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in the computational understanding
of the mind. A common methodology
of cognitive science is to express a the-
ory about human cognition in a com-
puter program and compare the pro-
gram’s behavior with human
cognitive behavior. However, many
fundamental questions remain unan-
swered: To what extent will we match
the behaviors of humans and comput-
er models? How do we measure the
success of a model? How do we identi-
fy the source of such a success? We
hope that the workshop and this arti-
cle will stimulate more discussions
and that a better understanding will
be reached in the near future.

Cognitive modeling has traditional-
ly been underrepresented in American
Association for Artificial Intelligence
conferences and journals. However, its
importance should not be underesti-
mated. It could provide key insights
into understanding intelligence and,
thus, provide great impetus for the fur-
ther development of AI. In the early
days of AI, models and systems were
closely tied to the study of cognition.
Although this tradition has been kept
at a few places, more connections
between AI and other disciplines such
as psychology are certainly necessary,
even at the present time of specializa-
tion and technical sophistication in AI.

Types of Cognitive Model
Cognitive models can be of two major
types: One type consists of (to some
extent) detailed computational pro-
cess models (or AI models), and the
other consists of (behavioral) mathe-
matical models. The former seeks to
capture internal computational
(mechanistic) processes that generate
overt cognitive behavior (for example,

■ In computational cognitive modeling,
we hypothesize internal mental pro-
cesses of human cognitive activities and
express such activities by computer pro-
grams. Such computational models
often consist of many components and
aspects. Claims are often made that cer-
tain aspects play a key role in modeling,
but such claims are sometimes not well
justified or explored. In this article, we
first review some fundamental distinc-
tions and issues in computational mod-
eling. We then discuss, in principle, sys-
tematic ways of identifying the source of
power in models.

The workshop entitled “Compu-
tational Modeling: The Source
of Power,” which we cochaired

and organized, was held at the Thir-
teenth National Conference on Artifi-
cial Intelligence (AAAI-96) on 5
August 1996 in Portland, Oregon. In
this well-attended workshop, 14 talks
and a panel discussion were given on
the nature and fundamental issues of
computational cognitive modeling
and on the source of power in models.
Although viewpoints differed from
speaker to speaker, some common
themes emerged from the presenta-
tions and discussions. The difficulties
that cognitive modelers face and the
identification of sources of power in
cognitive models were especially
prominent issues in the discussions.
To summarize and continue the
theme of the workshop, in this article,
we highlight a few important issues in
cognitive modeling, including the
reasons why computational models
work, measures of success, and sys-
tematic ways of identifying the source
of power in models.

Computational cognitive modeling
is an important aspect in cognitive
science because it plays a central role

Anderson [1993, 1982] and Sun
[1995]). The latter works through
measuring a number of behavioral
parameters (such as recall rates,
response time, or learning curves) and
relating them in a precise way
through mathematical equations
(Luce 1995; Coombs, Dawes, and
Tversky 1970).

Mathematical models can reveal
fundamental regularities and struc-
tures in cognitive behavior in much
the same way as physicists find regu-
larities in the physical world by relat-
ing physical measures through math-
ematical equations (Luce 1995). If we
can find suitable measures and rela-
tions of these measures that reveal
fundamental (as opposed to superflu-
ous) regularities, mathematical mod-
els are superb tools to gain insights
into cognitive processes. They can
also be useful in serving as a kind of
abstract ideal that computational
models try to match at the outcome
level.

The problem with mathematical
models, however, is that it is extreme-
ly difficult to find suitable measures.
The lack of good behavioral measures
leads to, on the one hand, the appar-
ent lack of regularities and, on the
other hand, superfluous regularities
that can be misleading, which is even
worse for cognitive modelers than an
apparent lack of regularities. Real-
world cognitive behavior is extremely
complex and varied, and thus, it is dif-
ficult to find good behavioral mea-
sures that can provide deep and theo-
retically interesting insights.

Computational models complement
mathematical models by providing
detailed internal process descriptions
that reveal underlying mechanisms of
behavior. Computational modeling
opens up the black box, although it is
usually done so in a highly hypotheti-
cal way. Because in most cases, we do
not have sufficient cognitive data that
can lead directly and unambiguously
to a computational model, numerous
assumptions need to be made, and
parameters need to be set. Thus, mod-
els are often underconstrained from
data, even with all the methodologies
of protocol analysis (Ericsson and
Simon 1993) and other stylized proce-
dures. It is also highly difficult to verify
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empirically all the aspects (or even the
major aspects) of a computational
model because of various practical
problems, such as the prohibitive
amount of work necessary, the lack of a
clear measure that eliminates con-
founding factors, and the ethical
objections to performing certain kinds
of experiment. It is also difficult to
identify the key aspects in a model (the
source of power) that lead to capturing
certain cognitive phenomena. 

Another shortcoming of computa-
tional models is that they often fail to
account for individual differences and,
thus, serve only as an “average sub-
ject,” which is nonexistent and ulti-
mately meaningless. They might even
average over some important variables
and thus fail to account for variance in
human behavior (c.f., Walker and
Catrambone [1993]). In addition, an
individual model usually cannot
account for all relevant data within its
claimed scope if the scope is sufficient-
ly broad; as a matter of fact, a model
usually can only account for a small
portion therein. Given the shortcom-
ings of each of the two approaches, it
is clear that some combination of the
two approaches might be useful or
even necessary (Anderson 1993).

Abstract models can serve as a com-
promise between mathematical and
computational models. In abstract
models, assumptions and details not
essential to the phenomena are omit-
ted, yet computer programs are still
necessary to generate model behavior.
For example, Pat Langley (1996) pre-
sented in the workshop such an
abstract model for the sensory-rich
flight-control domain. Later, we dis-
cuss further the role of abstract models
in identifying the source of power
(also see Schunn and Reder [1996]).

Matching Human 
Cognitive Phenomena

Computational (AI) models, because
of their indirect capturing of behav-
ioral data, can be difficult to match
against cognitive phenomena. Never-
theless, computational models can be
made to correspond with cognitive
processes in a variety of ways and thus
shed light on cognition accordingly.
There are at least the following types

of correspondence between models
and cognitive processes, in an increas-
ing order of precision:

First is behavioral outcome model-
ing; in this case, a computational mod-
el produces roughly the same types of
behavior as human subjects do, under
roughly the same conditions. For
example, given a set of scenarios for
decision making, a model makes
roughly the same kinds of decision as a
human decision maker (as, for exam-
ple, in expert systems or commonsense
reasoning models; Collins and Michal-
ski [1989]; Sun [1995]), or given the
same piece of text, an AI model
extracts roughly the same kind of
information that a human reader
would (as, for example, in AI natural
language–processing systems).

Second is qualitative modeling: A
model produces the same qualitative
behaviors that characterize human
cognitive processes under a variety of
circumstances. For example, the per-
formance of human subjects improves
or deteriorates when one or more con-
trol variables are changed; if a model
shows the same changes, given the
same manipulations, we can say that
the model captures the data qualita-
tively (see, for example, Medin, Wat-
tenmaker, and Michalski [1987]; Sun
[1994]).

Third is quantitative modeling: A
model produces exactly the same
quantitative behaviors that are exhib-
ited by human subjects, as indicated
by certain quantitative performance
measures. For example, we can per-
form point-by-point matching of the
learning curve of a model to that of
the human subjects, or we can match
step-by-step performance of a model
with the corresponding performance
of humans in a variety of situations
(see, for example, Anderson [1993,
1982]; Rosenbloom, Laird, and Newell
[1993]).

To date, computational models have
had some successes in terms of model-
ing a wide variety of cognitive phe-
nomena in one of these three senses
(especially the first two). These phe-
nomena include concept learning
(Medin, Wattenmaker, and Michalski
1987), skill learning (VanLehn 1995;
Anderson 1982), and child develop-
ment (Schmidt and Ling 1996; Shultz,

Mareschal, and Schmidt 1996a). They
also include everyday commonsense
reasoning, such as in logic-based mod-
els (Collins and Michalski 1989), case-
based models (Riesbeck and Schank
1989), and connectionist models (Sun
1995) that combine some of the impor-
tant features of the first two types (Sun
1996). Other phenomena being tackled
include word-sense disambiguation in
natural language processing, analogical
reasoning (Thagard and Holyoak 1990;
Holyoak and Thagard 1989), the acqui-
sition of verb past-tense forms (Ling
and Marinov 1993; Rumelhart and
McClelland 1986), game playing (such
as Go or Tic-tac-toe) (Epstein and
Gelfand 1996), and expertise (expert
versus nonexpert performance) (Chi et
al. 1989).

Source of Power in 
Computational Models

A computational model consists of
many components. When a computa-
tional model is judged successful with-
out a proper justification and detailed
analysis, it might not be clear which
aspects of the model are the main rea-
sons for success. Many claims have
been made in the past and are still
being made at the present. Therefore,
it is essential to consider ways of iden-
tifying the source of power in a com-
putational model to account for an
apparent success and make meaning-
ful predictions. The source of power in
a model can include the (learning)
algorithm and its biases; the parame-
ters of the algorithm; task representa-
tion (including the scope, the covered
aspects, and the way the human data
modeled are collected and interpret-
ed); data representation (for example,
attributes used); and learning and
training regimes, especially their
underlying assumptions and biases
(for example, Jackson, Constandse,
and Cottrell [1996]), including data
sampling and selection and data pre-
sentation (the order and frequency of
presentation).

Obviously, some of these aspects
might not or should not be legitimate
sources of power. Until now, it has
been a matter of case-by-case consid-
erations in the context of specific
models and tasks, without any generic
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criteria that can be applied universal-
ly. Understanding the source of power
is useful in zeroing in on central
aspects of a successful model, identi-
fying commonalities of models tack-
ling the same problems, and compar-
ing different models. We should also
try (at least) to verify and validate
important aspects that serve as
sources of power in a computational
model on the basis of behavioral data
and cognitive phenomena.

Identifying the 
Source of Power

Assume that a model consists of n
components, denoted as C1; C2…, Cn.
For example, Ci can be learning algo-
rithms, parameters of the learning
algorithm, task-representation for-
mats, and training regimes. Each Ci
will take a particular value from a
range of possible values. For example,
if C1 represents the learning algo-
rithm, then it can be the decision
tree–learning algorithm, feed-forward
connectionist model, or nearest-
neighbor learning algorithm. To iden-
tify the source of power in the model,
we need to find out the Ci’s that are
crucial to the success of the modeling.
(See the discussion of criteria of suc-
cessful modeling later in this section.)

If all Ci’s are independent, identify-
ing the source of power in the model
might not be too difficult. Basically,
the task becomes much the same as
the sensitivity analysis: To see if Ck is
crucial in modeling, we hold the val-
ues of all other Ci’s constant and vary
the value of Ck to see if the model is
still as successful as before (again, see
the discussion on the criteria of suc-
cessful modeling). If other values of Ck
do not change much of the model’s
behavior, then Ck (in terms of those
values tested) is deemed not impor-
tant to the model’s success and, thus,
cannot be the source of power in the
model. However, if other values of Ck
worsen the model’s behavior, the cur-
rent value of Ck might be crucial to the
model’s success and can be a source of
power in the modeling. This process
should be applied repeatedly to every
Ci in the model.

At the workshop, Shultz, Bucking-
ham, and Oshima-Takane (1996a) pre-

sented generative cascade-correlation
connectionist models for two cogni-
tive development tasks: (1) the acqui-
sition of the relation between velocity,
time, and distance and (2) the acquisi-
tion of personal pronouns. They sys-
tematically explored a variety of net-
work topologies and variations in
critical learning parameters and found
that it is the growing aspect (inclusion
of new hidden units) of cascade-corre-
lation networks that produces the
desired behaviors. They concluded
that the generative feature of cascade-
correlation networks is the source of
power in modeling child develop-
ment.

In another workshop paper, howev-
er, Miller (1996) pointed out, contra-
dicting common belief, that a certain
commonly accepted aspect of models
might not be the source of power. It is
widely accepted that graded perfor-
mance of a model is the result of grad-
ed representations in the model, such
as numeric weight representations in
connectionist models. Miller (1996)
demonstrated that a symbolic rule-
based model symbolic-concept acqui-
sition can produce the appropriate
graded performance both in terms of
accuracy and response time. The sys-
tem does not rely on graded represen-
tations but, rather, on the process that
acquires and accesses symbolic rules.
Miller concluded that the source of
graded performance might have little
to do with explicit graded representa-
tions in the models.

As another example, Schmidt and
Ling (1996) constructed a symbolic
development model for the balance-
scale task. Their model, like previous
models of the balance-scale task,
requires assumptions on representa-
tion, learning environment, and
learning algorithm. To verify that their
choice is crucial in leading toward a
successful model, they systematically
varied each component (while other
components were held constant) to
see if the resulting model produces
implausible behavior. The compo-
nents that were shown to play a key
role in modeling shed light on the
source of power in the model and pro-
vide meaningful predictions about the
model in terms of representation,
learning environment, and learning

algorithm. For example, several redun-
dant attributes (such as an attribute
that is true if the scale has equal
weight and distance on the both sides)
are introduced in representation.
Without them, the model did not pro-
duce the right behavior (for example,
the first two stages are missed). Thus, a
meaningful prediction is made that
the simple balance problem is particu-
larly salient for the purpose of chil-
dren’s learning, which seems to be
supported by the work of Johnson
(1987). In terms of learning algo-
rithms, connectionist networks were
tested on the same problem, but the
model failed to show the first two
stages, indicating that the decision
tree–learning algorithm is crucial to
the model’s success.

However, in most computational
models, Ci’s are not independent. That
is, if the value of Ck is changed, the
values of other Ci’s might have to be
changed correspondingly, or other
components that did not exist before
might be introduced. For example, if
the current model uses the feed-for-
ward connectionist learning algo-
rithm (C1), it would normally require a
distributed representation (C2). If C1 is
changed to a decision tree–learning
algorithm, and C2 is kept constant, it
might not be the best choice for the
decision tree–learning algorithm be-
cause it can apply to the symbolic dis-
crete representation directly without
introducing the distributed one. In
this case, C2 might need to be changed
(to symbolic representation) accord-
ingly. The same effect occurs when a
symbolic learning algorithm (which
uses symbolic representation directly)
is substituted with a connectionist
learning algorithm. In this case, C2 has
to be changed to the distributed repre-
sentation. In addition, the connec-
tionist learning algorithm has its own
parameters (such as network architec-
ture [Wiles and Elman 1996], number
of hidden layers, number of nodes in
each hidden layer, learning rate, range
of initial random weights), which did
not exist in the previous model. These
parameters are now introduced as a
by-product of changing the learning
algorithm (C1) to a connectionist
learning algorithm. Now the question
is, If one cannot “keep everything else
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the same,” how can one determine if
Ck is a source of power or not?

In principle, if the change of a cer-
tain component (such as C1) causes
necessary changes in other compo-
nents (such as C2) or introduces some
new components to the model (such
as C2′), one should choose new values
of such components that optimize the
performance of the model. As an
example, if a symbolic decision tree–
learning algorithm is replaced by a
connectionist learning algorithm (a
new value of C1), one has to make the
necessary change in representation
(C2). Some distributed representation,
which optimizes the model’s perfor-
mance, should be chosen. Other com-
ponents, such as sampling method
and training-testing sets, should be
kept the same. Additional compo-
nents (C2′) introduced, such as the
learning rate and network structure,
should be assigned values that opti-
mize the model performance in terms
of the criteria of successful modeling
(see discussion later).

If, with the change of C1 and the cor-
responding changes, the overall mod-
el’s behavior remains the same, then
we deem that C1 does not play a critical
role in modeling and is not a source of
power. If, however, such a change
results in a deterioration of the model,
then the value of C1 is critical in the
successful modeling.

This procedure certainly oversimpli-
fies an important and complex issue in
the computational modeling—it only
outlines a mechanical principle of
identifying the source of power in
computational models. For real prob-
lems, it might be hard to identify com-
ponents in a model, determine if com-
ponents are mutually dependent or
not, vary all possible values of some
components, assign values of depen-
dent components that optimize the
model’s outcome, and evaluate if the
model is more successful with the new
components. In certain simple cases,
one can use this procedure to identify
if certain components of a model are
or are not the source of power.

As an example, Ling (1994) imple-
mented a series of head-to-head com-
parisons between his symbolic pattern
associator (SPA) and feed-forward con-
nectionist models in terms of general-

ization abilities on learning the past
tense of English verbs. When using
exactly the same training and testing
example sets, as well as the same tem-
plated binary distributed representa-
tion (designed for connectionist mod-
els), the testing accuracies of SPA and
the connectionist model are close
(56.6 percent versus 54.4 percent).
These figures indicate that the differ-
ence in learning algorithms is not sig-
nificant using the distributed repre-
sentation. However, symbolic learning
algorithms such as SPA can take sym-
bolic attributes directly, instead of
using the distributed representation.
Thus, Ling (1994) applied SPA on sym-
bolic representation directly (but it
kept other components unchanged).
Surprisingly, the testing accuracy is
much improved (from 54.4 percent to
76.3 percent). This improvement sug-
gests that the symbolic algorithm
(with symbolic representation) is a
source of power in a more successful
model in terms of the generalization
ability, although connectionist models
provided the initial insight into the
modeling of this task.

This process is effectively an explo-
ration of design space for cognitive
models, as advocated by Sloman
(1996) in his talk at the workshop.
Although we are exploring the behav-
ioral space in the sense of identifying
the range and variations in human
behavior, we also need to explore the
design space (that is, the possibilities
for constructing models) that maps
onto the behavioral space, so that we
can gain a better understanding of the
possibilities and limitations of our
modeling methodologies and open up
new avenues for better capturing cog-
nitive processes in computational
terms. This is especially important for
developing reasonable, realistic, and
convincing cognitive architectures
that are highly complex and in which
many design decisions have to be
made without the benefit of a clear
understanding of their full implica-
tions in computational or behavioral
terms (Sun 1994). Systematic, or at
least methodic, exploration of design
space is necessary in identifying the
source of power in cognitive models.

Finally, abstract models are another
approach to facilitate the identifica-

tion of the source of power in model-
ing. As we discussed earlier, abstract
models omit details that are not essen-
tial to the phenomena, but computer
simulation is still performed for mod-
eling behaviors. This approach would
reduce the number of components in
computational models, and therefore,
it becomes easier to analyze and recog-
nize key components in the models.
At the workshop, Langley (1996) pre-
sented an abstract model for the sen-
sory-rich flight-control domain for
which the traditional computational
model has been found too complex to
model the available data. In the
abstract model, few parameters are
incorporated, and the model’s central
assumptions are analyzed and tested
in detail (Langley 1996).

Criteria of 
Successful Modeling

Identifying the source of power in
models relies on the criterion used for
measuring successful modeling, which
itself is an important issue in cognitive
modeling. It is evident by now that any
sufficiently powerful computational
(AI) model can be made to capture data
in any narrow domain (especially those
sanitized, isolated data with a fixed rep-
resentation). For example, in his work-
shop presentation, Mareschal (1996)
reviewed three different models of
object permanence. All three models
capture the data sufficiently well. How-
ever, five aspects of the information
processing in the models distinguish
good development models from oth-
ers: (1) whether the model has a transi-
tion mechanism, (2) whether there is
gradual knowledge transition, (3)
whether the model is directly coupled
to the input, (4) whether the model
extracts information from the entire
scene, and (5) whether the model
reflects individual differences. In
another workshop paper, Thagard
(1996) presented a review of four com-
peting models for analogical reasoning.
He outlined seven criteria—(1) gen-
uineness, (2) breadth of application, (3)
scaling, (4) qualitative fit, (5) quantita-
tive fit, (6) comparison, and (7) com-
patibility—for evaluating computa-
tional models of cognition in general.
The four competing models for analog-
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ical reasoning were analyzed and com-
pared using these criteria (also see Veale
et al. [1996]).

Therefore, we need to look into
deeper issues beyond simple goodness
of fit. In general, such issues can
include (1) explanatory power, degrees
to which data are accounted for by a
model. It is especially important to use
real-world situations, not just sani-
tized, isolated data, because real-world
situations can be vastly different from
laboratory situations; (2) generality, to
be discussed in more detail later; (3)
economy, the succinctness with which
a model explains behaviors; (4) consis-
tency with other knowledge, including
compatibility of the transient process
of models with human learning and
development data, compatibility with
models (or principles) in other related
domains, and compatibility with evi-
dence from other disciplines (especial-
ly psychological and neurobiological
evidence); and (5) computational pow-
er and complexity and the correspon-
dences of the model with the human
data in this regard. There is always a
many-to-many mapping between
computational models and the cogni-
tive phenomena to be modeled, so the
development and application of fun-
damental, abstract generalized criteria
in analyzing and comparing models
are essential.

Among these factors, generality is an
especially important consideration. To
measure generality, we propose to look
at an abstract measure: r = scope /
degree of freedom. Generally speaking,
the greater the measure is, the better;
that is, we don’t want a model with too
narrow a scope but with too many
parameters. As an example, Schmidt
and Ling’s (1996) symbolic model of
the balance-scale task can explain the
task with any number of weights, but
the connectionist models work only
for the five-weight version. At the same
time, the symbolic model has only one
free parameter, but the connectionist
models have more. Therefore, the sym-
bolic model has a broader generaliza-
tion ability than connectionist models
on the same task.

However, the application of this
abstract measure of generality in other
more complex domains might not be
easy, especially when comparing

generic models such as cognitive
architectures (Sun 1994). First, how do
we define scope? For one thing, the
scope of an architecture widens gradu-
ally as more and more applications are
developed. It is not static. Second,
how do we define degree of freedom?
Can it be the number of parameters?
In production systems, is it each pro-
duction (or each numeric parameter
therein)? In neural networks, is it each
weight? If we take a close look at the
two types of system—symbolic and
connectionist—we see that the two are
actually not comparable; in general, it
is not just the number of parameters
that matters but also the roles that
they play in the working of a model in
both learning and performance. For
example, weights are mostly learned,
but productions are mostly hand cod-
ed (at least to begin with), thus entail-
ing different amounts of predetermi-
nation. The earlier suggestion, then, is
too crude a measure to capture the dif-
ference between these two types of
system and to compare their degrees
of freedom. We suggest that we can
look into parameters of a model along
the following dimensions: (1) infor-
mation content of a parameter; (2)
ease in obtaining (estimating) a
parameter; (3) preset versus learned;
(4) amount of hand coding in either
case (for example, much more hand
coding in a production [such as that in
SOAR] [Rosenbloom, Laird, and Newell
1993]) than in weights of neural net-
works); (5) emergent computational
process versus that directly captured,
step by step, by parameters (for exam-
ple, by productions in a production
system); and (6) the contribution of
each parameter (for example, each
weight by itself in a backpropagation
network might reveal little about the
function of the network.)

For example, in a backpropagation
neural network, when different ran-
dom initial weights and different
training regimes (data presentations)
result in similar model behaviors, free
parameters are few: the number of
hidden units (assuming that one layer
of hidden units is used) and one or
two parameters for learning (such as
the learning rate and the momentum
parameter). However, in a production
system (even one with the learning

capability), many more parameters are
used. Such parameters include each
initial production (which requires
extensive hand coding and contains a
great deal of information) and param-
eters in whatever learning algorithms
are used (for example, chunking or
proceduralization in Anderson [1993]
and Rosenbloom, Laird, and Newell
[1993], which are the most commonly
used forms of learning in symbolic
cognitive modeling), which might
require a priori estimation. Most like-
ly, such a system contains a large num-
ber of initial productions, on the order
of hundreds, which means at least
hundreds of free parameters that can
be tuned. In addition, the computa-
tional process is strictly directed by the
chaining of individual productions,
and the steps of the process can be iso-
lated and identified with individual
productions. Thus, it is easier, in the
sense of being less constrained, to con-
struct a cognitive model that captures
a certain amount of data using pro-
duction systems than using a connec-
tionist model. Some other types of
symbolic model, such as decision
trees, share with connectionist models
this property of being highly con-
strained. Such highly constrained
models, with fewer parameters, can
naturally lead to more succinct expla-
nations of cognitive phenomena and,
therefore, better insights into the fun-
damentals of cognitive processes.

Another aspect to consider is how
to incorporate all relevant cognitive
dimensions. To construct reasonable
computational models of cognition,
we would like to capture some of the
known cognitive distinctions: learn-
ing versus performance, implicit ver-
sus explicit learning, implicit versus
explicit performance (for example,
memory), controlled versus automa-
tized performance, and short-term
versus long-term memory. We should
investigate how each dimension can
be (potentially) captured or ignored in
each individual computational model.
These dimensions also provide useful
clues and constraints in constructing
computational models of cognition,
especially those comprehensive mod-
els known as cognitive architectures.

Finally, intertheoretical reduction
needs to be considered. At the top of
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the cognitive modeling hierarchy, we
have abstract models of behavior such
as the kind of behavioral mathematical
model that we discussed earlier, and
beneath them in this hierarchy, more
detailed computational models can
provide process details. In fact, a hier-
archy of more and more detailed com-
putational models can coexist that can
progressively move toward capturing
more and more microscopic levels of
cognitive behavior. This is much like
intertheoretical reduction in physical
science: Thermodynamics that de-
scribes mass properties at a macroscop-
ic level can be reduced to Newtonian
physics at the molecular level, which,
in turn, can be reduced to atomic and
subatomic physics, which can then be
related to even lower levels describable
by quantum physics, and so on. This
point was emphasized in an excellent
treatment of mathematical psychology
by Luce (1995).

Concluding Remarks
To recapitulate some main points,
there is almost always a many-to-many
mapping between models and cogni-
tive processes to be modeled. Thus, we
need generalized criteria for evaluating
and comparing models, especially
those of different paradigms (e.g., con-
nectionist versus symbolic) and of dif-
ferent levels of abstraction (for exam-
ple, mathematical models versus
computational models). We need to
analyze systematically a successful
model to identify its source of power
and, thus, to make meaningful predic-
tions from the model. It is also impor-
tant to pay serious attention to the
need of capturing real-world situations
and performance, not just isolated san-
itized data. This is because real-world
data can be vastly different from labo-
ratory situations, as has been demon-
strated in many different domains
(Sun 1994), and thus, can broaden the
scope and enhance the ecological real-
ism of cognitive modeling.
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