
■ In this article, the body of a report on automated
deduction is presented that notes some significant
achievements and takes a studied look at the
future of the field.

Automated deduction is concerned with the
mechanization of the deductive process
in the fullest meaning of the concept.

Mechanization of the deductive process in-
cludes not only proving new mathematical
results by computer but also formally verifying
the correctness of (certain properties of) com-
puter chip designs and programs and even
deducing the programs themselves from for-
mal specifications of the task. A less obvious
application is the use of automated inference
tools within programming languages and
within programs that produce scheduling algo-
rithms and optimize other programs. Some of
the early work in this field is already part of the
fabric of the AI world. The machinery devel-
oped in this field is useful in inferring missing
rules or facts in a problem specification (abduc-
tion) and generalizing from examples to full
specifications (inductive inference, learning
from examples), although I do not deal with
these forms of reasoning in this article. 

Some of the goals of the automated deduc-
tion field, such as fully mechanizing the proof
capability of a mathematician, are still distant,
but others, such as verifying computer chip
designs, are already doable in part. This combi-
nation of profound, if distant, goals and
important reachable goals makes automated
deduction an exciting field. The purpose of this
article is to focus on the opportunities that
seem both important and promising and to
note especially those that have promise for
near-term payoff.

This article is the slightly modified body of a

report to the National Science Foundation
(NSF) Division of Computer and Computation
Research, July 1997, entitled “Automated
Deduction: Some Achievements and Future
Directions.” The major change is the deletion
of a short section on human resources. (Also
missing here is an extensive executive summa-
ry.) The report is the outcome of the Workshop
on the Future Directions of Automated Deduc-
tion held in Chicago on 20–21 April 1996. To
obtain broader input, especially from countries
outside North America, a call for commentaries
was issued to the automated deduction com-
munity. The commentaries, together with the
full report, are available on the web at
www.cs.duke.edu/AutoDedFD. It is important
to note that the material presented in both the
report and this article represents an American
viewpoint; input to the report by non-Ameri-
cans was limited to the commentaries. Further-
more, the material and viewpoints presented
here are an extension of the workshop contri-
butions, and I am solely responsible for the
substance and manner of presentation of this
article.

I begin with a summary of the major accom-
plishments of the automated deduction field.
This summary is followed by consideration of
the future directions of automated deduction,
first with a brief consideration of near-term
opportunities and then with a discussion of
the longer-term issues and opportunities. The
latter presentation is organized by application
area, where for convenience the core area of
mathematics is considered an application area. 

Major Accomplishments
Automated deduction has been an active area
of research since the 1950s. (For a historical and
sociological view of the field, see MacKenzie
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problems in logic. This approach to proving
logic theorems drew a reaction from several
logicians, such as Paul Gilmore, Hao Wang,
and Martin Davis. They felt (correctly) that
better results in proving theorems could be
realized immediately by using tools of mathe-
matical logic rather than being restrained to
the imitation of humans.

One of the proof procedures that followed
the LOGIC THEORIST was the Davis and Putnam
(1960) procedure (Davis, Logemann, and Love-
land 1962). This procedure is a propositional
decision procedure when provided a fixed
propositional formula but is also a first-order
logic proof procedure whenever larger proposi-
tional formulas are formed in a standard way
from the given first-order formula. Although
the later resolution proof method formalized a
generally better way of relating propositional
formulas and first-order formulas, the proposi-
tional decision procedure is receiving as much
attention today as when first presented. (There
are actually two related procedures with the
same general label; compare the two previous-
ly referenced papers or see, for example,
Dechter and Pearl [1988].) The Davis-Putnam
procedure has been used recently in the math-
ematics realm to solve some open problems in
quasigroups (Slanet, Fujita, and Stickel 1995)
and in the AI realm as a method to solve con-
straint-satisfaction problems (Dechter and
Rish 1994; Dechter and Pearl 1988).

Another important program developed in
the 1950s was the GEOMETRY THEOREM-PROVING

MACHINE, a project headed by Gelernter at IBM
(Gelernter 1963; Gelernter, Hanson, and Love-
land 1963). This program used a geometry dia-
gram as semantic information to prune the
search tree sufficiently to prove many results
that high school students prove on final
exams. This use of problem-specific informa-
tion, called the semantics of the problem, is
one of the biggest challenges in automated
deduction. The ability to prove interesting the-
orems in geometry and give readable proofs
has been surpassed only recently by Chou,
Gao, and Zhang (1994) in automated theorem
provers using the area method that they per-
fected. I say more about the Chou, Gou, Zhang
automated theorem prover later.

The resolution proof method introduced by
J. A. Robinson (1965) was a significant advance
over preceding proof procedures for its intro-
duction of the unification algorithm that pro-
vided a provably complete method for working
at the first-order level; the Herbrand terms did
not have to be enumerated. The simplicity of
the inference rules and the later discovery of
how to retrieve “answers” from the substitu-

[1995]. For an overview of the first 25 years of
the field, see Loveland [1984]; see Siekmann
and Wrightson [1983] for a comprehensive col-
lection of the “classic” papers of 1957–1970.)
Significant work has been done both in the ear-
ly years and lately. Early important work
includes the Davis-Putnam procedure and the
resolution proof calculus. For recent notable
work, I focus on some significant theorem-
proving systems: the geometry theorem
provers of Chou (Chou, Gao, and Zhang 1994;
Chou 1988); the Boyer and Moore (1988) inter-
active theorem prover NQTHM and its successor
ACL2 (Kaufmann and Moore 1996); the rewrite
rule laboratory (RRL) of Kapur and Zhang
(1995); the resolution prover OTTER (McCune
and Otter 1997; McCune 1994) and the equa-
tional logic prover EQP by McCune (1996); the
interactive higher-order logic provers NUPRL

(Constable et al. 1986), PVS (Owre, Rushby, and
Shankar (1992), and HOL (Gordon and Melham
1993); and ANALYTICA (Clarke and Zhao 1993),
which embeds a symbolic computation pro-
gram, MATHEMATICA.1 In the following subsec-
tions, I briefly discuss some of the successes
realized with use of these and other procedures
and systems. I mention here just one recent
and significant success: the discovery by the
theorem prover EQP of a proof of an important
mathematical conjecture. Settling the open
problem, known as the Robbins algebra prob-
lem, is a milestone because it is by far the most
difficult open problem to date whose proof was
discovered by a computer (not just using a
computer). This problem had been attempted
by many mathematicians, including the
famous logician Tarski, who subsequently
directed a number of young mathematicians to
it as a challenge problem. (The accomplish-
ment by EQP, and McCune, was featured by the
New York Times in December 1996 [Kolata
1996].) In the remainder of this section, I
review quickly some major achievements—
both early and more recent—in automated
deduction; such accomplishments lay the
foundation for understanding the opportuni-
ties that I see ahead and the future directions I
emphasize. 

Early Achievements 
I make no attempt to be historically complete
but, rather, note events of particular perti-
nence to our present status. I do note the first
automated theorem prover, the LOGIC THEORIST

developed by Newell, Shaw, and Simon (1963)
in the mid-1950s. The LOGIC THEORIST was sig-
nificant for several innovations, including the
first use of linked lists and its use of human
problem-solving techniques to solve reasoning
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Early Automated 
Theorem Provers and 

Proof Techniques

Logic Theorist—1956—reflected human problem-solv-
ing techniques.

Geometry Theorem-Proving Machine—1959—proved
many theorems given on high school geometry exams
using a diagram for heuristic aid.

Davis-Putnam proof procedure—1960—was one of the
most-used proof procedures for determining tautolo-
gies or refutable formulas in propositional logic.

Resolution proof procedure—1965—combined a perfect-
ed pattern-matching algorithm with a variant of
modus ponens to give the most-used proof procedure
to date.

Model-elimination proof procedure—1968—when aug-
mented with resolution concepts, led to the inference
engine used in the programming language Prolog.

Demodulation, paramodulation—1967, 1968—are infer-
ence rules for equality that replaced most equality
axioms to permit direct reasoning with equality.

Knuth-Bendix completion procedure—1970—showed how
equality rewriting (demodulation) could be structured
to provide a decision procedure for some equality sys-
tems and a powerful proof procedure for other equality
systems.

tions made in the proof process (Green 1969)
led to its inclusion in many programs, from the
ML programming language system (polymor-
phic-type inference) to natural language
processors, question-answering systems, expla-
nation-based reasoners, and deductive database
systems. The inference engine of the logic pro-
gramming language Prolog is a resolution sys-
tem. The resolution calculus has been at the
heart of several successful theorem provers
developed at Argonne National Laboratory, of
which the latest is the theorem prover OTTER

developed by McCune (1994). OTTER is current-
ly being used by mathematicians in research
published in standard mathematics journals;
has been used to solve several open mathemat-
ics problems; and has been used in ways only
indirectly related to mathematical theorem
proving, such as circuit design and verification.

An important contribution of the automat-
ed deduction community was introduced
under the name demodulation by Wos and G.
Robinson at Argonne National Laboratory
(Wos et al. 1967). It is an equational inference
rule later developed into the subdiscipline of
term rewriting, pushed forward substantially by
the paper of Knuth and Bendix (1970). Term
rewriting is used in most of the automated
deduction systems that I discuss in this article
and is used in computer algebra systems and
functional language implementations.

One success story for the application of
automated deduction concepts and tools is the
logic programming area. The most famous
example is Prolog, which contains a resolu-
tion-based inference engine at its core (Robin-
son 1992; Bratko 1990). (Historically, the
deduction mechanism of Prolog is a merger of
resolution and a related procedure called MOD-
EL ELIMINATION [Kowalski 1984; Loveland
1969].) Prolog is one of the two major AI lan-
guages, predominately in Europe (whereas Lisp
is predominant in the United States). It was
instrumental in the implementation of many
of the early backchaining expert systems and is
used extensively as a prototyping language for
many process designs, among other uses. Two
applications conferences are currently held
each year, one in Europe and one in Japan.
More recently, logic programming technology
has been combined with constraint solving to
create the important concept of constraint log-
ic programming and the realization of
immensely useful constraint logic program-
ming systems. Other languages based on
deduction include ML (Milner, Tofte, and Harp-
er 1990) and LAMBDA-PROLOG (Nadathur and
Miller 1988). ML is becoming an influential lan-
guage for type inference, among other things,

and LAMBDA-PROLOG is used to prototype theo-
rem provers.

More Recent Achievements 
The recent achievements I name are programs
because the recent advances that are conceptu-
al are usually embedded in systems. I discuss
some of these achievements in more detail lat-
er. I consider the more recent achievements in
the context of a problem area.

Program synthesis is the perfect real-world,
economically important application for auto-
mated deduction; however, program synthesis,
like most tasks requiring an automated intel-
lect, is much further from reality than expect-
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cannot find on its own, such as difficult induc-
tion hypotheses and key lemmas. The verifica-
tion was done at a detailed level and is an
impressive analysis. ANALYTICA, developed at
Carnegie Mellon University (CMU) by Clarke
and Zhao (1993), has just recently produced
fully automatically a proof of the correctness
of a division circuit that implements the float-
ing-point standard set forth by the Institute of
Electrical and Electronics Engineers. The
prover is built around the symbolic computa-
tion system MATHEMATICA. This exciting accom-
plishment does not void the work mentioned
previously because the analysis is less detailed
than the interactive verifications. The HYTECH

system developed at Cornell University and
the University of California at Berkeley is a rea-
soning system for analysis of hybrid systems,
primarily a symbolic model checker. Earlier
versions of the system were built on top of
MATHEMATICA (Hensinger and Ho (1995). 

Other specification-verification systems
exist that handle commercial problems. HOL

(Gordon and Melham 1993), an interactive
prover developed at Cambridge University and
now being used and upgraded in industry, has
produced several large correctness proofs of
real security systems that were delivered to cus-
tomers. In another application, AT&T is using
HOL to analyze and secure its large switching
net. Lucent Technologies (Bell Laboratories) is
using a combination of HOL and NUPRL to verify
the SCI cache coherency protocol. The RRL sys-
tem of Kapur and others has verified commer-
cial-size adder and multiplier circuits (Kapur
and Subramaniam 1996). 

At present, the automated deduction
technology most widely used in indus-
try is in the realm of hardware verifica-

tion. Such methods typically involve a repre-
sentation for propositional formulas called
binary decision diagrams (BDDs) (Moore
1994). BDD manipulation procedures can per-
form the same task, determining a tautology or
its negation, as the Davis-Putnam procedure
and propositional resolution procedures. How-
ever, they have been found particularly useful
for circuit representation. 

BDD packages (for creation and combining
of BDDs) are used in logic checkers that check
the equivalence of two logic circuit designs.
BDD packages are often also used in model
checking, where specifications, presented as
propositional temporal logic formulas, are
checked in the intended model, the circuit,
presented as a state-transition diagram (Burche
et al. 1992; Clarke, Emerson, and Sistla 1986).

ed by optimists 40 years ago (cf. the AI world).
Logic programming is, in theory, program syn-
thesis but, in practice, has too heavy a proce-
dural component and too limited an area of
effective application at present to be the final
solution. For program synthesis, the present
secret to realizing applications is to greatly
constrain the task that the automated deduc-
tion machinery has to do. This key idea of con-
straining search applies in many areas where
automated deduction is applicable. There have
been some notable successes, of which I note
two of the best here. One is the KIDS system by
D. Smith (1990) at Kestrel Institute, which pro-
vides algorithmic schema such as divide-and-
conquer and other search algorithm schema
within which a theorem prover operates. Suc-
cess has been most dramatic in the scheduling
algorithm area, where some derived schedul-
ing algorithms have greatly outperformed the
currently used algorithms. Another program
synthesis success is the AMPHION project (Stickel
et al. 1994), sponsored by the National Aero-
nautics and Space Administration (NASA) and
developed by Lowry and colleagues. The pro-
gram provides astronomical calculations for
satellite guidance. A theorem prover is used to
glue together appropriate routines from a sub-
routine library by matching specifications of
each routine with specifications of the current
demands. 

Because programs will be written by humans
for a long time to come, program verification
is clearly a very obvious and attractive goal.
Considerable funds and effort were invested in
program verification in the 1970s without
commercial success. This situation has led to a
considerable scaling back of expectations and
investment in program verification and a shift
of attention to hardware verification. In hard-
ware verification, the state of the art is
approaching real-world systems, although the
time required to accomplish the verification is
not close to the needs of industry. An advan-
tage of attention to hardware verification is
that the verification of one process (a
microchip) can safeguard a $100 million
investment. (Such high-investment projects
exist in software also, but such systems usually
are so complex that formal verification for
them is rare.) The ACL2 prover (Kaufmann and
Moore 1996), the successor of NQTHM, recently
was used interactively to obtain a formal proof
of the correctness of the floating-point divide
code for AMD’s newest PENTIUM-like micro-
processor. By interactively, I mean the interac-
tion of machine and human where (in this
case) the human provides some search guid-
ance and supplies key ideas that the program
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Checking only one model, instead of all mod-
els, as theorem provers do, allows special-pur-
pose algorithms to verify properties of moder-
ately sized circuits fully automatically. IBM,
Intel, and Motorola are among the companies
that use model checking to verify specifica-
tions of microcontrollers. (Microcontrollers are
integrated circuits, usually smaller than micro-
processors, that make possible the “intelli-
gent” appliances we have today.) Besides logic
checkers and model checkers, other BDD-
based techniques are used for formal verifica-
tion in industry. Of particular note is the sym-
bolic trajectory evaluation method developed
by Bryant and others (Beatty and Bryant 1994). 

As suggested previously, for software verifi-
cation, progress is much slower; the objects
being handled are more complex than hard-
ware structures. However, recently there have
been real-world applications of software verifi-
cation (King and Arthan 1996). Multiple exam-
ples exist in the areas of networks, transaction
systems, and safety-critical systems. The gener-
al area of concurrent systems is appropriate for
formal verification with today’s technology
because the complexity overwhelms human
capabilities but is relatively low compared with
microprocessors. Sufficient success is seen in
these areas that formal methods are receiving
renewed attention by funding agencies. This
attention to formal methods is much broader
than automated deduction technology, but
some of the other techniques, such as symbol-
ic testing, do use automated deduction con-
cepts and methodologies. The ability to tackle
these real-world problems is primarily the
result of the improved capabilities of interac-
tive systems such as NQTHM, ACL2, PVS, NUPRL,
HOL, COQ (Coquand and Huet [INRIA] 1988),
and ISABELLE (Paulson [Cambridge] 1994).
(These systems are also used for purposes other
than verification.) An anecdote underscores
the economic and service value of the valida-
tion of systems and specifications. A subsidiary
of a German aircraft company was hired to
produce software to control the switching of a
complex broadcast network for the main Ger-
man television company. The first submitted
program failed to function properly, as did the
second attempt. Under threat of a lawsuit by
the television company, among other actions
taken, the producing subsidiary turned to the
German research center DFKI for help. The
software tool VSE (verification support environ-
ment) developed in Germany, in part by DFKI,
was used to respecify and verify an essential
component of the system. In the process, it
was discovered that the original specifications
for the network software given to the aircraft

subsidiary were in fact inconsistent! Plans for
the court case included calling the theorem
prover as a witness, but by then, the parties
had settled out of court. The first opportunity
for automated deduction software to get expert
witness status was lost. 

As for success in the mathematics realm, I
already mentioned the settling of an impor-
tant mathematical conjecture by a computer
using general proof discovery techniques
under consideration here. The field of mathe-
matics is influenced in other ways by automat-
ed deduction systems and methods. Some
mathematicians are using automated deduc-
tion programs as mathematical assistants to
achieve new mathematics. Ken Kunen, a Uni-
versity of Wisconsin mathematician, has used
OTTER to prove several results concerning qua-
sigroups that have been published in the Jour-
nal of Algebra, a traditional mathematics jour-
nal (Kunen 1996a, 1996b). (A quasigroup is a
binary system [G; ·] whose multiplication table
is a Latin square.) Another paper on finding
proofs of quasigroup problems interactively,
by Fujita, Slaney, and Bennett (the last author
a leading mathematician in this area), won a
(shared) Publisher’s Prize (best paper award) at
the International Joint Conference on Artifi-
cial Intelligence in 1993, the leading interna-
tional AI conference, as a recognition of the
significant work done (Fujita, Slaney, and Ben-
nett 1993). In this paper, a forward-reasoning
model-generation system built at ICOT (Japan)
was used. OTTER has been used to settle other
open problems, such as finding minimal
axiom sets (McCune 1993). Work is not limit-
ed to first-order logic and propositional logic
provers. NUPRL (Constable et al.) helped con-
firm two conjectures, Higman’s lemma (Con-
stable and Murthy 1991) and Gerard’s paradox
(Murthy 1991; Constable and Murthy 1991),
that were under active investigation by
humans at the time. (For Higman’s lemma, the
humans won, but a subsequent machine-aided
proof showed that the original design for the
proof method, which the humans had aban-
doned, was indeed a feasible method of proof.)
The remarkable geometry provers developed
by Chou, Gao, and Zhang have been used to
obtain new mathematical results in non-
Euclidean geometry. 

Mathematics and logic education are
natural applications for automated
deduction. Some success stories

already exist, and there are new opportunities
in the form of inference systems potentially
useful in education. Of note was an early appli-
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activity level is high. However, much also
remains to be done, and in this section, I
address the question of what can be done in
the near term and in the longer view. There
should be no question of the worth of contin-
uing this research. For example, both very
large system integrated chips and networks are
increasing in complexity, and the need to ver-
ify that these systems function as intended is
growing proportionally, which is made vivid
by the PENTIUM incident and reinforced by the
examples in the preceding section. (The PEN-
TIUM microprocessor had a faulty floating-
point divide implementation that ultimately
cost the manufacturer millions of dollars with
the recall of hundreds of thousands of chips.)
Thus, there is considerable economic incentive
pushing the continued research in this area.
Besides economic forces, social and intellectual
forces also drive research directions and invest-
ment. Our social role is in education, mathe-
matics primarily, but certainly parts of com-
puter science and other subjects as well. There
is also a clear intellectual role centered on
mathematics: the solution of open problems
and, eventually, the development of new
mathematics. At the end of this section, I argue
that the intellectual role actually is much larg-
er than mathematics; in fact, it extends to all
systematic inquiry.

Near-Term Opportunities
In any discussion of future opportunities and
accomplishments, the inevitable question is
when such accomplishments will appear. Esti-
mating arrival times for innovations is, in gen-
eral, a risky business to be avoided. My conces-
sion to this interest is limited to comments on
possible near-term directions and achieve-
ments (roughly five to seven years ahead). In
this time frame, I look to existing successes for
the seed of new successes, including further
use of OTTER (and maybe E-SETHEO, a competing
first-order system new to the scene, whose rea-
son for note I consider later) for general first-
order reasoning applications. OTTER might have
the widest distribution and broadest range of
applications of automated deduction systems
yet developed. However, many other systems
now have user communities of their own,
some sizable: NQTHM, ACL2, and RRL, for exam-
ple, and the higher-order logic systems HOL,
NUPRL, ISABELLE, PVS, COQ, and TPS. Some have
already had sufficient impact on real-world
problems that industry is adopting and aiding
the development of the systems. For example,
ICL of England is developing a commercial
version of HOL. That so many provers have sig-
nificant user communities is an indication that

cation of automated deduction in the com-
pletely computerized course in elementary log-
ic at Stanford University designed by Patrick
Suppes (1960s). He followed this course by one
in axiomatic set theory (1970s) (Suppes and
McDonald 1984). Both computerized course
software embedded interactive theorem
provers, with the student providing the major
steps through a proof (usually with hints) and
the theorem prover handling the details. The
most sophisticated new systems are the geom-
etry provers of Chou, Gao, and Zhang already
mentioned. These systems can prove almost
any theorem in rectilinear planar geometry
(plus circles), Euclidean or non-Euclidean.
Proofs for the standard theorems are usually
short and elegant, with very readable proofs as
output. Admittedly, the ability of the Chou,
Gao, Zhang theorem prover to provide short
readable proofs is not the same as having the
provers embedded into a course structure, but
the opportunity is there. These examples
establish that there indeed have been many
accomplishments in the field of automated
deduction. With this review of examples as
background, I now explore the most promising
future directions for research in this field.

Future Directions
The preceding section on accomplishments
should make clear that much has occurred in
the field of automated deduction and that the

Three Areas Where Automated
Deduction Has Strongly 
Impacted the Real World

Logic programming—The inference engine at the core of
Prolog is a product of automated deduction research.

Program synthesis—The KIDS system has produced
scheduling algorithms and programs superior to those
previously in use.

System verification—Interactive proof systems are being
used to prove that concurrent systems (for example,
networks), safety-critical systems, and security systems
meet their specifications.
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the level of accomplishment in automated
deduction has jumped noticeably in the past
five years and that applications are expected to
continue and show increasing sophistication.2

There is some interest in making automated
deduction systems available to a wider com-
munity in the near future and even some con-
sideration of commercial automated reasoning
systems. To succeed, the system must have a
targeted clientele to whom the system can be
tailored. Tailoring involves selection of a theo-
rem prover (most often a fully automated ver-
sion will be appropriate) and design of a good
user interface. The user interface includes
choice of input and output languages and
manner of providing search information with
the problem input. User interface issues are
discussed near the beginning of the section
Beyond the Subareas. The best current exam-
ple of a proof system ready for a wider audi-
ence is the geometry program(s) of Chou et al.
It has a well-specified problem domain, the
deduction power, the user friendliness, and
multiple hardware versions. However, to be
effective in the education realm, its primary
application area, a software educational sup-
port package might be needed. Some type of
application support package might be a
requirement of all application systems using
theorem provers; certainly, this general need
for support packages seems true of today’s
automated deduction systems.

The verification community is now exhibit-
ing real-world success. I noted earlier that
microcontrollers are being verified in commer-
cial applications, as are various concurrent sys-
tems and transaction systems. Safety-critical
systems are being formally verified. The grow-
ing practicality of this technology is recognized
by NASA in the convening of a workshop on
formal methods where practicing engineers
can meet with leading researchers (more on
this later). There is no denying that automated
deduction technology has increased in visibili-
ty and usefulness in the past few years. This
pace will continue, and applications will come
faster as the examples of success cause more
application engineers to investigate the current
opportunities. However, this increased success
rate for applications does not mean that the
field now breaks open its cornucopia. The
major problem of handling induction, for
example, is as tough as ever and will yield only
to slow, determined work on many fronts. It
has taken a long time by industrial standards
(not relative to the development of the other
mechanism for reasoning, by evolution) to get
to the state we now enjoy, and progress from
here might be as slow as fundamental work has

traditionally been. However, now each accom-
plishment can have a noticeable incremental
impact on applications because it can be added
on top of systems already productive. For these
reasons, I treat the specifics of future verifica-
tion research in the subsection on longer-term
opportunities but acknowledge here that any
accomplishment that “shows up early” likely
will be immediately welcomed in the applica-
tions world. 

I must remark that in the United States the
danger exists that because of funding prob-
lems, some of the systems named earlier will
not continue to be developed. This discontin-
uation of development of deduction systems
might be true even of verification systems that
have the most immediate and focused eco-
nomic reasons for development and have
shown some strong recent success. At present,
it seems likely that Europe will keep its fund-
ing level high. This situation might hurt the
United States commercially in a decade or so,
but for the intellectual outcome, it is nice that
funding continues somewhere. 

In the area of program synthesis, I consider
two outstanding systems that will have near-
term impact, both mentioned in the preceding
section. The impact is quite different in the
two cases. For AMPHION, the interest is in an
exportable system design, whereas for the KIDS

program, the continued development of the
existing system, as well as the applications that
will follow, is of most interest. Both systems
are examples of highly constrained search, the
secret to harnessing automated deduction in
program synthesis with current technology. I
somewhat arbitrarily focus on AMPHION here
and postpone discussion of KIDS until the sec-
tion on the longer-term view. 

AMPHION derives programs from graphic
specifications (input through a menu-driven
regimen), which is translated into a theorem
whose proof defines a program that makes
extensive use of existing software from an in-
system library. The theorem prover, an OTTER-
like prover written at SRI International, works
with an application domain theory that con-
tains axioms encoding (in this application)
basic properties of solar system astronomy and
axioms giving specifications of the available
subroutines. The proof is constrained to be
constructive so that a program can be devel-
oped from the proof. The methodology is
derived from the work of Manna and
Waldinger (Loveland 1984). The system is (in
effect) an extremely sophisticated expert sys-
tem but uses inference capability well beyond
that associated with the “expert system” label. 

I recognize that the existence of a library of
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sidered earlier), linear arithmetic, other deci-
sion procedures, tactic facilities, execution
capabilities, enhanced static checking, lemma
generation, and computer algebra systems.
These are not yet all in one system, and it is
not clear how to optimize joint use, but the
benefits of success are clear. Some systems that
are partially successful in combining tech-
niques are PVS, NQTHM, ACL2, HOL, EVES (Craigen
et al. 1992, 1991), and RRL. PVS is particularly
aggressive about integrating many of these
tools, with quite impressive results. The link-
ing of systems is also occurring. The verifica-
tion of the SCI cache coherency protocol men-
tioned earlier uses a linking of HOL and NUPRL,
which allows many theorems from HOL to be
imported into NUPRL. The linking is a nontrivial
task that took several years of theoretical
groundwork (Howe 1996) because of the differ-
ent formulations of higher-order logic each
system uses. The gain from all this theoretical
effort is the ability to use the deductive aspects
of each where each is strong. 

Another important development direction
is the continued automation of verification
procedures, almost all of which have strong
dependence on highly skilled user input. This
automation task is very difficult in general, of
course, and research has been steadily pushing
on the boundaries of this problem. Progress is
being made at the edges of the problem, such
as type checking and array-bound checking.
(SIMPLIFY is a system that uses simple decision
procedures to find bugs in MODULA-3 programs
[Detlefs 1996]. Although bug finding is not
verification, it is another illustration that some
program analysis tasks can be automated now
by automated deduction–related techniques.) 

Big gains in the automation of verification
systems are likely from the combination of
computer algebra and automated deduction
systems, although problems exist. The possible
gains are illustrated by ANALYTICA. ANALYTICA

runs in fully automated mode. Although it
does not handle the complexity of proof argu-
ments of a good interactive system, it surpasses
almost all fully automated verifiers not using
computer algebra. However, there are prob-
lems of soundness (correctness) in all the
major commercial computer algebra systems—
MATHEMATICA, MAPLE, MACSYMA—which is dis-
turbing. Automated deduction research can
help here, as I discuss later. 

Increased automation of induction proofs
would also realize big gains for verification sys-
tems. Progress is being made, but this problem
is a long-range one; I discuss it briefly under
the paragraph on mathematics. Much of the
progress to date has been made by researchers

subroutines that interact to address a problem
class is not common. With a few successes like
AMPHION, task groups might be motivated to
construct such subroutine libraries. This
opportunity is, of course, in the longer term. A
major concern now is how to identify other
points of application for AMPHION-like projects.
Specific industries do learn through meetings,
trade papers, and the like that particular prob-
lems can be addressed with the new technolo-
gy. These are major ways in which expert sys-
tems technology spread. For the past four
years, NASA has held an annual workshop to
promote such technology transfer for applica-
tions of mechanized formal methods (specifi-
cation and verification) to safety-critical sys-
tems. The existence of such workshops
underscores the real-world value of some auto-
mated deduction technologies. Perhaps a
workshop in applied program synthesis could
feature the AMPHION technology. Other meth-
ods of technology transfer are briefly discussed
in the section on human resource use. The
point is that AMPHION incorporates a powerful
technology that is likely to have other applica-
tions at the present level of our capabilities in
automated deduction. Exploring other possi-
ble applications will also cause the capabilities
to be expanded, thereby providing a useful
focus and helping to teach the subfield how to
scale up to the more complex problems. 

Addressing other possibilities, there might be
near-term products that come from the wedding
of computer algebra and automated deduction
techniques. Likewise, meaningful application of
automated deduction techniques to model-
checking methods of verification might already
be under way. In the next section, I discuss both
subjects (and others) but suppress any tempta-
tion to guess timing beyond the conservative
calls I have already made. 

Longer-Term Opportunities
I now consider the longer-range opportunities
and research directions of various areas of
automated deduction. I begin with the verifi-
cation area because of its application impor-
tance, the emergence of real application suc-
cesses, and the number of projects in the
research community for which verification is a
major application. 

Verification One of the most promising
directions for development of verification sys-
tems is the integration of tools and techniques
that have developed in diverse domains. We
are beginning to see theorem provers that inte-
grate inductive proof techniques, general
rewrite procedures, model checking, proposi-
tional provers (such as the BDD method con-
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addressing the verification problem specifical-
ly. There are advantages to addressing the
automatic generation of induction hypotheses
(one of the most creative tasks in deductive
mathematics) within the verification setting
because verification tasks have certain forms
that allows specialization of the induction
hypothesis methods. Also, verification proofs
are shallower (but messier) than general math-
ematical proofs. These characteristics are rea-
sons why research specifically in verification
must be pursued and not resisted with the
expectation that general automated deduction
research will provide the solution. Rather, the
overall message of 40 years of research in auto-
mated deduction is that when an important
special task can be identified, research should
focus on this special task. 

Automated deduction technology might be
able to enhance the capability of the model-
checking method. Indeed, has already been
accomplished in one manner in the PVS system
by viewing model checking as a decision proce-
dure for a finite (fixed-point) subcalculus of the
PVS higher-order logic. The application of induc-
tion techniques could allow the checking of
parameterized systems by generalized model
checking. An important application would be
the use of a theorem prover to verify the
abstraction mapping of a large system to a
smaller finite-state machine. Then model
checking could be used to check the abstract
machine. As an extension of this idea, systems
might be decomposed for processing by model
checkers with the composition of the compo-
nents verified by a theorem prover. It is likely
that the theorem-proving part would be done
interactively for some time into the future,
whereas the checking of the abstraction could
be done fully automatically by model checking. 

Program Synthesis To many people, pro-
gram synthesis is the most exciting application
area for automated deduction in economic
terms. The idea of presenting human-under-
standable task specifications to a computer sys-
tem and receiving in return a program that is
known to meet the specifications submitted is
hard to fully appreciate in terms of both the
intellectual accomplishment represented and
the economic impact such capability would
have. Once achieved—and full realization of
this dream is surely well in the future—all
investment in automated deduction will be
repaid many times over. I note that this task is
not isolated from other automated deduction
tasks because work such as verification
research moves forward the technology that
program synthesis will (and does) exploit. 

The output of a synthesis machine is no bet-

ter than the quality of the specifications that
are entered. The earlier anecdote about the
German network software makes clear the
problem of assuring the correctness of specifi-
cations. Because developing specifications is
formalizing the informal, there can be no for-
mal proof of correctness issue here. One aspect
to address is the design issue; human error will
be minimized if the specification language is
tailored to the task domain, particularly at the
level of concept representation (“granularity”).
The other major issue to address is tests of rep-
resentation quality. Consistency of the specifi-
cations is one concern, which clearly uses
automated deduction technology. Another
concern is semantic checks, meaning items
from type checking to operational semantics
for some constructs of the specification lan-
guage. This research is under way, as examples
cited earlier illustrate. 

I address the future prospects of program
synthesis in general by first commenting fur-
ther on the KIDS project of D. Smith at Kestrel
Institute. The KIDS program, together with the
associated research effort, is a sophisticated
example of the constrained program synthesis
concept. Inference is used in a major way but
under the control of design tactics (plans) that
are custom built to the algorithm and problem
classes within which the problem of interest
falls. Problems are formally specified by giving
information that includes an input domain
and a notion of what constitutes a problem
solution. This problem theory is fitted to an
algorithm class. (Actually an algorithm theory
extends the problem theory in the sense of
adding appropriate logical structure, including
axioms about the algorithm class, which corre-
sponds to constructing an interpretation
between theories.) For example, there is the
problem-reduction algorithm theory that
includes divide-and-conquer and dynamic
programming algorithm theories in hierarchi-
cal fashion. The divide-and-conquer algorithm
theory, when coupled with a problem specifi-
cation for sorting integers, provides the struc-
ture to yield a quick-sort algorithm. For an
actual program, the coupled algorithm theory
and problem specification theory is all fit to a
program theory that introduces the control
and programming language chosen. The
design tactics that control the inferencing are
carefully tailored to the theories as they are
developed. For example, the divide-and-con-
quer tactic will effectively produce a specific
divide-and-conquer algorithm that is a model
of the general divide-and-conquer theory. The
design tactics have a constructive aspect that
first allows a user to select standard compo-
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specifications. Although efforts have been
applied to the problem of proof by analogy,
this problem area appears to be one of the
harder ones in this field, and substantial
progress seems some distance away at present. 

Mathematics The automated deduction
field has been concerned with finding mathe-
matical proofs for most of its 40 years of exis-
tence. (Concept formation, the heart of math-
ematics to mathematicians, is far more difficult
to automate than proof discovery. Only small
beginnings have been made on the concept
formation challenge.) Although the Robbins
algebra proof discovery stands out at present, I
noted earlier that several provers have been
used to solve open mathematical problems.
Their logical power ranges from propositional
logic to higher-order logic. Some researchers in
the automated deduction field, at least in the
United States, think that automated deduction
research support for mathematics now should
go primarily to solving open mathematics
problems. The merit is that a focus then is set
for funding at a time when little funding seems
likely in automated mathematics in the United
States. Some other automated deduction
researchers strongly oppose this view. They
point out that open problems have been solved
in certain types of mathematics only: discrete
mathematics, logic and algebraic systems pri-
marily. In particular, the area of continuous
mathematics has had no new theorem proved
by fully automated means. Funding only sys-
tems that have solved some open problem
might halt progress in addressing continuous
mathematics, for example.

A way of assessing quality without the man-
date to solve open problems is by performance
comparison among provers having the same
goals. One means for doing this performance
comparison among provers began in 1996 as a
competition among first-order logic provers.
The first TPTP competition, named for the
THOUSANDS OF PROBLEMS FOR THEOREM PROVERS data-
base containing at least 3000 problems with full
axiom sets, was held at the 1996 Conference on
Automated Deduction and enjoyed admirable
planning, publicity (within the field), and con-
test controls (Sutcliffe and Suttner 1997a,
1997b). Such competitions take great resources
to assemble and run; much credit goes to Geoff
Sutcliffe (James Cook University, Australia) and
Christian Suttner (TUM, Munich, Germany). It
is important that this competition thrive and be
recognized for the value it adds to the develop-
ment of the field. It needs to broaden to include
different types of prover, such as higher-order
logic provers and induction provers, although
efforts might already be under way to extend

nents for parts of an algorithm and then has
the inference system deductively solve for the
remaining components by using the axioms of
the algorithm theory. 

I will not comment extensively on the other
research in program synthesis and the oppor-
tunities there because many of the critical
technologies needed are those of other
domains of automated deduction and are dis-
cussed under other areas. The lack of extensive
comment is not to slight the need for other
high-quality work within the domain of pro-
gram synthesis. I already mentioned the work
of Manna and Waldinger as influencing the
design of AMPHION. Good work on program
synthesis has been done within the logic pro-
gramming community (Deville 1990). I men-
tion a problem area not yet named that is ger-
mane here, proof by analogy. This problem is
usually associated with mathematical reason-
ing, but some researchers in software engineer-
ing, aware of the usefulness of automated
deduction, see a role for proof by analogy. The
idea is to use interactive automated deduction
tools in program development in such a way
that the specifications and program are con-
structed, or at least finalized, together. Thus,
one develops prototype programs and uses
these to converge to the final product and its
specifications. The proof by analogy is appro-
priate in the updating of correctness proofs
that show that the implementation meets the

Two Ways Automated Deduction
Has Impacted Mathematics

1. Solving open mathematics problems (selected set)
■ Robbins Algebra problem (1996)
■ Quasigroups (1993–1996)
■ The finding of minimal axiom sets (1993)
■ Ternary Boolean algebras (1978)

2. Aiding the study of Euclidean and non-Euclidean 
geometry

■ The Chou-Gao-Zhang theorem provers
■ Capable of proving hundreds of the theorems of

classical geometry
■ Now with user interface for educational or

research use by others

Articles

86 AI MAGAZINE



the competition. 
The value of such a competition is shown by

the surprise win of E-SETHEO, a connection
tableaux and model-elimination–based theo-
rem prover from Munich (Moser et al. 1997),
in one major category of the 1996 competi-
tion. At the finalizing of this article (over a year
after the original report appeared), two further
TPTP competitions had been held, and the
results continue to surprise. The 1997 compe-
tition had as the top three finishers in the pri-
mary category the systems GANDALF, SPASS, and
OTTER, in that order (Suttner and Sutcliffe
1998). GANDALF is a theorem prover that time-
slices many strategies of the type incorporated
in OTTER. SPASS is based on a superposition cal-
culus (similar to paramodulation) and incor-
porates a splitting rule for case analysis. (See
Suttner and Sutcliffe [1998] for brief overviews
of the systems.) In 1998, the same category
had as top finishers the systems GANDALF, BLIK-
SEM, SPASS, and AI-SETHEO in that order, with the
top three very close together. BLIKSEM appeared
in the competition for the first time yet took
second place. BLIKSEM is a highly tuned coding
of procedures somewhat similar to those of
OTTER. Major factors in the strong perfor-
mances of GANDALF and BLIKSEM are engineering
and implementation features rather than dis-
tinctive proof procedures. The value of compe-
titions, like solving hard problems, is that sig-
nificant engineering and implementation
techniques can show their worth. To summa-
rize, competitions can improve the breed in a
manner similar to solving open problems and
is applicable in domains where open problems
are presently beyond reach. 

Of the top performers named earlier, all but
OTTER are European in origin, with two provers
(SETHEO and SPASS) from Germany. This systems
capability, and a strong conceptual capability
as well—measured by accepted papers at the
Conference on Automated Deduction—is not
a surprise to members of the research field. The
European community, with Germany at the
fore, has become the dominant force in the
automated deduction field. A partial explana-
tion is that the German deduction community
won a six-year award of roughly US$15 million
in 1992 for basic research directed toward
applications in programming (the Schwer-
punkt Deduktion Project). This award allowed
expansion of an already strong research base.
The recent emergence of applications for auto-
mated deduction systems and formal methods
suggests their timing for increased support of
automated deduction might be excellent. 

The problem of proving theorems in the
continuous mathematics domain was men-

tioned earlier, and I comment briefly here on
this area. Many important theorems concern-
ing continuous functions, for example, can be
proven as logical consequences of other theo-
rems. Definitions such as continuity for func-
tions have reasonable logical encodings. How-
ever, in this domain, most proofs, even for
theorems of modest difficulty, demand sub-
stantial reasoning capabilities. Particularly
needed are enhanced automated reasoning
capabilities in set theory or in the closely relat-
ed type theories of higher-order logics. Good
first steps have been made in first-order logic
(Bledsoe and Feng 1993) and higher-order log-
ic (Andrews et al. 1996; Paulson et al. 1996;
Paulson 1993). (The Paulson papers on higher-
order logic systems consider the interactive
system ISABELLE, but Andrews et al. (1996) dis-
cuss the system TPS directed toward automatic
proofs.) As good as this work is, the accom-
plishments do not come close to providing the
reasoning capabilities needed. In particular,
the combinatorics of possible instantiations of
variables to values explode when dealing with
sets or higher-order formulas (which can be
values for higher-order variables). In another
direction, reasoning that is routine to humans
regarding the real numbers is beyond our
reach at present, with a few striking excep-
tions. One notable example was work done by
Bledsoe and Hines (1980) in the development
of a variable elimination method for inequali-
ty formulas and a manner of chaining together
inequalities, which they incorporated in the
system STR_+VE (Hines 1994). The resultant the-
orem prover works in the first-order logic set-
ting, using resolution, but replaces resolution
proofs handling inequalities with a system as
capable in most respects as a human in simpli-
fying systems of inequalities. Much more work
of this type is needed and should be supported,
but such results are difficult to develop. It
seems clear that interactive and semiautomatic
automated deduction systems, most likely
using higher-order logic formulations, will
provide useful mathematical assistance, but
new approaches or even major breakthroughs
are needed before fully automated deduction
systems can tackle difficult or open problems
in continuous mathematics.

One single step that will strengthen current
theorem provers considerably, whether inter-
active or fully automated, is the incorporation
of computer algebra systems. This incorpora-
tion of computer algebra systems does not
benefit provers uniformly, of course, but only
those for which algebraic manipulation is part
of the proof task. Still, within the pertinent
domains, the effect will be dramatic. Clarke
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dures. Counterexample discovery is not new to
automated deduction technology, having been
undertaken at Argonne National Laboratory
with the predecessor of OTTER (for example,
Winker and Wos [1978]). Recently, this task
has received more attention, from use of the
Davis-Putnam procedure for satisfiability
checks to model-generation use in the quasi-
group work (Slanet, Fujita, and Stickel 1995;
Fujita, Slaney, and Bennett 1993). Efforts are
needed to better incorporate counterexample
production with proof search, where the coun-
terexample is used to truncate a false probe in
the proof search.

An apparent opportunity that we have nev-
er been able to exploit to the degree imagined
in the early days of automated deduction
research is the use of semantics to guide the
proof search. It was used elegantly in the
geometry theorem-proving machine, where
the geometry diagram was used to eliminate
many irrelevant search candidates (Gelernter,
Hanson, and Loveland 1963). It quickly
became clear that there were few problem
domains that had a problem-representation
language at the same granularity as the proof
language. The use of problem semantics on a
broader scale now seems to occur primarily in
the use of decision procedures for various sub-
domains. Decision procedures are being incor-
porated in provers, especially in verification
provers. We should continue to address the
production of decision procedures on whatev-
er problem domains we deem of some interest.
They will not be attention getters, such as Pres-
burger arithmetic or Tarski’s real closed-fields
procedure, but simply utilitarian for a job on
hand. They then should be shared with other
developers in the sense of a common web site,
where such procedures and the domain they
encompass can be announced. Like heuristics
for induction-variable choice, on such mun-
dane items, much progress is gradually made. 

The Robbins algebra accomplishment rein-
forces the value of continued research in equa-
tional reasoning. The system EQP uses associa-
tive-commutative unification, a fancy way of
pattern matching where order and grouping of
term occurrences do not matter (Stickel 1975).
That order and grouping of terms do not mat-
ter is a property of equality reasoning in partic-
ular. In the presence of variables, it is a difficult
process to control. Another feature used by EQP

is a sophisticated version of paramodulation,
the equational inference rule mentioned earli-
er. Like associative-commutative unification,
the paramodulation rule is explosive in the
possibilities it generates. Extensive research,
much of it arising first in the term-rewriting

and Zhao demonstrated the power of an
enhanced algebraic simplifier coupled with
automated deduction proving techniques by
proving fully automatically a number of sum-
mation equations of Ramanujan (Clarke and
Zhao 1996). The theorem provers were ANALYT-
ICA and a successor prover. The Ramanujan
results are beyond the capabilities of other pre-
sent provers. (Other interesting work, involv-
ing series summation using a proof planning
method and “rippling,” is considered later.) 

The combination of computer algebra and
theorem-proving technologies also can be
used to overcome present shortcomings of the
computer algebra systems. These algebraic
manipulators are unsound by such faults as
dividing by zero without acknowledging the
fact or not checking termination conditions.
(It is not as simple as checking for a zero, of
course; some systems execute symbolic com-
putations, and then the condition must be
retained explicitly.) 

The automation of mathematical induction
remains a central problem, as noted several
times. In particular, we need to better handle
the choosing of induction hypotheses and
induction variable. Specialized cases continue
to be identified and custom handled, and
induction systems continue to improve in per-
formance, but we lack general techniques. We
cannot expect global, powerful techniques
that match in flavor the universal enumera-
tion proof procedures that exist for first-order
logic. The best we can hope for is techniques
that handle certain problem classes. One such
promising insight, called rippling, originated
in work by Bundy and colleagues (Bundy et al.
1993) at Edinburgh University. It is a syntactic
strategy that takes advantage of similarities
between the induction step consequent and
the induction hypothesis and executes a
monotonic series of local manipulation steps
to change one to the other. It has shown sur-
prising robustness, even finding use in proof
planning (Walsh, Nunes, and Bundy 1992).
However, too few paradigms such as rippling
are known at present. Support of research on
induction is important if broader principles are
to be discovered and developed. Like the
exploitation of computer algebra and automat-
ed deduction as discussed previously, the
improvement of induction automation will
have strong effects on verification work as well
as general mathematics. 

Part of the environment of proof discovery
is counterexample discovery, the finding of an
example that refutes a conjecture. This coun-
terexample discovery is receiving attention
with model-generation schemes and proce-
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community, has led to the sharp trimming of
possibilities that need be considered. Without
the prior research that produced associative-
commutative unification and controlled the
combinatorial explosion of equational infer-
ence in general, the Robbins algebra problem
would not have been solved. Although the
term-rewriting community is at the center of
the equational reasoning efforts, and support
there is important, work outside this commu-
nity also takes place, as the original paramod-
ulation work makes clear. 

Because so much emphasis has been placed
on directed research in this article, I belabor
the point that basic, often purely theoretical,
work must be supported for the field to move
forward. In addition, we must not be too eager
to leave the “old” behind, feeling that old
areas have been explored, and only new ideas
from new areas will contribute to progress.
Strong evidence of these points comes in the
previous paragraph. The paramodulation
inference rule was introduced in the 1960s, yet
it is the fairly recent work on basic paramodu-
lation (Bachmair et al. 1992) that was incorpo-
rated in EQP. Also, the associative-commutative
unification work was done in the early 1970s
but not used to this point as much as it now
surely will be. 

I mentioned that the term-rewriting com-
munity is central to the work in equational
logics. This point warrants elaboration. Rewrit-
ing-based automated deduction systems often
work with equational logics using oriented
equations, or rewrite rules. Although the use of
rewrite rules derived from equations is actually
older than electronic computers, the rewrite
theory and consequent practice were initiated
by a paper by Knuth and Bendix (1970). This
paper contains a powerful result: Given a set of
equations (an equational logic) and appropri-
ate added information, there exists a unique
(under certain conditions) set of rules that
define a decision procedure for the theory pre-
sented by the equations. The “completion” of
the initial rule set to the extended decision
procedure rule set often is troublesome in prac-
tice, but even when completion is impractical,
the rules that are generated are powerful addi-
tions to the original set. Much significant
work, such as the basic paramodulation results
mentioned earlier, has followed over the years
from this beginning. Many automated deduc-
tion systems have been developed around
these ideas directly; the RRL system mentioned
earlier is one example. Such automated deduc-
tion systems rely extensively on rewriting as a
deduction mechanism and also support
sophisticated unification methods (for exam-

ple, associative-commutative unification) for
completion (McCune’s EQP is one such system).
Approaches for reasoning by induction and
semantics of data structures using decision
procedures have also been integrated, leading
to powerful automated deduction systems that
can be also used for applications, including
analysis of equational specifications and
implementations. As an example, the latest
version of RRL has been used by Kapur and M.
Subramaniam to verify properties of the SRT

division circuit, as specified by Clarke et al.
This work was done completely automatically
and without a computer algebra system, as was
used by ANALYTICA, Clarke and Zhao’s system
(private communication from D. Kapur, March
1997). Many of the term-rewriting systems are
being developed in Europe and are being used
for tasks such as circuit verification as well as
for mathematics. See Ganzinger (1996) for
sample system descriptions as well as recent
papers on rewriting techniques. This line of
research is important and definitely needs sus-
tained support. 

Mathematics Education I have addressed
the economic and intellectual aspects of our
field; now, I address the social aspect of auto-
mated deduction technology. This aspect cen-
ters on education and the tools we can offer to
enhance mathematics and logic education.
There is much need, at least in the United
States, for improved performance in mathe-
matics skills and logical thinking at the high
school level, and support should continue into
the college years. Earlier, I mentioned past
automated deduction contributions to educa-
tion; also I noted several times the Chou-Gao-
Zhang geometry programs. Although the pro-
grams are impressively polished as theorem
provers, with proof output in human-readable
form, a tutorial environment needs to enclose
the programs to provide the setting in which
students can use the tools effectively. For logic
education, at the base level, there are now Tars-
ki’s WORLD (Barwise and Etchemendy 1992)
and the follow-up HYPERPROOFS (Barwise and
Etchemendy 1994). At an advanced level, a
portion of the interactive theorem prover TPS

(Andrews et al. 1996) has been used at CMU
and distributed to interested parties and has
been highly rated by educators. This system,
called ETPS, consists primarily of the interactive
facilities for natural deduction reasoning from
TPS. For reasoning at a somewhat higher level
than pure axiomatic systems, where computa-
tions can be included as atomic steps, the
interactive mathematical proof system (IMPS)
(Thayer, Farmer, and Guttman 1993) offers
possibilities for educational use. These tools,
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more worlds. 
At least as important as the machine-

machine interface issue is the human-machine
issue. For the most part, the systems discussed
in this article are difficult to use in that consid-
erable training is needed to use them and
interpret their output. An exception is the
Chou-Gao-Zhang geometry programs. Some
programs, such as OTTER, that are used outside
the automated deduction research community
have made an effort to be user friendly, with
some success at a primitive level. What is need-
ed before automated deduction systems really
will be used by the outside community are sig-
nificant interface upgrades, such as input and
output in the user’s language at the level
humans communicate to colleagues. Ideally,
such an interface would incorporate natural
language input-output, discussed later, but cer-
tainly it includes input parameters determined
only by the human description of the prob-
lem, not process-determined parameters. Inter-
active automated deduction systems have dra-
matic human-machine interface concerns, but
all systems must address this issue. Many auto-
mated deduction researchers give human-
machine interface research high priority in the
list of research challenges for the automated
deduction field. 

Attention has been given to making the out-
put of automated provers more readable. The
normal forms and inference rules used by most
provers result in proofs that are difficult for
humans to understand. One early attempt to
address this problem was undertaken by
Andrews, who defined a procedure, later
improved by Miller, for converting the logical
structures of his proof system to a natural
deduction proof style (Miller 1984; Andrews
1981). More recently, this conversion of logical
structure to natural deduction proof style has
been pushed one step further with investiga-
tions into translating proofs to natural lan-
guage. Researchers in Germany have taken the
lead here; I mention two major research efforts
under way in Germany. One system, ILF, oper-
ates a mail server that accepts proofs directly
from SETHEO, SPASS, and certain other first-order
logic theorem provers. ILF prepares a LATEX file
with a natural language presentation of the
proof (Dahn and Wolf 1996). (More generally,
the ILF system seeks to provide the nonexpert
with a shell through which the user can use
one of several theorem provers and related sys-
tems such as model checkers (Dahn et al.
1997). The second system, PROVERB, first takes a
resolution proof as input and translates it into
a natural deduction proof. After several levels
of restructuring and abstraction, the latter

and similar tools with extended capabilities,
could be very effective in addressing the sub-
jects that are so difficult for many students.
Again, a major challenge in this domain is to
develop complete educational packages capa-
ble of use in isolation. Once achieved, the
packages can be sent to thousands of school
systems for use by individual students or for
integration into regular courses. (This integra-
tion has occurred now at the college level for
ETPS [Goldson, Reeves, and Bornet 1993].) The
expertise and support measures needed to
actually make this work in school systems will
need to come from outside the automated
deduction research community but will need
our involvement.

Beyond the Subareas Some topics of
importance do not fall into categories by appli-
cation subarea. I consider such topics here. 

Interfaces: An important issue is that of
human-machine and machine-machine inter-
faces. One pure case of machine-machine
interface is the combined HOL-NUPRL effort. In
this case, the interface was a significant under-
taking, with serious theoretical work needed to
accomplish the interface (see comments on
the HOL-NUPRL Project in Verification). Incorpo-
ration of one system into another (for exam-
ple, the use of MATHEMATICA in ANALYTICA) and
even integration of procedures present inter-
face problems. These interface problems are
nontrivial in most cases and real challenges in
some cases, as noted previously. Support for
this aspect of automated deduction research is
important. It clearly is money efficiently spent
because it provides for combinations of exist-
ing powers, in effect getting the best of two or

Approachable Opportunities 
(Examples)

Program synthesis
■ The building of programs using existing modules as subroutines

Verification
■ Partial verification of prototype commercial chips
■ The integration of theorem-proving and model-checking

methodologies

Mathematics
■ Theorem provers with natural language output
■ Theorem provers incorporating computer algebra capabilities
■ The guiding of proof discovery with counterexample use

Education
■ Tutors for algebra and combinatorial mathematics

Formal methods
■ Formal theory use in the social sciences
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stages based on state-of-the-art natural lan-
guage–generation techniques, a proof with
English text is produced (Huang and Fiedler
1996). Some of the output is strikingly close to
that appearing in a textbook. Because mathe-
matics often can be presented with limited
natural language support, the presentation of
proofs in human-readable form is an excellent
limited domain for natural language-
–generation research. (Significant progress has
been made in natural language understanding
and generation in recent years, but the com-
plexity of the general task means that restrict-
ed domains are chosen for development and
display of natural language capabilities.) The
First International Workshop on Proof Trans-
formation and Presentation was held in spring
1998 in Germany to bring together researchers
in the different disciplines that impinge on
this problem. The automated deduction field
can contribute to this task significantly
because it is central to one of two (perhaps
complementary) approaches to this problem.
One is better natural language capabilities, and
the other is better logics and associated auto-
mated inference systems. More readable logics
directly reduce the difficulty of translation. 

Proof planning: Having completed the dis-
cussion of computer interface issues, I return
to issues of the deductive structure of automat-
ed deduction systems. A research area of
importance yet to be addressed is proof plan-
ning. Although this area is difficult, it is indeed
very important and warrants more attention
than it has received. A few groups in the Unit-
ed States and Europe are investigating plan-
ning. Techniques under exploration include
working with user-supplied diagrams (Barker-
Plummer, Bailin, and Ehrlichman 1996; Bark-
er-Plummer and Bailin 1992) and using proof
by analogy (Melis and Whittle 1996; Owen
1990). Other techniques, such as learning, are
being studied in the AI community and should
be applicable at some point. (For one attempt
to apply learning to automated theorem prov-
ing, see Denzinger and Schulz [1996].) Any
success in proof planning will have a strong
effect on the capabilities of provers, but the
difficulty of the problem has discouraged
many from undertaking serious work in this
area. When good work is located, it should be
supported strongly. (Examples are work of
Barker-Plummer and Bailin in the United
States on the use of diagrams in theorem prov-
ing noted earlier and Bundy’s Edinburgh group
in Europe addressing proof planning in various
forms, some noted earlier; for another exam-
ple, see Bundy et al. [1991].) Relevant AI work
is considered later. 

Higher-order systems: I discussed many
facets of higher-order logic theorem provers
within the various areas, particularly the veri-
fication area. However, the discussion usually
has been applicable to all interactive provers,
of which the higher-order logic provers are a
subclass. The higher-order logic systems have
special concerns that warrant separate atten-
tion. For example, the representation problem
is greatly enhanced because of the much more
flexible substitution capability. If unification
(the heart of the resolution scheme at the first-
order–logic level) is used, then to representa-
tion problems are added computation prob-
lems because the full unification procedure is
generally unbounded. The central focus is to
make these provers more automated while we
deal with complexities such as those just men-
tioned. The representation power of higher-
order logic often allows much shorter proofs
relative to first-order logic, with the potential
for much smaller search spaces, but whether
this potential for smaller search spaces will be
realized in fully automated systems is not clear
at present. There is certainly evidence of the
power of higher-order logic in interactive
mode with an appropriately trained person. (I
remind the reader that the expressive powers
are the same; first-order logic can express any-
thing expressible in higher-order logic by use
of set theory.) That a number of higher-order
logic systems are under development indicates
the potential many see for such systems. Veri-
fication, the most immediate commercial
application, need not be done by using higher-
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Very Difficult Tasks in 
Automated Deduction (Examples)

Program synthesis
■ Free-form program synthesis

Verification
■ Fully automated software verification

Mathematics
■ Proof discovery in continuous mathematics

Foundations
■ A complete archive of formally proof-checked 

mathematics



Automated Deduction in the United States
and Europe: An Observation 

Funding of research in the automated deduction field in the United States has declined relative to the funding of auto-
mated deduction research in Europe over the past decade. The effect of the shift in relative funding levels is reflected
in the number of contributors of papers to the premier conference of the field, the Conference on Automated Deduc-

tion (CADE). The table given here reports the percentage of authors from the United States, Europe, and other locales for
the CADE conferences of the past decade through 1996. Funding of automated deduction research in the United States
traditionally has come from two sources: the United States Department of Defense (DoD) and the National Science Foun-
dation (NSF). The DoD’s interest centers on automated verification of hardware and software systems. This interest peaked
in the 1970s and has declined steadily since then. Figures for the support levels are not available. The NSF support has
been almost constant over the past decade at roughly $1 million in the Numeric, Symbolic, and Geometric Computation
Program, the core program for support of automated deduction research. This support is often augmented by cost sharing
from the AI, software engineering, and logic programs of NSF, which provides as much as 25 percent in additional funds. 

Support for automated deduction research in Europe has increased substantially in the past decade, primarily in Ger-
many. Support has been present in Europe since the 1950s, with strong work done in France, Germany, and the United
Kingdom in particular. (The University of Edinburgh was one of the first centers of automated deduction research.) The
recent increase in support comes primarily from Germany, with the centerpiece being the DFG Schwerpunktprogramm
Deduktion. This program spans the years 1992 to 1998 and provides approximately $2 to $3 million a year (U.S. dollar
equivalent) for basic automated deduction research, with a special interest in applications to programming. There is
increased support in other countries but nothing as large or identifiable as the increase in Germany.

Origins of Research Papers for the Conference on Automated Deduction, 1988–1996. 

Year U.S. (%) Europe (%) Other Site
1988 61 35 4 Argonne, Illinois 
1990 51 45 4 Kaiserslautern, Germany 
1992 44 49 7 Saratoga Springs, New York
1994 23 73 4 Nancy, France
1996 19 79 2 New Brunswick, New Jersey

Source of Table: Automated Deduction as an International Discipline—An Open Letter to the President of CADE. In Asso-
ciation for Automated Reasoning Newsletter 35, December 1996. The letter was authored by Pierre Lescanne (Nancy, France)
and Christoph Walther (Darmstadt, Germany). Some text regarding sites has been altered.
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order logic, as NQTHM and ACL2 demonstrate. However, the
success of PVS and other systems shows that higher-order
logic can be well used in this domain. The potential of this
approach justifies continued interest and support here. 

Deduction engineering: In a discussion of the develop-
ment of automated deduction systems, it is important to
understand a characteristic of development that can be
called deduction engineering. It denotes the often nonglam-
orous, time-consuming process of adjusting a functioning
deductive system for improved performance. Deduction
engineering can involve anything from a new decision pro-
cedure to a new heuristic for finding an induction variable
to a new data structure that speeds retrieval of terms used in
rewriting or subsumption. Deduction engineering includes
the important process of strategy formulation, itself having

a range of outcomes, from publishable restrictions of consid-
erable sophistication to the simple delaying of the use of
clauses that have many free variables. That this difficult evo-
lution-oriented engineering process is key to much of the
progress in the automated deduction field has policy impli-
cations that need addressing. A major implication is that
development is more resource consuming, in time and ener-
gy, than is expected, and sufficient support is needed to
allow systems to progress. Another implication is that if
most progress is found now by augmenting systems rather
than implementing new basic procedures, then the systems
grow in complexity. As such, they take more resources to
sustain, so that fewer systems are sustainable. Perhaps that
the more complex systems take more resources should be
anticipated by giving funding priority to more established



centers, and isolated researchers would do bet-
ter to cooperate with existing centers, much as
physicists link to locations housing accelera-
tors. The question of funding priorities and
cooperation with existing centers is a complex
question, regarding the validity of both the rea-
soning and the resource allocation.

I illustrate the nature of deduction engineer-
ing by anecdote to impart some feeling for the
nature of development. One anecdote high-
lights the need to augment proof procedures
by deduction strategies that restrict proof
search size. I consider what might be the first
instance where a restriction strategy was super-
imposed on a complete proof calculus, the res-
olution calculus as it happens. The resolution
strategy with the subsumption test to purge
redundant information was a powerful infer-
ence system; it appeared to Larry Wos and his
colleagues at Argonne to far surpass the alter-
natives of the day (1964). However, the new
resolution prover failed to prove a simple
group theory problem regarding exponent two
groups. Wos noted that many formulas (claus-
es) seemed to be general expressions pertain-
ing to group theory and conjectured that more
focus on the theorem under consideration was
needed. He devised a strategy that separated
clauses into two classes, one class to contain
clauses that had used special theorem hy-
potheses or the conclusion’s denial in their
derivation. This class, the supported set, was
given strong preference by requiring its use in
each binary inference made. The effect was to
obtain the theorem in three central processing
unit seconds, whereas without the strategy,
memory was exhausted and no proof found.
The set of support strategy is one of the most
important strategies currently used by OTTER

(Wos 1996; Wos, Robinson, and Carson 1965). 
Another story regarding deduction engi-

neering addresses the difficulty often encoun-
tered in implementing what seems promising
on paper. The example concerns the adoption
of an improved version of the modification
method (Brand 1975) (a 1970s algorithm in
base form) by SETHEO to “build in” equality,
defining E-SETHEO. When first installed, the
modification method performed far worse
than direct use of the equality axioms. Only by
eventually revising the very basic linear archi-
tecture of the underlying model-elimination
procedure (Loveland 1969) was the new fea-
ture made to yield performance superior to the
naive approach. Given E-SETHEO’s win in the
competition reported earlier, the effort was jus-
tified. Sometimes progress is painful and
accomplished only when sufficient resources
are present. 

The same pragmatic, resource-consuming
energy goes into improving interactive
provers, indeed into any deduction system
that is performing at the state of the art today.
Successful systems are composites and will
become more so. Resources must exist to let
the systems grow in capability because they
usually grow more slowly than we would like.

Incorporating AI: The interaction between
automated deduction and AI deserves com-
ment because automated deduction studies
began together with AI 40 years ago. Many of
the topics covered here, such as program syn-
thesis and proof discovery, are major AI topics.
Outside these areas, AI has undergone a para-
digm shift in methodology in recent years; sto-
chastic and decision-theoretic methods are
predominant in areas such as vision, natural
language understanding, expert systems,
learning, and even certain types of problem
solving. Of course, not all AI research disavows
formal methods and use of automated deduc-
tion tools. The study of formalizing contexts
so that expert systems can know the bounds of
their expertise, for example, is a current
domain for formal methods. 

AI planning is another area using formal
methods. One of the major approaches to
planning in AI is the explicit use of logic. Plan-
ning involves modeling and manipulating a
dynamic world, and AI researchers have devel-
oped special logics to address action and
change. The situational calculus introduced by
McCarthy (McCarthy and Hayes 1969; Mc-
Carthy 1968) has recently been substantially
enhanced in expressibility, and real-world
applications are being pursued. For example,
the Cognitive Robotics Group at the Universi-
ty of Toronto has developed the GOLOG pro-
gramming language for tasks such as control-
ling robots and software agents (Levesque et al.
1996). The need for automated deduction can
be substantial in this robot domain as the
problem of incomplete knowledge is ad-
dressed, for example, in the setting of multia-
gent interaction. The other major approach to
planning in the AI community is procedural,
mostly using the STRIPS methodology, akin to
databases with explicit updates. This approach
blossomed in the 1970s when the theorem-
proving approach seemed not to scale up.
Recently, there has been a return to the use of
(propositional) logic with the discovery of fast
stochastic local search methods for determin-
ing satisfiability and methods to encode plan-
ning as a satisfaction problem (Kautz and Sel-
man 1996). Although the local search methods
usually outperform the systematic automated
deduction methods such as the Davis-Putnam

Articles

SPRING 1999   93



leagues are investigating the use of automated
deduction techniques in building formal theo-
ries in the social sciences (Péli and Musuch
1997; Péli et al. 1994). These formal theories
allow the testing of hypotheses for consistency
and logical consequence. The ability to deter-
mine the logical consequences of a formally
specified theory not only saves expensive field
studies but yields a more precise representa-
tion of the current hypotheses of the field.
Alternative theories are more easily assessed as
well. This opportunity to use formal methods
to advance and test various theories highlights
the need for more axiomatizations of subdisci-
plines and problem areas. 

Looking to the more distant future, we see
that the use of formal methods to study major
disciplines can be the most significant intellec-
tual application of automated deduction tech-
nology because it can encompass most of
human intellectual endeavors. Our field has
undertaken to build general reasoning engines
that make the idea of formal theories of knowl-
edge useful. Within the realm of mathematics,
I have put forth proposals to verify, classify,
and archive the main results of the various
branches of the subject. The QED Project, now
in the formative stage, has the audacious goal
of building a computer system to effectively
represent all important mathematical knowl-
edge and techniques (QED 1994). Important
questions arise immediately, such as the ques-
tion of presentation of the mathematical the-
orems and theories. Should we strive to have
theorems verified within a fixed framework? Is
it acceptable to have multiple systems certified
for verification of theorems? Phrasing this at a
more fundamental level, do we choose a con-
structivist mathematics as our framework (per-
haps a bias of computer science–oriented
mathematicians) or a classical foundation?
The QED Project is clearly a long-range project
but one where success adds a new dimension
to the world of mathematics. More correctly, it
would extend the ambitions of the Bourbaki
(1968) group (to formalize mathematics) to a
level of rigor only dreamed about when the
Bourbaki effort began.

Another project, the Mizar Project, original-
ly undertaken by Polish mathematicians to
provide software support for writing mathe-
matics papers, has developed into an attempt
to formalize large portions of mathematics.
Thus, many regard this project as an interest-
ing start toward the QED concept. The Mizar
Project is well under way, even maintaining its
own electronic journal, the Journal of Formal-
ized Mathematics. Although some technical
material appears in hard copy, the project is

procedure on the satisfiability problems that
produce plans, the systematic procedures are
useful in a complementary role. For example,
to show that simpler plans do not exist gener-
ally requires more constrained presentations to
be shown unsatisfiable, something the local
search satisfiability programs cannot do (Kautz
and Selman 1996). As an aside, I note that a
recent paper shows how to extend recent satis-
fiability methods with the lifting technique
central to automated deduction to reduce the
size (complexity) of the problem, at least
asymptotically (Kautz, McAllester, and Selman
1996). That automated deduction methodolo-
gy and tools are reappearing in the planning
realm is significant and, perhaps, contains a
lesson. The use of automated deduction that
seemed so natural in AI in the early years of AI
but never scaled up might indeed return to
play a role in a number of AI domains. Again,
it is simply that the problems, and thus the
technology to solve the problems, are much
more difficult than we understood. 

Another area associated with AI is learning.
In machine learning, the investigation into
inductive logic programming is having consid-
erable success, primarily in Europe. The learn-
ing model has been applied to drug design,
finite-element analysis, natural language
understanding, and other areas (Bratko and
Muggleton 1995). The technique calls for gen-
eralizations from positive examples so as not
to intersect negative examples. The determina-
tion of logical consequence is essential here,
and more powerful inference techniques, such
as better methods for controlling search, could
enable larger problems to be undertaken.

In the other direction, there is interest in
using AI techniques to help automated deduc-
tion. Experiments in the use of neural nets to
learn parameter control in theorem provers
have experienced modest success. A track of
the FLAIRS 1997 Conference (Daytona Beach,
Florida, 11–14 May) addressed AI methods for
controlling search in automated deduction
systems. Real progress here can have a power-
ful effect on theorem prover capability. 

AWider Role The scope of automated
deduction is not limited to the tradi-
tional areas of computer science and

mathematics. In response to my call for contri-
butions on future directions, Michael Musuch,
Jaap Kamp, and others at the University of
Amsterdam highlighted one of the most
important long-term roles of automated
deduction: the use of automated deduction in
building and testing theories. Musuch and col-

If one were to
attempt a 

single image,
phrase, or 

slogan 
for the 

focal 
point 

of future
research in
automated

deduction, the
best choice

could be the
word chosen

by Larry Wos:
strategies.
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truly oriented to effectively use the capabilities
of the electronic medium, including extensive
cross-referencing practical only in an electron-
ic environment. For more information, the
reader should consult the web at cs.ualberta.
ca:80/piotr/Mizar/. What now exists is a sub-
stantial number of formal proofs, proof
checked by machine based on a fixed axiom
set. The effort now has some foreign (to
Poland) sites active in the effort. Much has
been accomplished with little funding, and
some people in the automated deduction com-
munity feel strongly that this project should
receive more financial support from the inter-
national community. (We understand that the
Journal of Formalized Mathematics does receive
funding from the Office of Naval Research.)
These attempts to formalize the core of math-
ematics will certainly be paralleled by projects
in engineering, medicine, law (under way at
present), and the social sciences. For those
who dismiss this projection with the comment
that all such models (except mathematics and
law) should be stochastic, I remind them that
no probabilistic inference theory yet exists
that is practical for large formal systems. It
might be true that traditional formal theories
can be viewed only as approximations for the
real world in most settings, but, as Musuch’s
note is telling us, they are still of great impor-
tance when complex domains are under study.

Conclusion 
If one were to attempt a single image, phrase,
or slogan for the focal point of future research
in automated deduction, the best choice could
be the word chosen by Larry Wos: strategies. I
used this word to describe a range of technical
innovations within deduction engineering
that are centered on the need to direct proof
searches within highly restricted search spaces.
One can also extend this notion to include bet-
ter methods for induction hypotheses selec-
tion and the construction of effective proof-
planning paradigms, for example. I leave to
the reader the review of the preceding sections
to see the number of important activities that
can be captured by a fluid notion of the con-
cept strategies. 

In this article, I listed some of the achieve-
ments of the automated deduction field and
considered some future directions for the field.
We have seen that practical applications are
now appearing and that more are likely in the
near future. The most grandiose applications,
such as full program synthesis, the mecha-
nized mathematician, or the general reasoning
machine, are not yet within view, and I should

not venture to state when they will arrive.
However, such automated deduction applica-
tions clearly can and will be developed, and
they will be enormously beneficial. 
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Notes 
1. These are some leading proof systems. Unfortu-
nately, I cannot list all the important systems here. 

2. See the web site at www.mcs.anl.gov/home/
mccune/ar/ for information on OTTER and pointers to
web pages for many other systems named in this
article.  
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