
■ Robotic soccer is a challenging research domain
that involves multiple agents that need to collab-
orate in an adversarial environment to achieve
specific objectives. In this article, we describe CMU-
NITED, the team of small robotic agents that we
developed to enter the RoboCup-97 competition.
We designed and built the robotic agents, devised
the appropriate vision algorithm, and developed
and implemented algorithms for strategic collabo-
ration between the robots in an uncertain and
dynamic environment. The robots can organize
themselves in formations, hold specific roles, and
pursue their goals. In game situations, they have
demonstrated their collaborative behaviors on
multiple occasions. We present an overview of the
vision-processing algorithm that successfully
tracks multiple moving objects and predicts trajec-
tories. The article then focuses on the agent behav-
iors, ranging from low-level individual behaviors
to coordinated, strategic team behaviors. CMUNITED

won the RoboCup-97 small-robot competition at
the Fifteenth International Joint Conference on
Artificial Intelligence in Nagoya, Japan.

Problem solving in complex domains
often involves multiple agents, dynamic
environments, and the need for learning

from feedback and previous experience. Robot-
ic soccer is an example of such complex tasks
for which multiple agents need to collaborate
in an adversarial environment to achieve spe-
cific objectives. Robotic soccer offers a chal-
lenging research domain to investigate a large
spectrum of issues relevant to the development
of complete autonomous agents (Asada et al.
1998; Kitano, Tambe, et al. 1997).

The fast-paced nature of the domain neces-
sitates real-time sensing coupled with quick
behaving and decision making. The behaviors
and decision-making processes can range from
the most simple reactive behaviors, such as
moving directly toward the ball, to arbitrarily
complex reasoning procedures that take into
account the actions and perceived strategies of

teammates and opponents. Opportunities, and
indeed demands, for innovative and novel
techniques abound.

One of the advantages of robotic soccer is
that it enables the direct comparison of differ-
ent systems; they can be matched against each
other in competitions. We have been pursuing
research in the robotic soccer domain within
the RoboCup initiative (Kitano, Kuniyoshi, et
al. 1997), which, in 1997, included a simulator
league and small-size and medium-size robot
leagues. We have been doing research exten-
sively in the simulator league, developing
learning techniques and team strategies in sim-
ulation (Stone and Veloso 1998a, 1998d).
Many of these team strategies were directly
incorporated into the robotic system described
here. We are currently also applying machine-
learning techniques to acquire hard-to-tune
boundary behaviors for the real robots.

This article describes the overall architecture
of our small-size robotic soccer team. The com-
bination of robust hardware, real-time vision,
and intelligent control represented a signifi-
cant challenge that we were able to successfully
meet. The work described in this article is fully
implemented as our CMUNITED-97 RoboCup
team. CMUNITED-97 won the RoboCup-97 small-
robot competition at the Fifteenth Internation-
al Joint Conference on Artificial Intelligence
(IJCAI-97) in Nagoya, Japan. Our team scored a
total of 13 goals and only suffered 1. Figure 1
shows a picture of our robotic agents.1

The specific contributions of the CMUNITED-
97 robot team include the following:

First is a demonstration of a complete inte-
gration of perception, action, and cognition in
a team of multiple robotic agents.

Second is a set of robust behaviors for indi-
vidual agents. Each agent is equipped with
skills that enable it to effectively perform indi-
vidual and collaborative actions.

Third is reliable perception through the use
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each robot and the ball. This information is
sent to an off-board controller and distributed
to the different agent algorithms. Each agent
evaluates the world state and uses its strategic
knowledge to decide what to do next. Actions
are motion commands that are sent by the off-
board controller through radio communica-
tion. Commands can be broadcast or sent
directly to individual agents. Each robot has an
identification binary code that is used on
board to detect commands intended for the
robot. This complete system is fully imple-
mented.

Although it might be possible to fit an on-
board vision system onto robots of small size,
in the interest of being able to quickly move
on to strategic multiagent research issues, we
opted for a global vision system. It is part of
our ongoing research to also investigate and
develop teams of robots capable of local per-
ception (Shen et al. 1998; Mataric 1995). Part
of our challenge in developing approaches to
individual robot autonomy will consist of
combining different sources of perception,
namely, local sensing, and targeted and broad-
casted communication. 

The fact that perception is achieved by a
video camera that overlooks the complete field
offers an opportunity to get a global view of
the world state. Although this setup simplifies
the sharing of information among multiple
agents, it presents a challenge for reliable and
real-time processing of the movement of mul-
tiple moving objects—in our case, the ball, five
agents on our team, and five agents on the
opposing team. 

of a Kalman-Bucy filter. Sensing through our
vision-processing algorithm allows for color-
based tracking of multiple moving objects and
prediction of object movement, particularly
the ball, even when inevitable sharp trajectory
changes occur.

Fourth is multiagent strategic reasoning.
Collaboration between robots is achieved
through (1) a flexible role-based approach by
which the task space is decomposed, and
agents are assigned subtasks; (2) a flexible team
structure by which agents are organized in for-
mations, and homogeneous agents flexibly
switch roles within formations; and (3) alter-
native plans allowing for collaboration (for
example, passing to a teammate or shooting at
the goal directly) that are controlled by prede-
fined metrics and are evaluated in real time.

Real-Time Perception for 
Multiple Agents 

The small-size robot league setup is viewed as
an overall complete autonomous framework
composed of the physical navigational robotic
agents, a video camera overlooking the playing
field connected to a centralized interface com-
puter, and several clients as the minds of the
small-size robot players. Figure 2 sketches the
building blocks of the architecture.

The complete system is fully autonomous,
consisting of a well-defined and challenging
processing cycle. The global vision algorithm
perceives the dynamic environment and
processes the images, giving the positions of
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Figure 1. The CMUNITED-97 Robot Team That Competed in RoboCup-97.



This section focuses on presenting our
vision-processing algorithm, whose accuracy
makes it a major contribution toward the suc-
cess of our team.

Detection
The vision requirements for robotic soccer
have been examined by different researchers.
Small-size and medium-size robotic soccer
researchers investigate on-board and off-board
vision processors, respectively (Shen et al.
1998; Sargent et al. 1997; Asada et al. 1996;
Sahota et al. 1995). Because of the reactiveness
of soccer robots, both frameworks require a
high-perception processing cycle time, and
because of the rich visual input, dedicated
processors or even digital signal processors
have been used.

The vision system we successfully used at
RoboCup-97 was surprisingly simple, consist-
ing of a frame grabber with frame-rate transfer
from a three-CCD camera.

The detection mechanism was kept as sim-
ple as possible. The RoboCup rules have well-
defined colors for different objects in the
field, and these were used as the major cue
for object detection. The RoboCup rules
specify a green-color field with white mark-
ings at the side. Also, it specifies a yellow- or
blue-colored circular area on the top of the
robots, one color for each team. A single-col-
or patch on the robot is not enough to pro-

vide orientation information. Thus, we
added an additional colored patch (pink) on
top of each robot. The ball is an orange golf
ball. We are able to differentiate these colors
in a robust manner in color space.

The set of detected patches is unordered.
The detected color patches on the tops of the
robots are then matched by their distance.
Knowing the constant distance between the
team color and the pink orientation patch, we
match patches that are this distance apart. Two
distance-matched patches are marked as a
robot capturing its position and orientation.

Noise is inherent in all vision systems. False
detections in the current system are often of a
magnitude of 100 spurious detections to each
frame. The system attempts to eliminate false
detection using two different methods: First,
color patches of a size not matching the ones
on the robots are discarded. This technique fil-
ters off most “salt and pepper” noise. Second,
by adding the distance-matching mechanism
briefly described earlier, all false detections are
eliminated. 

Data Association
Data association addresses the problem of
retaining robot identification in subsequent
frames. One obvious approach to differentiate
a number of robots using color-based detection
is to use that number of different colors. How-
ever, with five robots, it is not simple to find
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The EKF is a recursive estimator for a possi-
bly nonlinear system. The goal of the filter is to
estimate the state of a system. The state is usu-
ally denoted as an n-dimensional vector x. A
set of equations is used to describe the behav-
ior of the system, predicting the state of the
system as xk + 1 = f (xk, uk, wk), where f(⋅) is a
nonlinear function that represents the behav-
ior of the nonlinear system; uk is the external
input to the system; and wk is a zero-mean,
Gaussian random variable with covariance
matrix Qk; wk captures the noise in the system
and any possible discrepancies between the
physical system and the model; and k denotes
time. 

The system being modeled is being observed
(measured). The observations can also be non-
linear: zk = h(xk, vk), where zk is the vector of
observations; h(⋅) is the nonlinear measure-
ment function; and vk is another zero-mean,
Gaussian random variable with covariance
matrix Rk, which captures any noise in the
observation process. 

The EKF involves a two-step iterative
process: (1) update and (2) propagate. The cur-
rent best estimate of the system’s state x̂, and
its error covariance, is computed on each iter-
ation.

During the update step, the current observa-
tions are used to refine the current estimate
and recompute the covariance. During the
propagate step, the state and covariance of the
system at the next time step are calculated
using the system’s equations. The process then
iteratively repeats, alternating between the
update and the propagate steps. 

Through a careful adjustment of the filter
parameters modeling the system, we were able
to achieve successful tracking and, in particu-
lar, prediction of the ball trajectory, even when
sharp bounces occur (Han and Veloso 1998).
Figure 3 shows a screen shot of the field as gen-
erated by the vision-processing module. The
ball predicted trajectory is shown as the white
line off the ball, the teammates are displayed
as Ts to represent their orientation, and oppo-
nents are circles. The figure shows the trajecto-
ry of a teammate robot.

Our vision-processing approach worked per-
fectly during the RoboCup-97 games. We were
able to detect and track 11 moving objects (5
teammates, 5 opponents, and the ball). The
prediction of the movement of the ball provid-
ed by the EKF is used by several agent behav-
iors. In particular, it allows the goalkeeper to
look ahead in time and predict the best
defending position. During the game, no goals
were suffered because of miscalculation of the
predicted ball position. 

five robustly distinguishable colors because sev-
eral colors are assigned to shared objects, such
as green for the field, orange for the ball, white
for the field markings, and blue and yellow for
the team colors. Furthermore, the inevitable
variations in lighting conditions over the area
of the field may make a detection and associa-
tion mechanism fully based on separable colors
unreliable. Therefore, we fit each of the robots
with the same color tops, and no attempts are
made to differentiate them by color. 

Our data-association approach solves the
problem of retaining robot identification in
subsequent frames, given that all the robots
have the same-color marker. We devised a
greedy algorithm to retain association based
on the spatial locations of the robots. During
consecutive frames, association is maintained
by searching, using a minimum-distance cri-
terium. Current robot positions are matched
with the closest positions from the previous
frame, taking into account the size of the
robots and an estimate of their velocity. The
algorithm is robust to noisy detections, but in
theory, it is not guaranteed to find the optimal
correct matches (Han and Veloso 1998). How-
ever, in practice, our detection and association
approach is highly reliable. 

Tracking and Prediction
In the setting of a robotic soccer game, the
ability to detect merely the locations of objects
on the field is often not enough. Just as for real
soccer players, it is essential for robots to pre-
dict future locations of the ball (or even of the
other players). We have used an extended
Kalman filter (EKF) for such a purpose (Kalman
and Bucy 1961).
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Figure 3. Field View from the Vision-Processing Module.



Multiagent Strategy Control
We achieve multiagent strategy through the
combination of accurate individual and collab-
orative behaviors. Agents reason through the
use of persistent reactive behaviors that are
developed to aim at reaching team objectives.

Single-Agent Behaviors
To be able to successfully collaborate, agents
require robust basic skills, including the ability
to go to a given place on the field, the ability
to direct the ball in a given direction, and the
ability to intercept a moving ball. All these
skills must be executed while the robot avoids
obstacles such as the walls and other robots.

The robot’s hardware includes two motors
that allow it to turn on itself. The front and the
back of the robots are also absolutely equiva-
lent in terms of navigation. Through these two
features, the robots can therefore efficiently
switch direction by turning, at most, 90°.

If a robot is to accurately direct the ball
toward a target position, it must be able to
approach the ball from a specified direction.
Using the ball prediction from the vision sys-
tem, the robot aims at a point on the far side
of the target position. The robots are equipped
with two methods of doing so: (1) ball collec-
tion, moving behind a ball and knocking it
toward the target, and (2) ball interception,
waiting for the ball to cross its path and then
intercepting the moving ball toward the target.

When using the ball-collection behavior,
the robot considers a line from the target posi-
tion to the ball’s current or predicted position,
depending on whether the ball is moving. The
robot then plans a path to a point on the line
and behind the ball such that it does not hit
the ball on the way and such that it ends up
facing the target position. Finally, the robot
accelerates to the target. Figure 4a illustrates
this behavior.

When using the ball-interception behavior
(figure 4b), however, the robot considers a line
from itself to the target position and deter-
mines where the ball’s path will intersect this
line. The robot then positions itself along this
line so that it will be able to accelerate to the
point of intersection at the same time that the
ball arrives.

In practice, the robot chooses between its
two ball-handling routines based on whether
the ball will eventually cross its path at a point
such that the robot could intercept it toward
the goal. Thus, the robot gives precedence to
the ball-interception routine, only using ball
collection when necessary. When using ball
collection, it actually aims at the ball’s predict-
ed location a fixed time in the future to even-

tually position itself in a place from which it
can intercept the ball toward the target.

Multiagent Behaviors
Although the single-agent behaviors are effec-
tive when just a single robot is on the field, if
all five robots were simultaneously chasing the
ball and trying to shoot it at the goal, chaos
would result. To achieve coordinated multia-
gent behavior, we organize the five robots into
a flexible team structure.

The team structure, or formation, defines a
set of roles, or positions, with associated be-
haviors. The robots are then dynamically
mapped into the positions.

Each robot is equipped with the knowledge
required to play any position in each of several
formations. The positions indicate the areas of
the field that the robots should move to in the
default situation. There are also different active
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obstruction-free index of the two line seg-
ments that the ball must traverse if the receiver
is to shoot the ball (lines b and c in figure 6).
In the case of a shot, only one line segment
must be considered (line a). The value of each
possible pass or shot is the product of the rele-
vant obstruction-free indexes. Robots can be
biased toward passing or shooting by further
multiplying the values by a factor determined
by the relative proximities of the active robot
and the potential receivers to the goal. The
robot chooses the pass or shot with the maxi-
mum value. The obstruction-free index of line
segment l is computed by the algorithm
shown in figure 5 (variable names correspond
to those in figure 6).

Thus, the obstruction-free index reflects
how easily an opponent could intercept the
pass or the subsequent shot. The closer the
opponent is to the line and the farther it is
from the ball, the better chance it has of inter-
cepting the ball.

The Goalkeeper   The goalkeeper robot has
both special hardware and special software.
Thus, it does not switch positions like the oth-
er robots. The goalkeeper’s physical frame is
distinct from that of the other robots in that it
is as long as allowed under the RoboCup-97
rules (18 centimeters) to block as much of the
goal as possible. The goalkeeper’s role is to pre-
vent the ball from entering the goal. It stays
parallel and close to the goal, aiming always to
be directly even with the ball’s lateral coordi-
nate on the field.

Ideally, simply staying even with the ball
would guarantee that the ball would never get
past the goalkeeper. However, because the
robots cannot accelerate as fast as the ball can,
it would be possible to defeat such a behavior.
Therefore, the goalkeeper continually moni-
tors the ball’s trajectory. In some cases, it
moves to the ball’s predicted destination point
ahead of time. The decision about when to
move to the predicted ball position is both cru-
cial and difficult, as illustrated in figure 7. Our
goalkeeper robot currently takes into account
the predicted velocity and direction of the ball
to select its moves.

Discussion and Conclusion
CMUNITED-97 successfully demonstrated the fea-
sibility and effectiveness of teams of multia-
gent robotic systems. Within this paradigm,
one of the major challenges was to close the
loop, that is, to integrate all the different mod-
ules, ranging from perception to strategic mul-
tiagent reasoning. CMUNITED is an example of a
fully implemented multiagent system in

modes that determine when a given robot
should move to the ball or do something else
instead. Finally, the robot with the ball choos-
es whether to shoot or pass to a teammate
using a passing evaluation function.

These high-level, multiagent behaviors were
originally developed in simulation and then
transferred to the robot-control code. Only the
run-time passing evaluation function was
redefined. Further details, particularly about
the flexible team structures, are available in
Stone and Veloso (1998b, 1998c).

Positions, Formations, and Active
Modes Positions are defined as flexible
regions within which the player attempts to
move toward the ball. For example, a robot
playing the right-wing (or right-forward) posi-
tion remains on the right side of the field near
the opponents’ goal until the ball comes
toward it. Positions are classified as defender,
midfielder, or forward based on the locations
of these regions. They are also given behavior
specifications in terms of which other posi-
tions should be considered as potential pass
receivers.

At any given time, each of the robots plays
a particular position on the field. However,
each robot has all the knowledge necessary to
play any position. Therefore, the robots can—
and do—switch positions on the fly. For exam-
ple, robots A and B switch positions when
robot A chases the ball into the region of robot
B. Then, robot A continues chasing the ball,
and robot B moves to the position vacated by
A.

The predefined positions known to all play-
ers are collected into formations. An example
of a formation is the collection of positions
consisting of the goalkeeper, one defender, one
midfielder, and two attackers. Another possible
formation consists of the goalkeeper, two
defenders, and two attackers.

Run-Time Evaluation of Collaborative
Opportunities One of CMUNITED-97’s main
features is the robots’ ability to collaborate by
passing the ball. The robots use an evaluation
function that takes into account teammate
and opponent positions to determine whether
to pass the ball or shoot. In particular, as part
of the formation definition, each position has
a set of positions to which it considers passing.
For example, a defender might consider pass-
ing to any forward or midfielder, but a forward
would consider passing to other forwards but
not backward to a midfielder or defender.

For each such position that is occupied by a
teammate, the robot evaluates the pass to the
position as well as its own shot. To evaluate
each possible pass, the robot computes the

CMUNITED-97
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the feasibility
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multiagent
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Figure 6. Run-Time Pass Evaluation Is Based on the Position of the Opponents. 

1.  obstruction-free-index = 1.
2.  For each opponent O:

• Compute the distance x from O to l and the distance y along l to l’s origin, that is,
the end at which the ball will be kicked by the robot (figure 5).

• Define constants min-dist and max-denominator. Opponents farther than min-dist
from l are not considered. When discounting obstruction-free-index in the next step,
the y distance is never considered to be larger than max-denominator. For example,
in figure 5, the opponent near the goal would be evaluated with y = max-denominator,
rather than its actual distance from the ball. The reasoning is that beyond distance
max-denominator, the opponent has enough time to block the ball:  the extra distance
is no longer useful.

• If x < min-dist and x < y, 
obstruction-free-index *= x/MIN(max-denominator, y).  

3.  Return obstruction-free-index.

which the loop is closed. In addition, we
implemented interesting strategic behaviors,
including agent collaboration and real-time
evaluation of alternative actions.

It is generally difficult to accumulate signif-
icant scientific results to test teams of robots.
Realistically, extended runs are prohibited by
battery limitations and the difficulty of keep-
ing many robots operational concurrently.
Furthermore, to date, we have only had the

resources to build a single team of five robots,
with one spare. Therefore, we offer a restricted
evaluation of CMUNITED based on the results of
4 effective 10-minute games that were played
at RoboCup-97. We also include anecdotal evi-
dence of the multiagent capabilities of the
CMUNITED-97 robotic soccer team.

The CMUNITED-97 robot team played games
against robot teams from the Nara Institute of
Science and Technology (NAIST), Japan; Uni-



successful passes. The most impressive goal of
the tournament was the result of a four-way
passing play: One robot passed to a second,
which passed to a third, which shot the ball
into the goal.

In general, the robots’ behaviors were visu-
ally appealing and entertaining to the specta-
tors. Several people attained a first-hand appre-
ciation for the difficulty of the task when we
let them try controlling a single robot with a
joystick program that we developed. All these
people (several children and a few adults)
found it difficult to maneuver a single robot
well enough to direct a ball into an open goal.
These people in particular were impressed with
the facility with which the robots were able to
pass, score, and defend.

We are aware that many issues are clearly
open for further research and development.
We are currently systematically identifying
them and addressing them for our next team
version.
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Table 1. The Scores of CMUNITED-97’s Games in
the Small-Robot League of RoboCup-97.

CMUNITED-97 won all four games.

Figure 7. Goalkeeping. 
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Notes
1. For the hardware description of our robots, see
Veloso et al. (1998).
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