservable until commands are executed,
most automation of execution bridges all three
stages. Automation of execution, therefore, is
primarily a matter of goal recognition. The
other class of agent aiding lies in automating
the entire loop, which can be as simple as the
independent execution of a loop or as complex
as the interplay of guidance and execution.

Automating Execution
Hypothesized agents such as Negroponte’s
(1995) digital butler or the smiling, bow
tie–wearing Phil portrayed in Apple’s 1977
KNOWLEDGE NAVIGATOR video achieve their effect
by accurately anticipating their users’ desires,
that is, automating goal instantiation. To suc-
cessfully anticipate a user’s desires and needs,
there must be few, preferably a single goal that
can be satisfied by a stereotyped sequence of
actions associated with particular states and
events. Automation of this sort is open loop,
leaving evaluation to the user. The user initi-
ates actions under ambiguous conditions that
are interleaved with agent-initiated actions
where appropriate goals can be identified. This
form of automation can be achieved by match-
ing a user’s characteristics to those of a sample
or demographic group with known goals and
actions, observing and replicating the user’s
own state -> action sequences, or by providing
explicit instruction, such as log-in scripts or
resource files.

Automating the Cycle
Any process for which evaluation can be sepa-
rated in time, space, or representation from ini-
tiating action is a candidate for automation of
this sort. Conventional computer applications,
such as a payroll program, that are set in
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omission. Their error of commission
refers to events in which the human
fails to engage automation, engages it
in the wrong mode, or engages it with
inappropriate settings. The failure to
spell check a document, the unin-
tended change of not_old to not_new,
or the UNIX command rm –r * (recur-
sive delete) issued in lieu of rm –f that
merely suppresses commentary are
examples of errors of commission.

Second is the degree to which
automation provides explicit feed-
back. The problem of adequate feed-
back is the complement of that of con-
trol. A basic precept of human
engineering is that human errors can-
not completely be eliminated. The
reliability of human-machine systems
therefore depends crucially on provid-
ing opportunities for humans to
recover their mistakes. When automa-
tion intervenes between the human
and the domain, the ability to detect
and, hence, correct errors can be
impaired or eliminated.

If a situation has high work load
and the user needs to delegate tasks to
automation, the detail and timing
with which the automation provides
feedback needs to be established. One
approach followed in process control
and aviation is to have automation
report back only when and if some
predetermined set point is exceeded.
This approach has worked well in
process control where engineers can
carefully predetermine the thousands
of set points. In aviation, where
response times are shorter and pro-
gramming more flexible, results have
been less pleasing with numbers of
controlled flights into terrain (Starter
and Woods 1994; Corwin et al. 1993)
attributable to failures of pilots’ inter-
actions with their automated servants.
Errors caused by omission (Starter and
Woods 1995) of feedback about initia-
tion are becoming increasingly evi-
dent in highly automated modern
environments, such as the glass cock-
pit of the Airbus A-320. In errors of
omission, the automation initiates
action without alerting the human,
the human fails to recognize what the
automation has done, and failures
occur because of this loss of situational
awareness.

Jones and Mitchell (1995) propose a

models of agents, and explanation
facilities can aid in reducing these
ambiguities.

These problems of expectation are
shared in common with human inter-
action in earlier forms of automation
and intelligent systems and should
benefit from accumulated experience
in these areas.

Conventional Automation
Many issues affecting human interac-
tion with software agents have already
been explored in the context of con-
ventional automation. Just as e-mail,
the web, and burgeoning information
overload are making the development
of software agents necessary to allow
information workers to continue to
perform their jobs, increasing com-
plexity in industrial systems such as
nuclear power plant control rooms
and aircraft cockpits long ago made
them uncontrollable without automa-
tion. The point is that in excessively
high work-load domains, we delegate
tasks to machines not merely as a
labor-saving convenience but because
of necessity. The model of a sub-
servient, if intelligent, machine wait-
ing at our beck and call might not fit
these high–work-load environments
in which a human failure to initiate
automated action can be just as detri-
mental as an inappropriate action tak-
en by a machine.

Autonomy
The broadest issue raised by necessary
automation involves the relative
autonomy of the human and ma-
chine. Relative autonomy has effects
in areas ranging from acceptance and
willingness to use automation to the
stability and effectiveness of the
resulting human-machine systems.
Although at least one party needs
autonomy, systems in which the
machine has the autonomy, or both
human and machine act independent-
ly, are possible.

Two basic issues affect trade-offs in
autonomy:

First is the degree to which automa-
tion requires explicit initiation (ma-
chine autonomy). Starter and Woods
(1995) classify errors involving auto-
mation as errors of commission or

motion and later return confirmation
of success or failure are examples of
this type of interaction. With closed-
loop automation, sequences of actions,
comparisons of results, and adjustment
of activity all must be coordinated with
a user’s intentions. Although ordinary
programming meets the automation
requirement, it does not satisfy the
flexibility and ease of expressive effort
expected from software agents. Most
examples of agents of this sort are only
distinguishable from conventional
programs in that they can be scheduled
in advance, they can interact with oth-
er programs or information sources as
scripts do, or they anthropomorphize
the interaction to be perceived as intel-
ligent or believable.

The problem of bridging the gap
between human intent and complex
environmentally guided action by
software agents remains open. Put
broadly, this question is one of how to
make the programming of computers
easy and the knowledge accessible to
the general public. The problem is not
solved, but various techniques,
including programming by demon-
stration, visual languages, context
sensitivity, forms, and direct manipu-
lation, might offer partial solutions.

Constraining Expectation 
and Interpretation
A key factor in the success of direct
manipulation is its ability to constrain
intent (you can only select objects you
can see) and action (you can only click
on what you see) so that there is little
ambiguity about what can be done or
how to do it or what has been done.
The asynchronous, semiautonomous
behavior of a closed-loop agent by
contrast offers little in the way of
affordances or feedback to constrain a
user’s expectations or evaluations. As a
consequence, the designer not only
has the problems of automating
actions but also of conveying to the
user what actions are available, what
goals they might satisfy, how to know
that they have been performed, and
how to verify that they have been per-
formed successfully. These problems
can be ameliorated by efforts to make
the control of behavior apparent,
understandable, or justifiable to the
user. Anthropomorphism, mental
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set of prescriptive principles for resolv-
ing these issues in the human’s favor:
(1) human authority, where the human
retains authority and responsibility; (2)
mutual intelligibility, where human
and machine maintain an accurate
model of one another and the domain;
(3) openness and honesty, where the
machine’s behavior is observable, the
machine communicates intentions,
and the machine’s capabilities and lim-
itations are made explicit; (4) manage-
ment of trouble, where the machine
possesses strategies to recognize and
repair losses of mutual intelligibility;
and (5) multiple perspectives, where
the machine provides multiple perspec-
tives to support alternate human prob-
lem-solving strategies.

Although this list begins with a
nod to human sovereignty, it quickly
makes clear that the basic problem
afflicting our interactions with auto-
mation is not a struggle over authori-
ty but a lack of understanding and
predictability of the automation. The
primary concerns involving autono-
my, initiative, and feedback also
reflect this problem of human-
machine domain coherence. Refer-
ring to our reference model, we can
see why these problems arise. When
automation is imposed between the
user and the domain, it exacerbates
both the gulfs of action and evalua-
tion. Where automation is allowed
initiative (adaptive agents), the user’s
evaluation becomes problematic
because it can be difficult or impossi-
ble to disentangle the effects of the
machine’s actions from his/her own.
Even more troubling, the attentional
tuning between actions and their
effects is lost; so, the user might utter-
ly fail to notice significant changes in
the domain. Even when the user
retains initiative (semiautonomous
agents), he/she is cut off from the
domain by the intervening action-
evaluation loop of the automation.
The task is now not simply to plan,
execute, monitor, and interpret but to
express these behaviors as an inten-
tion and then monitor performance
indirectly. The alarm systems of a
nuclear power plant or the return
message from an executing shell
script are examples of this sort of sec-
ond-order monitoring.

Trust
Many of the complex issues involving
mutual human-machine modeling,
awareness, and coordination are cap-
tured by the anthropomorphic term
trust. If we examine the considerations
that enter into our decision to delegate
a task to a subordinate, instruct the
subordinate in how to perform the
task, monitor the performance, or
authorize some class of tasks without
follow-up, our trust in the subordinate
will almost certainly play an explana-
tory role. Closer consideration will
show our use of the term to be multi-
dimensional. The trust we have that
our secretary will remember to pick up
the mail is distinct from our trust that
he/she will compose a postable busi-
ness letter, which, in turn, is distinct
from our trust in the lawyer who
assures us that the letter is not action-
able.

Bonnie Muir (1996, 1994, 1987)
adopted a taxonomy of trust for
human-machine relations from sociol-
ogist Barber (1983), giving a nod to
social psychologists (Rempel, Holmes,
and Zanna 1985) for a complementary
taxonomy and a source of conjectures
about the dynamic character of trust.
Barber (1983) defines trust in terms of
three specific expectations: (1) persis-
tence of natural, biological, and social
“laws,” for example, gravity, pain fol-
lowing injury, and parents protecting
their offspring; (2) competence of oth-
ers to perform their technical roles, for
example, our trust that a bus driver
will take us safely to our stop; and (3)
fiduciary responsibility of others to
fulfill their obligations, for example,
our trust that a lawyer will administer
an assigned estate without theft.

Rempel, Holmes, and Zanna (1985)
propose a similar taxonomy to
account for couples’ attributions
about one another’s behavior. Initially,
trust in a partner depends on pre-
dictability in his/her behavior, such as
a preference for seafood or punctuality
for dates. As the relationship matures,
trust extends to the longer-term traits
of dependability in matters such as
remembering birthdays or picking up
the laundry. In its final phase, trust
extends to faith in the partner’s affec-
tions and allegiance. As trust deepens,
its bases and expectations shift from

the instrumental and observable traits
to the attributable and unobservable
traits. Rempel, Holmes, and Zanna
(1985) are concerned with both the
acquisition and the resistance to
extinction of these forms of trust. The
faith in an alcoholic partner’s affec-
tions, for example, might last long
after any hopes of consistency or
dependability are gone. The two tax-
onomies can be merged approximate-
ly, as advocated by Lee and Moray
(1992), to distinguish (1) trust that is
based on observed consistency of
behavior (persistence or predictabili-
ty), as in “I trust my watch to keep rel-
atively accurate time”; (2) trust that is
based on a belief in competence or
well-formedness (competence or
dependability), as in “I trust Martha
Stewart’s recipe for hollandaise”; and
(3) trust that is based on faith in pur-
pose or obligation (fiduciary responsi-
bility or faith), as in “I trust my physi-
cian to monitor my health.”

The match up is somewhat inexact
with Barber (1983) breaking out com-
petence into expert knowledge, tech-
nical facility, and everyday routine
performance, which are essentially
the same as our higher-level synthetic
categories. Muir (1987) goes on to
equate these three levels of compe-
tence with Rasmussen’s (1983) taxon-
omy of skill-based, rule-based, and
knowledge-based behaviors. Lee and
Moray (1992) propose an additional
correspondence to Zuboff’s (1988)
stages of trial-and-error experience
(consistency), understanding (compe-
tence), and leap of faith (fiduciary
responsibility) in developing opera-
tors’ trust in new technology. A fur-
ther analogy can be drawn to Dennet’s
(1987) description of three stances
people can adopt to predict the behav-
ior of systems: (1) physical-stance pre-
diction based on physical characteris-
tics and laws (persistence and
predictability), (2) design-stance pre-
diction based on what a system was
designed to do (competence and
dependability), and (3) intentional-
stance prediction based on an assump-
tion of rationality (fiduciary responsi-
bility or faith). The convergence of
five independent taxonomies purport-
ing to describe how humans or
machines behave or can be predicted
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mated, such as level flight, are those
that need it the least. In fact, automa-
tion is often perceived as increasing,
not decreasing, work load. Wiener
(1989, 1985), for example, investigated
pilots’ attitudes toward cockpit sys-
tems. He found that only a minority
agreed with the statement “automa-
tion reduces work load,” but a substan-
tial proportion felt that automation,
especially programmable systems such
as the FLIGHT MANAGEMENT SYSTEM,
increased their work load. Early expert
systems provide another example of
automation that increases work. Miller
and Masarie (1990) report that
INTERNIST-1 often required 30 to 90 min-
utes of data gathering and interaction
to complete a single diagnostic consul-
tation. Almost any form of procedural
instruction has the potential of becom-
ing more work than doing it by hand,
and in a choice environment where
automation is optional or can be
turned off or disabled, it often will be.

In a recent review of human use of
automation, Parasuraman (1997, p. 48)
identifies three strategies for better
using automation. The first of
these—“better operator knowledge of
how automation works”—deals with
the predictive model that we have dis-
cussed in terms of trust. The second
strategy requires anticipating and
designing for “large individual differ-
ences (which) make systematic predic-
tion of automation use…difficult.” The
third strategy holds that automation
must not require a high level of cogni-
tive overhead.

Extending this guidance to agents is
a daunting task. Supporting trust
requires that the agents either be very
simple and observable, be intelligible
and make their interior processes and
products visible, or be highly reliable
with explicitly managed communica-
tions. Agents must be designed at
varying levels of sophistication to
accommodate interindividual and
intraindividual differences and must
be so easy to instruct that it is no more
difficult than doing the task ourselves.
These same key points—cost, model-
ing and trust, and adaptivity—are
stressed by Milewski and Lewis (1997)
in their review of the human automa-
tion and agent literature.

One clear conclusion of this review

toward automation and reliance on
automation in a laboratory task. Time
limits on laboratory experiments make
it difficult to test Rempel, Holmes, and
Zanna’s (1985) and Zuboff’s (1988)
hypotheses about developmental
stages of trust. Observation of new and
experienced users of real systems, how-
ever, provides an opportunity to exam-
ine these predictions.

Contrary to conventional wisdom,
human autonomy and control is not
always preferred by experienced users
of automation (Parasuraman 1997).
Reiley (1994), for example, found that
pilots were more reliant on automation
than college students. In the past year,
I have conducted a series of surveys of
University of Pittsburgh students,
examining their use of automated fea-
tures of popular software. Contrary to
our expectation that experienced users
would prefer options giving them
greater control, I have found that it is
the beginning users who prefer high
levels of control, but the more experi-
enced users prefer to relinquish control
to the system. With Microsoft WORD’s
“replace text as you type” spell-correc-
tion option, for example, I found that
over half of the experienced users chose
it, but only 22 percent of the less expe-
rienced users left it on. In agreement
with our conjecture that successful
black-box automation requires explicit
attention to feedback, the experienced
users overwhelmingly chose the mes-
sage for confirming changes, but the
inexperienced users rejected it. Use of
the printer icon in preference to the
menu print option that brings up a dia-
log box allowing customization of a job
showed similar results. Approximately
70 percent of the experienced users
chose the icon, but a similar proportion
of the novices preferred the control
offered by the menu selection.
Although nonlongitudinal observa-
tions of this sort cannot trace the devel-
opment of trust, the preference for con-
trol by new users and the willingness to
relinquish it by the experienced sug-
gests such a progression.

Effort and Individual 
Differences
Return on investment is a recurring
theme in human use of automation.
Often, the functions most easily auto-

to behave supports the appeal of this
approach.

As bases for human modeling of
machine agents, these taxonomies
suggest that agents can be made pre-
dictable by (1) consistently pairing
simple observable actions with input;
(2) making the causes and rules gov-
erning an agent’s behavior transpar-
ent; or (3) making the purpose, capa-
bility, and reliability of the agent
available to the user. Muir (1996, 1994,
1987) refers to the process of acquiring
predictive models of these sorts as trust
calibration, the idea being that perfor-
mance will be better for human-
machine systems in which trust is
accurately calibrated because the
human’s model will allow more accu-
rate predictions. Disregarding issues of
acquisition and extinction trust based
on observable consistency or compe-
tence should yield more accurate pre-
diction than faith in a black box’s per-
formance. The greater predictability of
consistent or competent agents should
also make boundary conditions and
brittleness more apparent and remedi-
able. Agents trusted on faith, by con-
trast, would require a high degree of
reliability across their range and more
communication to maintain accurate
coordination. Experiments in our lab-
oratory (Sycara et al. 1998; Lenox,
Roberts, and Lewis 1997) support these
hypotheses, finding that although sub-
jects interacted more extensively with
an opaque agent requiring faith, an
agent of observable competence led to
substantially better target identifica-
tion and resolution of encounters.

Trust and Experience
Miur’s (1996, 1987) and Lee and
Moray’s (1992) experiments address
the effects of errors on ratings of trust
and willingness to use automation.
Muir (1996, 1987) reports a large con-
stant error (predictable) had approxi-
mately the same impact on ratings of
trust as a much smaller variable error
than the level-of-trust model would
suggest. Both Muir (1996, 1987) and
Lee and Moray (1992) found correla-
tions between ratings of trust and
reliance on automation; however,
recent studies of pilots (Reiley 1996;
Singh, Molloy, and Parasuraman 1993)
found no relation between attitudes
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of psychological literature involving
human trust of automation is that
anthropomorphism can do little to
improve HAI in the near term. Faith,
the only form of trust that can be asso-
ciated with a presentation mimicking
human behavior, is the least helpful in
terms of coordinated behavior and the
most difficult to acquire. Transparent
forms of presentation that make the
competence and rules of agent behav-
ior apparent are more promising for
improving performance and establish-
ing trust.

Human-Agent Interaction
Norman’s human reference model
organizes agents into three broad
classes: (1) anticipatory, (2) filtering,
and (3) semiautonomous. Each class
presents its own design challenges to
promoting effective human interac-
tion. In this section, representative
examples of each of these classes are
discussed.

Anticipatory and 
Filtering Agents
Anticipatory agents are classified by our
model as those that automate some
portion of the action-execution cycle.
Although an anticipatory agent can
have significant information-gather-
ing interactions with the domain, this
information is gathered to determine a
context used to infer the user’s likely
intent. Anticipatory agents are a sort
often portrayed in fiction and typified
by an intimate acquaintance with
their user’s intentions and preferences,
such as an experienced butler. Because
these intentions and preferences can
be quite idiosyncratic, complex, and
difficult to express, anticipatory agents
are often constructed as learning
agents. As such, their task is not only
to act in accordance with what is prob-
ably their user’s intention but to learn
mappings from the software context
and sequences of user actions to the
subsequent action.

Our distinction between action
anticipation and filtering is somewhat
artificial because the learning methods
used and actions learned can be simi-
lar. This similarity emphasizes the
cyclical character of human relations
to domains and the inseparability of

action in directing attention and eval-
uation in determining subsequent
actions. Anticipatory agents can be
grouped into two broad classes: (1)
those that perform a simple concept-
learning task to mimic a human user’s
categorization scheme and (2) those
that seek to infer a user’s plan of action
by observing a more complex se-
quence of actions to recognize the
plan they are instantiating. Lesh and
Etzioni (1995) attack this second
sequential decision problem of plan
recognition for performing simple
tasks using the UNIX operating system,
such as finding and printing a file.
After each observed command, the set
of possible plans supported by the
sequence decreases. This problem,
which is exponentially large in the
number of goal predicates, illustrates
just how difficult tasks that appear
easy to humans can become. Deployed
and tested agents that learn a user’s
“intention” are overwhelmingly of the
simple concept-learning sort.

CAP (CALENDAR APPRENTICE) (Mitchell
et al. 1994), an agent that learns room
scheduling preferences, exemplifies
the action-learning approach. CAP

assists the user in managing a meeting
calendar by providing an online calen-
dar and e-mail facility. Users can enter
and edit meetings on the calendar and
instruct CAP to send invitations. CAP

observes user actions “over the shoul-
der” and, as it acquires a rule set for
predicting durations, locations, times,
and weekdays of meetings, begins
making suggestions to the user. Perfor-
mance of learned rules is tracked, and
as they are validated and new and
hopefully more robust rules are
learned, the agent will be able to make
increasingly useful suggestions. Even

in the relatively stable environment of
Carnegie Mellon University, room
scheduling had enough variance to
stymie CAP a good deal of the time.
Plots of prediction accuracy show a
clear term-to-term periodicity with
accuracy falling to the fortieth per-
centile at term transitions and rising
to 60 percent or above by the middle
of the term. Based on the reference
model, CAP is an agent that automates
the processes of intention formation
and action planning. It is not
autonomous because it requires a
human action to initiate its sugges-
tion process. The go–no go option giv-
en the user for executing CAP’s plan is
appropriate given the observed accu-
racies. CAP’s users can tolerate this lev-
el of unreliability because the system
is consistent and relatively transpar-
ent and provides explicit feedback
(the suggestion). A similar meeting
scheduling agent that doesn’t specify
the room to be used is reported by
Kozierok and Maes (1993). Their cal-
endar agent explicitly displays certain-
ty factors providing more detailed
feedback and a more favorable basis
for reliability judgments.

The most popular task for anticipa-
tory agents is the simple concept-
learning problem of learning a hu-
man’s categorization scheme. Using a
feature vector extracted from a source
such as e-mail headers, a concept-
learning algorithm such as ID3 is used
to replicate this categorization. New
instances can then be sorted into the
learned categories. Agents of this sort
frequently bridge the gap between
anticipation (automation of action) and
filtering (automation of evaluation)
because after classifying (matching the
user’s intent), they can go an addition-
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vide opportunities for partial learning to put its
best foot forward. As a consequence, for a given
degree of learning, agent reliability is im-
proved, and trust is more easily granted. Strate-
gies of suggestion, rather than action, such as
followed by CAP are another adjustment neces-
sary at these levels of reliability.

Instructions and 
Semiautonomous Agents
Just as friends and spouses cannot always guess
what we want unless we tell them, it is unrea-
sonable to presume that primitive inductive-
learning methods will empower agents to do
so. Many of the routine cognitive tasks we
would like to delegate to agents involve rela-
tively complex sequences of behaviors, such as
extracting particular information from a site
on the web, monitoring a news group for a
recent topic, or performing some set of condi-
tional actions. What is significant about this
list is that these requests all involve sequences
of actions that, although individually con-
strained, combine to form unlearnable wholes.
The problem of communicating these desires
directly, however, is precisely the problem of
end user programming that intelligent agents
were supposed to resolve.

Actions that are removed in time and place
from the user cannot be learned by observing
and must  explicitly be requested. The most
commonly encountered instructable agents of
this sort are the notification agents found at
many web sites. These agents typically use a
form-based interface to allow a visitor to enter
an event that he/she wants to be notified
about, such as a sale on airfares. When the
event occurs, the agent is triggered, and notifi-
cation is sent by e-mail.

Potential remedies for more sophisticated
instructions are the usual suspects: high-level
scripting languages, forms and direct-manipu-
lation interfaces, programming by demonstra-
tion, and visual languages. Each approach has
limitations that make it difficult for use in
instructing semiautonomous agents. Scripting
languages are difficult to learn and use. Many
of the functions of branching, looping, and
running asynchronously needed by semiau-
tonomous agents are expressible but take too
much effort. Scripting languages are far more
general than the constrained sets of tasks one
might want performed by an agent, but if all
the scripts likely to be needed were written, a
long reference manual and commands with
too many parameters to understand would
result. If direct manipulation were chosen, the
accessibility problems would be solved but at
the cost of an impoverished language with

al cycle by accepting this implicit evaluation
and executing a subsequent action such as
deleting the message. It makes no difference to
the concept- learning algorithm that can as eas-
ily categorize incoming messages such as “buy
IBM” or “invade Iraq” as the prototypical clas-
sification “file in folder A or B.” The difference
comes on the other side of the interface where
a user might need explicit feedback or transpar-
ent justification for automating actions to
adapt to the agent without concern.

The classic concept-learning agent is the
mail or news agent that learns to file, delete,
prioritize, and notify a user of incoming mail.
MAXIMS (Lashkari, Metral, and Maes 1994), for
example, performs all these functions after
observing how a user chooses to deal with e-
mail using the same mechanisms as the Mass-
achusetts Institute of Technology scheduling
agent (Kozierok and Maes 1993). Other systems
of this sort include MAGI (Payne and Edwards
1997), a learning agent that runs behind the X-
MAIL reader, and a news-story categorizer used
with an online edition of a campus newspaper
(Gustafson, Schafer, and Konstan 1998).

Although agents discussed to this point have
used learning to adapt to and anticipate the
intentions of an individual user, a similar class
of systems does just the opposite. If one pre-
sumes that an individual’s preferences will be
similar to that of similar individuals, a system
can learn from a large sample of interactions
(for robust learning) with different individuals
without extensive and error-prone trials for
any one person. This approach, known as col-
laborative filtering, has spawned a variety of sys-
tems. Some filter manually by making available
comments and ratings, for example, helping
people select corporate documents by annotat-
ing their reactions (Goldberg et al. 1992) or rat-
ing articles in NETNEWS (Resnick et al. 1994).
Others act as learning agents by comparing a
user’s profiles with those on file and estimating
preferences on this basis, for example, Ringo
Maes’s (1994) music-recommendation system.
Krulwich’s (1997) LIFESTYLE FINDER takes this
approach to its logical conclusion by using 62
demographic clusters identified by market
researchers as a starting point.

A common thread across these varied sys-
tems is the use of inductive learning and feed-
back to automate the process of expressing our
goals and intentions to the computer. The
results are both impressive and humbling.
When learning agents are expected to do more
than recommend movies and music, their
inaccuracies become apparent. Mechanisms
such as Maes’s user-selectable tell-me and do-it
thresholds or displayed certainty factors pro-

Articles

76 AI MAGAZINE

A common
thread across
these varied 

systems is the
use of inductive

learning and
feedback to

automate the
process of
expressing 
our goals 

and intentions
to the 

computer.



deficits in just the areas needed—
branching, looping, and asynchrony.

A notable approach combining the
power of scripting and the accessibility
of direct manipulation and form filling
is Etzioni and Weld’s (1994) SOFTBOT.
The user interacts through a form-
based interface with a planning pro-
gram that, taking the user’s goal as an
input, searches a library of action
schema to generate a sequence of
actions achieving the goal. The use of
goals as input and action schemata as
agent primitives makes this agent con-
sistent with our reference model and
consistent with our definition of an
agent as a process automating stages of
this model.

Programming by demonstration
also appears a good candidate for
instructing agents, although not in the
programming of animation, as in KID-
SIM (Smith, Cypher, and Spohrer 1997)
or BITPICT (Furnas 1991). With Maes’s
(Shneiderman and Maes 1977, p. 53)
characterization that “an agent basi-
cally interacts with the application
just like you interact with the applica-
tion,” programming by demonstration
in the fashion of EMACS macros would
achieve just this effect. This is similar
in spirit to over-the-shoulder learning
but not subject to the pitfalls of induc-
tive learning.

The final option, a visual language,
seems particularly promising for
instructing semiautonomous agents.
Specialized applications in which pro-
grams can be assembled from modules
(such as the action schema and goals
from Etzioni and Weld [1994]) are par-
ticularly suited to visual languages.
LABVIEW provides such a programming
environment for signal processing,
where logic and signal processing can
be specified by laying out and con-
necting icons. A visual language for
semiautonomous agents might allow
the user to associate reusable behav-
iors, such as communications, remote
accesses, or asynchronous responses,
with appropriate goals in a similar
fashion. Based on the reference model,
this explicit specification of the rela-
tion between goals and actions allows
a nearly transparent means of instruc-
tion.

Two current systems—the AGENT edi-
tor of the RETSINA system (Sycara et al.

1996) and Thurman, Brann, and
Mitchell’s (1997) APPRENTICE extension
to OFMSPERT (OPERATOR FUNCTION MOD-
EL)—follow this approach. The key
component of the RETSINA reusable
agent architecture is a hierarchical rep-
resentation of task-subtask relation-
ships. Temporal constraints between
nodes are used to handle task plan-
ning and execution. The agent’s plan
library contains skeletal plans and
plan fragments (cases) that are in-
dexed by goals and can be retrieved
and instantiated according to the cur-
rent input parameters. The retrieved
and instantiated plan fragments are
used to form the agent’s task tree that
is incrementally executed. The formal-
ism can also handle sophisticated con-
trol structures, such as deadlines, loop-
ing, and periodic tasks. The scheduling
module schedules each of the plan
steps, taking as input the agent’s cur-
rent set of executable action and
deciding which action, if any, is to be
executed next. The communication
module accepts and interprets mes-
sages from other agents. The agent edi-
tor allows its user to visually construct
and manipulate task trees to assemble
agents having customized capabilities
and behaviors.

The OFMSPERT APPRENTICE used a simi-
lar mechanism for editing the relation
between goals and actions to allow a
user to improve the performance of an
expert system. The system performs
the task until it encounters some
impasse or error condition, at which
time it summons its operator. The
operator solves the problem and pro-
grams the system to deal with similar
impasses. The OFMSPERT operations
model consists of a model of the sys-
tem being controlled, an activity mod-
el of operator activities, and a plan
archive indexing activity trees. The
OFMSPERT APPRENTICE is a computational
implementation of the operations
model. It is designed as a vehicle for
incremental automation of the control
task. The plan executor and monitor
enable an operator to observe the plan
in action and repair minor problems
that arise by making changes to dis-
played activity trees. APPRENTICE is being
developed to support operations
automation in satellite ground control.

Both the RETSINA editor and the

OFMSPERT APPRENTICE have the proper-
ties identified as desirable for human
interaction with powerful agents.
Both visually specify actions through
goal-based trees and allow users to
instruct the agent at this level. Despite
their sophistication, both agents are
transparent, and their competence
and predictability can be inspected
from the activity trees. Rather than
relying on anthropomorphism faith
and uncorrectable behaviors, these
agents present themselves as they are
and promise to be more useful as a
result.
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