
Iwas asked to give a visionary talk about the
future applications of Artificial Intelligence
technology; but I should warn you that I’m

actually not very good as a visionary. Most of
my predictions about what will happen in the
industry don’t come true even though they
ought to. So I’m not going to tell you what the
future holds; what I will do is to point out
some of the technological trends that are at
work.

The outline of the talk is as follows: I’ll start
off by looking at the previous IAAI conferences
and reflect on what we’ve learned from them.
Then I’ll look at what’s changing in the hard-
ware base that sets the context for all the com-
puter applications we do. I think that will lead
to interesting new viewpoints. Next I’ll sketch
what applications might arise from this new
viewpoint. Finally, I’ll discuss how the devel-
opment of practical applications ought to
interact with the scientific enterprise of trying
to understand intelligence, in particular,
human intelligence.

As I go on, there will be a lot of points where
this talk contacts with other talks that will be
presented at this conference, and I’ll give you
forward pointers to all of those, at least the
ones I’ve thought of.

Let’s begin by looking back over the previous
11 years (counting this year) of AI applications
presented at this conference. I want to ask a
few questions about these applications. The
first is, “What were the applications like, what
did they actually do?” The second question is,
“What was the economic case made for those
applications; why were these successful; what
were their key attributes?” Finally, I’ll repeat
something I did a few years ago when I was
chairman of this conference, which is to look
at how the program chairs of previous confer-
ences conceived of the conference.

Even before the Innovative Applications of
Artificial Intelligence Conference was started,
at the first AAAI in 1980, John McDermott

(then of CMU) presented a paper called “R1: An
Expert in the Computer System Domain.” As
many of you know, the name R1 came because
of the joke, “I didn’t used to know how to spell
‘engineer,’ and now I are one.” When Digital
actually deployed R1, they changed the name
to XCON so that they didn’t have to keep
repeating the dumb joke. What was notable
about the R1 paper was that it was a knowl-
edge-based system, a very large and complex
one, with technical sophistication, significant
coverage of the domain, and it performed very
well.

There was another notable aspect of R1: It
wasn’t sponsored by the government. It was
sponsored by a corporation, Digital Equipment
Company, at that time the second largest com-
puter company. They sponsored the project
not for the love of pure science, although I’m
sure they had that in mind, too, but because
they had a real problem that they wanted
solved. This program solved the problem, and
it became critical to corporate operations.
What the program did was to take an order for
a computer system and figure out what com-
ponents were needed, how they packed into
cabinets, what cables were needed, and so on.
This was a major problem in the era of large
minicomputer systems. We’re giving an award
to John for that work, as we well should, which
will be presented Wednesday morning.

In 1989, we decided to launch the IAAI Con-
ference. Raj Reddy, who was the president of
AAAI, decided we should start the conference.
I was conference chair at the time, but I found
out about it only after he had convened the
Program Committee; I asked if I could be on
the program committee, and I’ve been on
every one since then. The first conference was
held separately from the national conference
on AI. It presented 30 application papers
selected from over 100 submissions. If you
look at the authors and sponsoring organiza-
tions of these applications, it’s a sampling of
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successful applications. Two of the three appli-
cations that weren’t in the book (I’ve forgotten
the third) were the American Express AUTHORIZ-
ERS ASSISTANT and a FUNDS TRANSFER application
done by MCI for a large commercial bank. The
reason these applications weren’t in the book
was not that they didn’t work, but they worked
too well. They were extremely successful. As far
as I know, the AMEX application is still run-
ning; it has been deployed for well over 10
years, and it is still critical to the company’s
operations. The reason AMEX wanted the
paper pulled was that the application was so
successful that talking about it might divulge
things that they considered corporate secrets.
In particular, the number of transactions and
some aspects of the business practices embed-
ded in the application were very sensitive.

This has been an ongoing issue. At breakfast
this morning, somebody quoted to me a state-
ment about another conference that has the
same problem: “We don’t want to tell you
about our successful applications because that
would be giving things away, and we don’t
want to tell you about our failed applications
because that would be embarrassing.” Thus, it’s
hard to get papers submitted; what else are
there besides successes and failures?

Over the 10 years that we’ve been running
this conference, there has been a relatively
constant mix of the kinds of applications pre-
sented (figure 2). The categories are, of course,
relatively fuzzy, but the bulk of these applica-
tions are decision aids, situated in the general
flow of the business process of an organization,
and they are aimed at boosting productivity.
This is critical to the argument I’m about to
make. This year, as Samy said in his opening
remarks, the mix is somewhat different: there
are some agent-based applications that operate
in real time, some real-time planning and
scheduling applications, and some personal
assistant application. I think that’s a harbinger
of new directions.

Now let’s look at what previous program
chairs thought the point of the IAAI confer-
ence was. At the first conference, we said that
the emergence of scientific achievements had
triggered opportunities to tackle new prob-
lems. Although we had not yet achieved the
goal of automating cognition—and that’s still
true a decade later—the technology is never-
theless making a major impact in the everyday
operations of large organizations. The point of
the conference was to exchange information
about what really works and what the real
problems are. The goal was to lead to better
technology, to find and remedy current defi-
ciencies, and to solve real problems.

the largest corporations and government orga-
nizations. You can see that list in figure 1.

The proceedings were rebound later in a
book form. Although there were 30 applica-
tions presented at the conference (and in the
original proceedings), there were only 27 appli-
cations in the book. You might guess that a
couple of people got embarrassed and pulled
their papers because the applications failed,
but you’d be wrong. These were actually all

Articles

42 AI MAGAZINE

In 1989, The First IAAI 

� 30 Application papers selected

� Corporate Giants spanning the Economy
Manufacturers Hanover, IBM, Alcoa, GM,
Arthur D. Little, Pac Bell, duPont, Ford, DEC,
NASA, Boeing, Bellcore, US Navy, MCI, Met Life,
American Express  

� Proceedings Later Republished in Book Form
27 Applications published

American Express Authorizers Assistant one of the
missing

MCI another MIA (funds transfer application)

Figure 1. Overview of the First IAAI Conference.

Mix of Applications: 
Ten Years

Manufacturing and Design 30
Business Operations 30
Finance 25
Diagnostics and Troubleshooting 12
Telephony 11
Claims Processing and Auditing 12
Computers and Software Engineering 7
Military 8
Information Retrieval and Classification 6
Space 5

Others: Customer Service, Sales Support, Personnel, Crisis Management, 
Agriculture, Music, Environmental Monitoring

Figure 2.  A 10-Year Mix of AI Applications.



The introduction to the proceedings of the
second conference says that the point was to
demonstrate the utility of deployed applica-
tions. Now it is interesting to compare these two
perspectives: At the first conference, we said that
scientific achievements have motivated and set
the stage for applications. At the second confer-
ence, we were, in contrast, clearly making a
political point: We wanted to demonstrate the
utility of the applications and to show that they
are well integrated with the existing computer
and corporate environments.

The introduction to the proceedings of the
third conference says that we are making a case
for the business person: We are trying to show
what can be done with the current technolo-
gies and to solve practical problems. It goes on
to say that research is driven by applications
and that by highlighting application successes
and problems, we hope to suggest areas ripe for
research.

The themes of succeeding IAAI conferences
have been fairly constant: Show the maturity of
AI as a commercially viable set of technologies;
in particular, we tended to emphasize the role of
AI technologies as a “raisin in the loaf of bread.”
Any successful application will employ many
information technologies; the AI component
may be only a small component of the overall
development cost, but it’s the sweet nugget in
the loaf that makes the bread taste great.

The reason I’ve gone through this review of

perspectives is that it shows a progression in
what we saw as the dominating issues facing
AI. In the first few years, the point was to show
that AI was a viable technology, to counteract
the feeling that there was an impending AI
winter (which I personally think never hap-
pened). In the next few years, we tried to say
that although one could actually make the AI
component of these applications deliver value,
the hard problem was to make it work in con-
text. All the big problems were integration
problems. That was largely a result of changes
in the computing base, the dominant program-
ming language changed, and so on. Such
issues, when viewed from a 20-year perspec-
tive, are of absolutely no consequence. The
dominant programming language seems to
change every five years (and not always for the
better), and you’ve just got to accommodate to
that. Once those issues seemed to be dealt with
adequately, we then changed our focus to
showing that the application of AI technology
had become as routine a practice as many other
areas of information technology.

I think it’s time that we should declare victo-
ry: AI applications are a well-established, per-
fectly viable technology in practice in industry
today. The reason there was a perceived AI win-
ter is that the companies selling the tools went
broke. I know. I was there (at Symbolics). Mark
Fox used to make an interesting point about
this: He said that if you looked around today for
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The Current Paradigm

Problem In Answer Out

The Brain in The Box

Figure 3. The Brain-in-a-Box Paradigm.



organization is fed into the program as a query
and out comes an answer. By and large, these
programs are large knowledge-based systems
(compared to our research aspirations, the
knowledge base may be modest sized, but the
KB is certainly not trivial compared to what
had been done in the early days of knowledge-
based systems research).

These systems operate in a query-processing
framework. That is, a query arising from the
business flow is formulated and sent to the
knowledge-based system in a relatively formal
representation. The query may be formulated
by an interactive graphic user interface (GUI),
or it may come directly out of the organiza-
tion’s enterprise system. Once the system pro-
duces its answer, it feeds it back to the source of
the query in a formal representation.

The business model now looks like figure 4:
The company has an operational flow worth a
lot of money. Thus, if you take the case of the
AMEX AUTHORIZER’S ASSISTANT, this flow contains

a company called “Operations Research, Inc.,”
you wouldn’t find it. That is not because oper-
ations research doesn’t work; it’s because it
works too well. Every company has an OR spe-
cialist, and every consulting practice has a
department full of people who are experts in it.
In fact what has happened to AI tools and tech-
nology is precisely the same. If you go into large
corporations you will find there are several
expert systems groups dispersed throughout the
company; they are populated mainly by people
who are not research computer scientists but
experts in an application domain. They are typ-
ically building a series of modest-sized expert
systems that solve real problems in the corpora-
tion. This is considered a routine, although per-
haps a slightly adventurous, practice.

If we look at the paradigm behind all these
applications, what you will see is something
that looks like figure 3: Inside there is a big AI
program that does the decision making. A
problem arising from the business flow of the
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The Business Model

AI Solution

AI Cases

Investment

Maintenance

Conventional Cases Unhandled  CasesOperational
Flow 

Bounced
Cases

Efficiency
Improvement

Handled Cases

Payback

Figure 4. The Business Model for Traditional AI Applications.



perhaps billions of transactions per year—I
don’t know the exact number, but it is a very
large number indeed, and it is worth a lot of
money. A lot of the transactions never get to
the AI system because they are too simple and
are handled by more routine technology, but a
significant percentage are passed to the AI sys-
tem. Of course, the system can’t handle some
of these. However, it can handle most of them.
The organization reaps an enormous efficiency
improvement on these transactions. There is a
monetary value to this efficiency improve-
ment; part of this is used to pay for maintain-
ing the application; the rest shows up as return
on the investment. If this return is much bigger
than original investment, you declare victory
and write a paper for IAAI.

In the typical example, there are many bil-
lions of dollars of business flow, and the effi-
ciency improvement is small, but a few percent
of efficiency improvement still produces a lot
of money compared to the investment. We
have seen that this process can pay off in sig-
nificant monetary terms for an organization,
but the monetary assessment sometimes trivi-
alizes the benefit. Sometimes it is the ability to
do the task at all that is significant.

In this model, there are three attributes that

are key (figure 5): (1) coverage, because if you
can’t handle enough of the cases you don’t get
the payoff; (2) accuracy of the coverage,
because it is expensive to bounce a lot of the
cases; and (3) accountability, because you have
to be able to explain what went wrong when
you incorrectly process a query. In many cases,
you also need to be able to explain your reason-
ing even when you successfully handle the
problem. You often have to justify a decision
you have taken and preserve it for future refer-
ence; this is particularly true for systems that
operate in a design context.

These key attributes lead to an AI research
agenda: We focus on inferencing and reasoning
for accuracy, on representation for coverage,
and on dependency management and truth
maintenance for justifiability. There is a large
set of perfectly viable and important AI tech-
niques to support these three attributes. I
recently spent three years as a program manag-
er at the Defense Advanced Research Projects
Agency (DARPA), and when I looked at this
agenda I said, “Well that actually lines up pret-
ty well with the kinds of research we sponsored
about five years ago in the government, at least
out of DARPA.” Thus, these capabilities have
arisen from a long-term focus on knowledge
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The Key Attributes

Accountability

Coverage
Knowledge

Representation

AccuracyInference 
and Reasoning 

Truth Maintenance 

• Claim enough cases to be 
   valuable

• Bounce few enough of the 
   claimed cases

• Explain the bounced cases to 
   enable rapid manual rework

Figure 5. The Key Attributes of Traditional AI Applications.



the higher end of this family, that is, at the
components that we would recognize as com-
puters, such as the 16-bit microcontrollers.
Remember that when the first PC came out, it
was a 16-bit micro. There were 331 million of
those sold in 1997 compared to the approxi-
mately 100 million processors in desktop appli-
cations. Even in the 32-bit category of micro-
controllers, there were 13 million sold in 1997.
In aggregate, the microcontroller market is
huge. I was talking to Samy last night and he
said a low-end car from GM (which is where he
works) has 16 computers in it today; that num-
ber will go up. A high-end car has 36; so, if you
ask, “How many processors do you own?” the
answer is that the ones you think of as comput-
ers are a statistically irrelevant sampling. The
ones that really add up are in your cars and
other places, even today.

Now this pie chart (figure 7) makes that
clear. The huge wedge is microcontrollers, and
the tiny little slice is processors used in com-
puters as we think of them. Here are the projec-
tions for the year 2000 (figure 8): Desktop
processors will grow to 150 million, which is a
healthy growth rate of 1.5, but if you look at
the number of microcontrollers, it is predicted
to grow to 7.2 billion, a growth rate of 1.75; it’s

representation (there is even a DARPA program
named High-Performance Knowledge Bases),
inference, and planning by the government in
the form of sustained research funding.

This is where we are today, and it has worked
exceedingly well. Even if there was an AI win-
ter, we should declare that it is over (but, as I
said, personally, I think it never happened).

What does the future hold? Let’s begin by
looking at the underlying base of computation-
al elements that the VLSI (very large-scale inte-
grated) chip industry is delivering. I believe
there is a sea change afoot. I have to thank my
friends at DARPA’s ITO office for the data on
these slides; it is part of their pitch and I stole
it from them (figure 6). The chart shows the
number of microprocessors sold into desktop
and server applications, that is, conventional
uses of processors. The data are from 1997; at
that time, there were about 100 million of
these conventional microprocessors sold in a
year. Also shown are the number of microcon-
trollers, processors that are used in embedded
applications, a very broad spectrum of uses.
There were 1.3 billion 4-bit microcontrollers
compared to the 103 million microprocessors
and 2.4 billion 8-bit microcontrollers. The
numbers are enormous even when you look at
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CPU Shipments in 1997

16 bit (ARM)
9,200,000

32 bit (MIPS)
24,600,000

ASSP

ASIC

Cores
+33,800,000

NEC 30%

4 bit
1,310,000,000

Motorola ~30%

8 bit
2,450,000,000

Mitsubishi 27%

32 bit
13,000,000

MCU's
4,104,000,000

8 bit
39,171,000

16 bit
56,589,000

68K 37%

Embedded MPU's
199,165,000

TI

AMD

DSP
No 1997 numbers 

x86
97,325,000

PowerPC
3,500,000

SPARC
1,217,000

Computational 
MPU's

103,405,000

Microcontroller Solutions
4,464,321,000

MCU/MPU = 39.69

16 bit
331,000,000

32 bit
103,405,000

Figure 6. CPU Shipments in 1997.
Source: Data Quest plus additional information.



growing somewhat more rapidly. However,
most significant of all is the growth rate of
high-end microcontrollers. The 16-bit ones are
projected to grow by a factor of 2.3 during that
period, and the 32-bit microcontrollers are pro-
jected to grow by a factor of 3 during that time.
The crossover point between the microproces-
sor category and the high-end embedded
microcontroller category is in the near future.

What that says is that most computation
will be embedded in physical systems that
interact with the world. The emerging para-
digm is: Get physical; give our brain in the box
eyes, ears, and hands (metaphorically of
course), so that it can perceive and interact and
effect the environment.

Here are a few examples of existing systems
that are in this category. One of these is actual-
ly a deployed application, the IMAGE-GUIDED

NEUROSURGERY SYSTEM that Eric Grimson will talk
about Wednesday at 2:30. This is now in rou-
tine practice at Brigham and Women’s Hospi-
tal. I am pretty sure he has videos of this that
he is going to show. Eric gave a presentation on
this work a few years ago at IAAI; it was an
invited talk, and at that time, it was an emerg-
ing application. It was about to go into experi-
mental practice, but it is now routine.

This system uses cameras and CT scans to
form three-dimensional models of a brain that
are used in tumor removal surgery. During

surgery, the camera is used to observe the pre-
cise orientation and position of the patient’s
head, and the 3-D image of the brain is super-
imposed onto the real one. This is used by the
surgeons to help guide their surgical probes as
they dig through the brain to get to the tumor
that needs to be removed. This allows them to
perform surgery that was previously considered
too risky because the surgical path would have
come too close to vital brain tissues. Thus, this
is a perceptually enabled application that is
already in routine, although certainly not
widespread, practice.

Another application is the INTELLIGENT ROOM

project at the Massachusetts Institute of Tech-
nology. I should apologize for my MIT-centric
focus, but I am from MIT and it is traditional
that we are myopic, and I wouldn’t want to dis-
appoint any of you by breaking with tradition.
The INTELLIGENT ROOM is a smart space; there are
now probably 15 or 20 similar projects going
on around the country. This was one of the
first, and it is still in many ways one of the
most mature ones. In this system, we com-
bined speech recognition and natural language
understanding, vision and gesture recognition,
and information management and retrieval
into a coherent system that you can interact
with in ways that are different from those of
conventional computation. I have a brief video
that shows some of the interactions with this.

Articles

WINTER 2000   47

1997 Summary MCU + MPU  

Computational MPUs
Embedded MPUs
MCUs
Cores
DSP
TOTAL

16 Bit
N/A

56,589,000
331,000,000
10,000,000

N/A
397,589,000

2% 4%

93%

1%
Computational MPUs

Embedded MPUs

MCUs

Cores

4 Bit
N/A
N/A

1,310,000,000
Unknown

N/A
1,310,000,000

8 Bit
N/A

39,171,000
2,450,000,000

N/A
2,489,171,000

Unknown

TOTAL 1997
103,156,000
199,165,000

4,104,000,000
58,000,000

4,464,321,000

Unknown

32 Bit 

103,405,000
13,000,000
48,000,000

267,561,000

Unknown

103,156,000

Figure 7. Controllers’ and Processor’s Share of the Market.
Summary: Even in 1997, computational microprocessors are a “statistical fluke.” Almost all computation is embedded. (Source: Data Quest.)



there is no gadgetry; there are no badges you
wear to identify yourself. In the video, Coen is
wearing a microphone, but we intend to
replace that with a microphone array at some
point so that the environment will be totally
gadget free.

The video showed snippets of two different
kinds of applications. One, which one day will
be in your home, helps to manage your daily
life: “Oh, you are about to go to sleep; when do
you want to wake up?” The other is sort of “a
command post” (in the very generic sense) that
focuses on information management and
retrieval. These are examples of what you can do
in a system enabled by perception and effectors.

I’d like to share my vision of what one of
these environments would be like 10 years
from now when deployed in a work environ-
ment. I’d expect that we would hold our meet-
ings in these perceptually enabled spaces and
do the things we normally do at meetings: We
might consider some issue, somebody might
make an argument for the way we ought to
approach that issue, somebody else might
make a counterargument. I might offer to send
him a market forecast that would be relevant to
the discussion. At any point in this process, the

I should mention that this was made for last
year’s AAAI conference; the system is signifi-
cantly better now.

In the video, there is a point where Michael
Coen lies down on the couch in his office
(which is a very atypical MIT office). There is a
camera mounted above the couch; when he lay
down, the camera could see that he had
changed body posture and decided he must be
going to sleep because his posture was now
prone. The system then closed the window
blinds, killed the room lights, asked him when
he wanted to wake up, and put on Mozart. All
these appliances are under computer control;
they are the “hands” of the INTELLIGENT ROOM.
The only bug in all of that is I would not per-
sonally have gone to sleep to that particular
Mozart selection. These tests are done in real
time; in fact, it works a little better this year
both because of better software and because
Moore’s law has worked one more time.

This is a system that you interact with by
talking to it, gesturing, drawing, and sketching,
and it responds with images and voice. There is
no keyboard in evidence except in the rare
occasions where typing happens to be the best
way to interact with the system. By and large,
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Projected CPU Shipments in 2000
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Figure 8. Processor Shipments Projected for 2000.
Source: Data Quest plus additional information.



system might present relevant information of
its own.

There are a family of representations that are
used for capturing these kinds of deliberations
(going back to a system called GIBIS), and there
have been many attempts to make systems that
actually use these representations to capture
design rationale and design deliberation. The
problem has always been that you have to
enter this information manually, but that’s
very tedious, so no one ever does it, and the
information always gets lost. Even information
as simple as “What did I promise to do in yes-
terday’s meeting?” often gets lost, particularly
for those of us whose brains are starting to
deteriorate. Thus, I often walk out of a meeting
with a pad saying “Call Randy,” “Call Samy.” I
look at it the next day and say, “Samy who?”
and “Why?” Even if I could remember it was
about issue X, what I’d really like to know is
what was the context around that issue?

My vision is that we will interact with one
another inside perceptually enabled spaces that
listen to the discussion and that extract the
essence of what’s going on. It doesn’t need to
be perfect; it doesn’t need to understand every-
thing. In point of fact, neither do we, but what
you would like to be able to retrieve is the con-
textual stuff about who interacted with whom
and for what purpose. I might come in to work
the next day and ask, “What did I promise to
do yesterday?” and get the answer, “You
promised to ship Jane some forecasts this
week.” If I asked why, the system might tell me,
“Because they supported Tom’s claim that he
would have enough cycles to use a straightfor-
ward implementation.” I could ask, “Was any-
body arguing against that?” and be told that
indeed Sam did.

All this is perhaps a forward pointer to Reid
Smith’s talk on corporate knowledge manage-
ment. I don’t know if this is Reid’s version of
the future, but it is mine. I think that the trick
of capturing corporate knowledge over the
long term is to capture it in context through
natural interactions with the environment. Let
the rooms, the environments become natural
players in the scene. It would be nice if this
happened around the coffee machine as well as
in the meeting room, because after all, half of
the good ideas in the world happen around the
coffee pot, not in the meeting room. The meet-
ing rooms are the rites of passage where you
ratify decisions; they are very important places
because they are more formal and, therefore,
easier places to capture information. However,
they are by no means the only ones. I have lots
of good ideas in rather inconvenient places like
the shower and my bed. I’d like to be able to

capture those ideas before they disappear, so
these capabilities must be ubiquitous, and our
entire set of ideas about where the work place
is located will need to change. If I have a good
idea in the middle of the night, I’d like to
explain it to my electronic personal assistant;
by the time I arrive at work, I’d like the system
to have worked on the problem by finding me
papers I should read or people I need to talk to.

I think 10 years from now we might be able
to do some of this. It is not going to be easy:
There are obviously issues of dialog tracking
here that are nontrivial, but people have
worked on them a long time. There are lan-
guage-understanding issues that are nontrivial,
but people have worked on those for a long
time too. Then there are representation and
reasoning issues and all the rest of it, but all of
those have also been worked on for a long
time. I think the time is getting ripe to attempt
to do this because as I showed you before, we
can build environments that are good enough
today to support some limited kinds of interac-
tions of exactly this kind. It will be harder
when there are many people in the room
because you have to keep track of who is talk-
ing and to whom and why. There are all kinds
of issues, like how do you know that John was
responding to Sam and not Jane, but in an
environment with lots of perceptual sensors,
there are lots of clues: who were you looking at,
who spoke last, and so on. The task of engi-
neering systems that can use such clues well is
a very difficult but very exciting challenge.

One of the technologies that was used in the
system illustrates that natural language tech-
nology is getting good enough to support the
kind of information management tasks I’ve
just described. Given fairly unrestricted queries
about a domain the system happens to know
about, the system can produce information for
you, direct you to web pages that answer your
question, and so on. This is one of many very
good natural language systems that are current-
ly around. This one again is an MIT one, done
by my colleague Boris Katz. It is going to be
shown in the exhibit hall as part of a larger
demonstration, but you can also get to this sys-
tem on the MIT AI Lab web page at any time.
Incidentally, there is a very interesting story
about what happened to this system when we
exposed it to the public on the web. Boris had
probably been working on this system for 15
years or so when John Mallery and I came to
him and said, “Oh, we’re going to spend about
1 days effort and put your system on the web
for you. Won’t that be nice? Thousands of peo-
ple will come and ask it questions that you
can’t control.” You can imagine that he was
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compared to the surprise of realizing that
bandwidth is free. In point of fact, bandwidth
is growing so much more rapidly than Moore’s
law that it is probably going to be the driving
factor. There are some simple reasons for this.
Some of them are technological things like
wave division multiplexing in optical fibers,
but the other one is relatively mundane. When
you lay down fibers, you dig holes in the
ground; it turns out that digging the holes is a
lot more expensive than the fiber, so as long as
you’ve opened a hole in the ground, you may
as well put in as many optical fibers as you can.
Therefore any time somebody goes out to cre-
ate new bandwidth, they create an awful lot of
it. The same thing is true for satellites. If you
are going to the bother of shooting something
into orbit, you probably want to make sure it
can handle a lot of channels because it is really
expensive to get it up there; so every increment
of bandwidth is enormous.

Whether demand catches up to supply or not
is actually not the important debate. The real
point is that there is enormous supply to meet
any new demand. We’ve entered an era of
abundance for communications as well as for
embedded computation. This will enable sys-
tems like the INTELLIGENT ROOM to be dispersed in

not enthusiastic about that, but in point of
fact, this system has gotten better in the last 5
years, much, much faster than it did during the
first 15, because now real people, not linguists,
ask it questions. We automatically journal all of
those questions and go back and figure out
why the system failed and then improve it.
This is a very limited example of being embed-
ded in the real world, but it has made an enor-
mous difference.

This suggests turning to the second aspect of
what is changing in the underlying computa-
tional base. Fortuitously, as I was working on
this talk, The Boston Globe published just the
right chart for me. What it shows is the supply
of communication bandwidth versus current
demand, extrapolated for a few years. Roughly
speaking, what this says is that bandwidth is
free. There is a lot of it, and there is going to be
a lot more. This is the second big surprise. The
first was to realize that we are entering an age
of abundance in embedded computation. It
was a little bit of a surprise to me to realize that
the processors that we tend to think of as com-
puters are a statistically insignificant sample of
the population of processors and to realize that
the embedded processors are becoming quite
powerful. However, that surprise is nothing
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space. If I want to have a teleconference with a
colleague across the world, the bandwidth will
be there to do that. What has actually been
holding it up more than anything is that the
underlying applications that provide a telecon-
ference are terrible. You have to sit in front of a
camera and become a talking head. If you
decide you want to get up and point at some-
thing, the camera won’t follow you. It’s just ter-
rible. But now we’ve got the bandwidth to carry
a lot more, and we have the smarts to build sys-
tems that can move cameras to follow you and
the language-understanding capabilities to
make sense of what you’ve said. We can use all
of this to capture the flow of information.

What this suggests is that the common
mode of computation will soon consist of a
highly distributed ensemble of embedded com-
munications processors with effectors and sen-
sors (figure 9). The last jump in the communi-
cations network may well be wireless to allow
mobility, but the wireless infrastructure is get-
ting better very quickly as well.

If this is indeed the emerging computational
world, it is a very different one from that which
we are used to. Sensors and effectors will not
typically be regularly placed. You will put them
where you can and that is not usually on a

nicely spaced grid. Even if it were, they fail.
Failure is an unavoidable fact of this world. The
more stuff you have, the more opportunity
there is for some of it to break. This is particu-
larly true when communications is part of the
process; it breaks faster than processors do.
There are lots of sensors, but they are cheap
and imperfect. They are imperfect not only in
the sense that they break, but they are also
imperfect in the sense that they are noisy. Any
time you attempt to sense something, noise is
in the way. The challenges then are to form
accurate perceptions of the world using an
ensemble of distributed, fallible components;
to recover from failures of the components; to
compensate for noise whether it is from the
sensors or the environment itself; and to use all
this infrastructure that is growing rapidly to
best advantage.

Earlier I talked about the three attributes of
accuracy, coverage, and accountability and
how they were key to the traditional AI agenda.
Those attributes and the research agenda they
inspired will not go away, but there is a new tri-
ad of attributes that is more relevant to the
emerging world of abundant, embedded com-
puting that I’ve just been describing. These are
(1) autonomy, because the systems are out
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resources they have to work with when a prob-
lem arises because things break, and resources
get deployed to other tasks. Systems will have
to function when there are many tasks execut-
ing concurrently and contending for the use of
the common resources.

We have some spectacular examples of
autonomous embedded systems like the REMOTE

AGENT system on Deep Space 1 that have
already been deployed. Some of these are a bit
peculiar because real time tends to be a little
slow on space missions, but it’s nice to be able
to do an autonomy experiment where real time
is not measured in seconds but hours and
weeks sometimes. The Deep Space 1 autonomy
experiment was just flown this year, and it was
declared a success. REMOTE AGENT successfully
operated the Deep Space 1 probe for a day.
Wednesday at 10:30 Ken Ford and Peter Norvig
will talk about this.

The Mars Rover also had a significant auton-
omy component. It is interesting, though, that
autonomous control of the rover was not
enabled until the critical and secondary mis-
sions were already completed. These were done
under manual command control from Earth,
but I’m told that the rover worked much better
once they let it run itself; that is a lesson that
still needs to be learned by the operational
community.

Now let’s turn to the category of robustness.
Robustness means a lot of different things to
different people. I’m using the term to mean
the ability to recover from failure of software
and hardware components. We have done a lot
of research into diagnosis and recovering from
failure of hardware components. In fact, the
NASA work on Deep Space 1 significantly
focused on recovering from hardware failures,
and it used a rather rich set of results on model-
based diagnosis.

However, there is another problem faced by
systems that sense the world and rely on their
perceptions. It is not just the sensors that are
weak; our theory of perception is also weak.
We, as system designers, don’t necessarily
know the right operation to perform in order
to get the kind of result we want. Therefore, we
need to build software systems that are pre-
pared to recover from their own failures. How
can we do this? At least one way of thinking
about this problem is to make the system con-
tain representations of its own design ratio-
nale; the system should know how its compo-
nents interact to achieve its overall goal. The
plan representation that we used in the PRO-
GRAMMER’S APPRENTICE project 25 years ago is not
a bad starting point for this kind of representa-
tion. I personally haven’t worked on program

there in the environment and they have to
plan for themselves; (2) robustness, in the
sense of being able to recover from failure; and
(3) coherence, in the sense of being able to
form a coherent picture from lots of partial,
noisy sensing of the world (figure 10).

These attributes also lead to a research agen-
da that is very exciting. Although there is cer-
tainly overlap with the previous agenda, there
is a very significant shift of emphasis. The goal
of autonomy leads a focus on real-time plan-
ning, scheduling, and resource allocation. Deci-
sion making will be in an environment that
requires reasoning under uncertainty because
absolutely nothing is noise free. The goal of
robustness means that there will need to be a
huge focus on monitoring whatever plans we
have made, diagnosing what went wrong, and
recovering and replanning. The goal of coher-
ence leads to a focus on machine learning, sta-
tistical recognition techniques, evidential rea-
soning, information fusion, and device
management: deciding which devices I should
use, where I should put them, and so on.

Like before (and conveniently enough), this
tends to map onto a government-sponsored
research  agenda that is going on right now. I
see Jim Hendler who is currently a DARPA pro-
gram manager sitting in the audience. He
could spell out a road map for how this agenda
maps onto current and planned government
programs.

I want to spend a little bit of time discussing
how we might attack these issues and what
results we already have to draw on. The goal of
autonomy means that these systems will need
to be able to plan and schedule their own
actions. They will have to do that within real-
time demands; this, in turn, raises the question
of how good a plan they can develop given
that they have to develop it in time to be use-
ful. A perfect plan that isn’t available until after
the need is gone is not very useful. In military
applications, this issue comes up all the time
because a perfect plan to get a helicopter into
an observation site 10 minutes after the battle
is over is not a very useful plan. Thus, planning
has to be situated in a context of time and
computational constraints, and optimality is
no longer the key issue; the goal is to get a good
enough answer within the time constraints. Of
course, people in the planning community
have been looking at these issues for at least
the last five years. We don’t have perfect
answers, but we do have good enough tech-
niques to build some real systems. These sys-
tems will also need to dynamically allocate
resources; whatever set of resources they start-
ed with will not necessarily be the set of
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representation for 20 years, but I’m starting to
think about going back to that agenda. Having
the system contain representations of its
design plans enables it to monitor the execu-
tion of its programs and to engage in diagnos-
tic repair and recovery whenever the system
detects that its software has failed to achieve its
goals. Again, I can point to the NASA talk on
Wednesday as a good example of a system of
this kind.

To make a brief plug for my own work, I’d
like to suggest that an overall architecture for
such systems is the next kind of software infra-
structure that we want to create (figure 11). It
is an obvious point that our progress is often
represented in the formalization of new pro-
gramming infrastructures: They change the
way that people approach the design and the
programming of systems. That is the reason
why even this many years later, people still
walk up to me and say, “I wish I still had my
LISP machine”; the infrastructure embedded in

that system represented a better way of pro-
gramming than what was common then and a
much better way of programming than what is
common now. Unfortunately, we seem to have
progressed backwards for a while. The Lisp
Machine system relieved the programmer of
certain tasks that were very burdensome; these
were primarily information-management
tasks. By building solutions to these tasks into
the infrastructure, the Lisp Machine system
made programming a lot easier for everybody
who used it.

Where robustness is a key attribute, one
would want the programming environment to
include many more things than the actual
code. For example, we would want to represent
how the program is structured into domain-
specific layering of services, in which the super-
routines—the services at the higher levels of
abstraction—are actually the things that get
reused a lot. As we pointed out in the PROGRAM-
MER’S APPRENTICE a long time ago, most programs
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have only weak theories of the domain, or it
might be because an underlying component
failed, or it might in certain contexts be
because your system was hacked. All these are
perfectly reasonable motivations for building
systems this way.

This leads to a view of the software develop-
ment environment that is a very information-
and knowledge-rich system. The development
environment captures not just code but also
the rationale for the code, the plans, and so on.
It performs a very rich set of services; it extends
the system with code that we currently need to
write by hand. That is, it inserts code that helps
to detect exceptional conditions and to estab-
lish points from which recovery operations can
be initiated. This leads to an agenda to develop
facilities that currently don’t exist in any soft-
ware systems, but I think this is the right agen-
da; after all, this is the code that we all know
we should write but never do. I speak personal-
ly, and I think everybody who is honest about
it says, “Well error handling is the last thing I
worry about.” It has to be because until you

are actually combinations of very cliched pat-
terns, and it is these common patterns that get
reused. Each of these superroutines, or pat-
terns, may be implemented in lots of ways. A
common superroutine in image processing, for
example, might involve a filtering operation.
Now, there are loads of ways of doing any par-
ticular filter. They all achieve the same thing,
but they do so in different ways, and some of
them work better under certain conditions
than others. The importance of focusing on
patterns, or superroutines, is that associated
with each superroutine is a plan that says why
it works. You can carry this information into
the run-time environment by synthesizing
monitors around the components of the sys-
tem to make sure that the invariants of the
plan really are invariant; that is, you check at
run time that they achieved what was intend-
ed. If they don’t, then the monitors will signal
conditions that cause diagnostic routines to be
invoked. These might use model-based trou-
bleshooting techniques to figure out where and
how the program failed to achieve what was
intended. The failure might be because we
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have got the functionality running, you can’t
worry about the exceptions. There a number of
new run-time services that will be part of the
infrastructure of this new generation of soft-
ware; these include the run-time services to
conduct diagnosis, repair, and recovery. This is
a model of a new software environment that is
knowledge rich on both the development and
execution components.

The final issue to be considered is coherence.
As I said, the world will consist of many, many
somewhat faulty sensors; they will sometimes
induce noise, and some random subset of them
will break. The real world that we all function
in ourselves day to day is an ugly place; it’s one
our systems will have to get used to. One way
of approaching the issue of coherence is to
make the observation that the world is a good
representation for itself. Often, you can use
events in the world to mutually calibrate the
different sensors and effectors that are embed-
ded in the world; if they observe the same
events and share their perceptions of that
event, they can learn a lot about one another
and about the world. Thus, you can imagine a
camera, by this I mean the camera and the
computer processing its imagery, saying, “I see
this guy at this position” and telling that to the
microphone array, which says, “Hmm, I hear
him at a different position, so I’ve just learned
something about the calibration between his
and my coordinate systems” (figure 12). Con-
stant iterative calibration using mutually per-
ceived events in the world may be a key tech-
nique to achieve coherent perception.

Here is another example of this idea. In fig-
ure 13 are four projectors ganged up into an
overall display. They are not positioned very
carefully, as you can see (figure 14); they over-
lap, their imagery does not quite line up, and
their color balance is all off. However, looking
at these four projectors is a camera; during a
calibration pass, it figures out how a pixel in
frame buffer space maps into a pixel in screen
space. It’s a “mere matter of computation” to
invert that mapping and to figure out what
pixels need to be written into the frame buffer
to get a desired pixel on the screen. Similarly,
it’s just a “mere matter of computation” to
compensate for a variety of distortions; so, we
can go from incoherent projected imagery to a
coherent one by sensing and computing. My
colleague Tom Knight is working on this con-
cept. There are a lot of interesting issues to be
addressed. Once you say I can computationally
correct for distortions in the projector, it
becomes possible to use really cheap projec-
tors. Thus, instead of using a projector like the
one we use in this hall, which is a true tour-de-

force of mechanical and optical engineering,
you could buy a piece of junk and computa-
tionally compensate for all its problems. Unfor-
tunately, you can’t buy projectors that are
pieces of junk. They cost about $5000 a pop.
We’d like them to cost about $500.

I want to close by making an observation
about the interaction between two kinds of
activities in our field. The first is the kind of
activity that the IAAI was established to pro-
mote: the development and practical applica-
tion of new technology. The second is the pure
scientific agenda of the AI community, which
is to develop an understanding of machine
intelligence. Of course, these are not complete-
ly unrelated exploits: Corresponding to the sci-
entific goal of understanding machine intelli-
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amorphous ensemble of noisy sensors. It
turned out that the easiest way to do that was
to rely on machine-learning techniques; the
software agents that control the different sen-
sors and effectors learn how to calibrate against
one another and how to usefully interpret one
another’s input.

Michael Coen began to develop the hypoth-
esis that the human brain might do exactly the
same thing. His suspicion is that individual
functional parts of the human brain use
machine-learning techniques to develop mod-
els of one another. In other words, he believes
that the way his software agents work might be
psychologically real. Not only do we use
machine learning to learn about the world
through our sensations, but the various parts of
our brains initially view one another as for-
eigners and learn how to work together using
much the same techniques as they used to
learn how to perceive the world. That is one of
the claims. I have no idea whether it is true or
false, but it is certainly an intriguing one, and
it has the ring of something that just has to be
true—at least to me.

AI researchers who are pursuing the scientif-
ic goal of understanding human intelligence
worry about psychologically realistic represen-
tations. Does this suggest how the mind, and
in particular the human mind, might do the
task? Just by coincidence, there was an article
that appeared in Science magazine recently
reporting experiments by a group of neurosci-
entists that show that visually centered coordi-
nates are the coordinates used by at least a sig-
nificant component of our motor system, in
particular the motor cortex. That is a striking
claim because if I’m trying to plan how to grab
the microphone with my hand, the obvious
coordinate systems are hand- (or arm joint–)
coordinate systems. I am moving my hand
after all, and what I need to do is figure out the
configuration of my arm joints. However, the
observation the scientists made is that you
always move your hands under the guidance of
your visual system. None of our motion is
independent of other sensations. In primates,
vision is the dominant perceptual modality;
therefore, as the various brain components
learned to work together, visual coordinates are
pushed into other parts of our brains. It turns
out that this is also true of our auditory sys-
tems; there are significant parts of the auditory
cortex that use visually centered coordinate
systems.

I want to make several observations about
this. The first is that neuroscientists can now
provide us with interesting results from the
point of view of AI research; this is new and

gence, there is an application agenda of engi-
neering intelligent programs. For many of us,
the goal of understanding machine intelli-
gence involves the goal of understanding
human intelligence because the kind of intelli-
gent machine we’d like to build is one that
resembles us. If this is our goal, then the exper-
imental side of it might be the experimental
modeling of human cognition in computer
programs.

In the part of our work motivated by scien-
tific goals, we tend to ask questions like, “How
do people apprehend tasks so as to make them
computationally tractable (for the kind of com-
puting engine that sits in heads)?” “What
knowledge and problem-solving methods and
perceptual techniques, and so on, make all that
work?” In the application domain, we ask sim-
ilar questions: “How do we apprehend some
specific task so as to make it computationally
tractable for the kinds of machines that are
built from VLSI chips?” “What knowledge- and
problem-solving methods are appropriate?”
There is an obvious interplay between those
two exploits, but they are still different
exploits. One of them has the goal of under-
standing intelligence; the other has the goal of
making useful systems. These are not in con-
flict; they are complementary. We should con-
tinue to do both vigorously.

The IAAI conference has many goals: It
serves to highlight the intimate relationship
between research and application. It helps to
evaluate the adequacy of our current technolo-
gy, to focus attention on new enabling tech-
nologies. Finally, the conference helps to
explore the frontiers of emerging application
areas as I have been doing for the past half an
hour or so. This may suggest new research
issues, by highlighting areas where application
technology is weak, and new insights are
required.

However, the flow of ideas is not unilateral.
Work on applications may also serve to create
critical new scientific research insights. Some-
times the interaction consists of people in the
practical domains saying “Hey, I have a task
that I can’t do. Guys go solve that problem.”
However, often what happens is just the oppo-
site; a team of people trying to build an appli-
cation say, “You know, the way I just made this
work might actually tell us something about
the way it works in people.”

Here is a possible example of that. The INTEL-
LIGENT ROOM was motivated by the practical
goal of making a useful environment. To do
that, we had to worry about the question of
how to coordinate the cameras and micro-
phones and how to get coherence out of an
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important. Notice that what the neuroscien-
tists reported was not that the firing rate of
neuron x in region y of the brain is 23 blips per
millisecond, which is what they used to be able
to tell us when I first joined the AI community.
Today neuroscientists are providing functional
descriptions of the representations used in dif-
ferent parts of the brain; that is a qualitatively
different kind of information that should be
enormously valuable to us. There is huge
progress that has been made in neuroscience,
and much more will forthcoming. The lan-
guage being used to communicate these results
is a language that we who are interested in
building cognitively motivated systems can
understand.

It might be that a hypothesis that arose in
the AI practice of building a smart environ-
ment was supported by evidence from neuro-
science. That would be enormously exciting.

It would be very interesting if we could build
a computational model of cognitive develop-
ment that leads to the same results. Suppose we
built a model of development that used
machine learning to support the mutual cali-
bration of motor and visual parts of the model.
Would such a model wind up with the motor
component working in visual coordinates?
Such an experiment would be a wonderful
interaction among a variety of communities.
This, quite possibly, is where our field is head-
ed. I point you, in particular, to Patrick Win-
ston’s keynote talk tomorrow that will explore
this theme more.

Let me close by summarizing: Technology
changes will offer us great opportunities for
building complex systems that are embedded
in their environment. We are entering an era of
abundance, and we should begin to think that
computation and communication in this
domain is every bit as free as it has become at
the desktop. The building of these systems will
also highlight new attributes and new techni-
cal agendas that are crucial to realizing the
attributes. Also, these systems will be much
more like us humans than are the knowledge-
based systems that have driven AI practice in
the past; therefore, the building of these
embedded intelligent systems will be a unify-
ing force for our discipline, unifying applica-
tion and science, AI and related research disci-
plines. This future holds challenges,
opportunities, and excitement.
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