
� Creativity is sometimes taken to be an inexplicable
aspect of human activity. By summarizing a con-
siderable body of literature on creativity, I hope to
show how to turn some of the best ideas about cre-
ativity into programs that are demonstrably more
creative than any we have seen to date. I believe
the key to building more creative programs is to
give them the ability to reflect on and modify their
own frameworks and criteria. That is, I believe that
the key to creativity is at the metalevel.

It is a widely held view that creative thought
is a necessary part of the complex of behav-
iors we use to define intelligence. In the

AAAI-1998 Presidential Address, for example,
David Waltz said that creativity is a key topic
for AI research because it is an essential element
of human intelligence (Waltz 1999). If it truly is
necessary, then it must be addressed for a reso-
lution to the philosophical questions about
whether machines can think. As Dartnall puts
it in the Encyclopedia of the Philosophy of Mind,1

if creativity is a human process that cannot be
described mechanistically, then human minds
cannot be symbol-manipulation machines.

From the point of view of an experimentalist,
AI is the perfect medium for understanding cre-
ativity because implementing ideas in computer
programs gives us the means to test these ideas.
Therefore, I discuss some of the empirical work
in psychology and experimental work in AI and
what it seems to tell us about methods for build-
ing machines capable of creative activity. 

Common Usage
I first note the obvious: There is no consensus,
just considerable ambiguity, about what we
call creative behavior or what is involved in
this behavior.2 In everyday speech, gifted peo-
ple who create new ideas, new works of art,
new music, and so on, are said to “think out-
side the box,” “break the rules,” “revolutionize
the field,” “think intuitively,” “think differ-
ent,” and “change the way we think.”

Psychologists use much the same kind of
language but with longer words. They say that
creative people “think in uncharted waters”
(Lee [1957] quoted in Taylor [1988], p. 118),
“go off in different directions” (Guildford
[1950] quoted in Taylor [1988], p. 119),
“destroy one Gestalt in favor of a better one”
(Wertheimer [1945], quoted in Taylor [1988],
p. 118), suppress conscious thought to let pre-
conscious material emerge (Bellak 1958),
arrange old elements into a new form (Koestler
1964; Harmon 1956), and add to the existing
stored knowledge of mankind (Newell, Shaw,
and Simon 1958).

These six samples of early psychological
studies of creativity represent different aspects
of creative behavior that have subsequently
been studied and elaborated on (see, for exam-
ple, Taylor [1988]). They also represent differ-
ent aspects that made their way into contem-
porary models of creativity in computer
programs. I have deliberately highlighted older
work to underscore the fact that psychologists
have been interested in understanding creative
work at least since the 1950s; a recent overview
with many personality traits associated with
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Margaret Boden (1994) has brought together
many of these elements into an elegant work-
ing definition of creativity. She wrote that in
art, music, design, problem solving, science,
and so  on, creativity involves generating ideas
that are both novel and valuable. At the risk of
oversimplifying, by novelty, she means that the
idea is either new to the person or new in the
history of the field; by valuable, she means that
the idea meets the approval or satisfies the val-
ues of the social group. 

Boden points out that creativity is a judgmen-
tal term; there is a value judgment associated
with calling a person creative. People make
judgments differently and can apply the same
adjective differently to different people or use
different adjectives to describe more or less the
same kind of behavior in different people. In
children and adults, for example, we might talk
about their problem solving or their art making
as “pedestrian” or “routine” at the lower levels
and “clever,” “imaginative,” or “revolutionary”
at the higher levels, with many things in
between. Calling someone “creative” implies
that they are more imaginative than is implied
by calling them “merely clever,” and their con-
tributions are more important than those of
routine, journeyperson thinkers or artists.
Boden also emphasizes the importance of a
generative mechanism.

Our own definitions of creativity also partly
depend on how rare we think the phenomenon
is. If we want to restrict the class to just a few
people a century, or maybe a few in any disci-
pline in a century, then we apply much stricter
criteria—usually insisting that the person’s
ideas have caused the rest of society to change
the way they think about things. Beethoven,
for example, introduced human voices into
symphonic music in ways that had never been
done before and, thus, changed forever the
nature of music. However, if we believe that
every advertising agency and startup company
has as many creative people as they claim, we
must be willing to use criteria that many people
satisfy in ordinary life, not just the singular
geniuses. In part, this decision might have more
to do with how much society values the prod-
uct than with the process itself (Gedo 1990).  

The process of creative thought, however,
might not differ between the everyday thought
of every individual and the rare thoughts that
earn a place in history. Schank and Cleary
(1995, p. 229), for example, write:

These small acts of creativity, though they
differ in scope, are not different in kind
from the brilliant leaps of an Einstein. Cre-
ativity is commonplace in cognition, not
an esoteric gift bequeathed only to a few.

creative people (and an extensive bibliography)
is in Dacey and Lennon (1998). Sternberg
(1988a) surveyed people to see what kinds of
characteristics they (we) actually associate with
creative behavior. Six major elements turned
up: (1) lack of conventionality; (2) the recogni-
tion of similarities and differences and the
making of connections; (3) appreciation for
and ability to write or draw or compose music;
(4) flexibility to change directions; (5) willing-
ness to question norms and assumptions; and
(6) motivation and energy.

Editors of a recent volume entitled Creativity
and Madness (Panter et al. 1995, p. xiii) encap-
sulate much of the earlier writing by psycholo-
gists:

Creativity is the ability to bring some-
thing new into existence, by seeing things
in a new way. Those who have this in the
greatest degree are considered geniuses,
and greatly honored and rewarded, but
frequently considered strange, disturbing,
and even mad.… Creativity is a construc-
tive outlet for painful feelings and con-
fused states of being.

In addition to melancholy and madness,
some of the psychology literature also contains
an undercurrent of mystery surrounding the
creative process, for example:

The more one studies the subject of cre-
ativity, the more complex and bewildering
it seems, and the closer one comes to
accepting Freud’s conclusion that it sim-
ply cannot be understood (Berman 1995,
p. 59).

AI scientists, however, have always been
more optimistic about understanding all
aspects of human thinking (Simon 1979,
1967). Polya’s (1945) pioneering work on
understanding the process of problem solving
helped remove the mystery. In one of the first
descriptions of creativity in AI programs,
Newell, Shaw, and Simon (1958) focused on
characteristics of the product, the process, the
person, and the problem that come together
when we call someone’s thinking about a prob-
lem to be creative: 

Product novelty: The product of the
thinking has novelty and value.

Process unconventionality: Thinking is
unconventional; that is, it requires modi-
fication or rejection of previously held
ideas.

Person’s persistence: Thinking requires
high motivation and persistence.3

Problem difficulty: The initial problem
was vague and ill defined.
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The question of whether failures can be cre-
ative also forces us to think about how we want
to define the class of creative behaviors and
creative people. Must an engineering design
actually work before we call its designer cre-
ative? If none of Edison’s inventions had been
successful, would we refer to him as a creative
genius or merely a crackpot?

It is often said that creative people “break
the rules,” but is rule breaking either necessary
or sufficient?
As Johnson-Laird (1999) points out, it is cer-
tainly not sufficient:

We can be certain that high creativity is
not just a matter of “breaking the rules.” …
There are many ways to break the rules of
any genre: almost all of them are uninter-
esting and aesthetically unappealing.”

Similarly, background knowledge seems to
be an essential element to distinguish deliber-
ate acts of creation from what Weisberg (1993)
calls “accidental” creativity. In science and
other problem-solving activities, a novice with
no technical expertise is less likely to be called
creative for making pronouncements that
break the rules than is an experienced person.
A child might have written e = mc2, for exam-
ple. Without the background knowledge that
puts the formula into context and suggests
why it is important, it is more an exercise in
penmanship than in physics (Kuhn 1970).
Also, it is less likely we will call artists creative
if they have not developed a set of skills and
knowledge that lets us see their work as a
departure from a solid base. Picasso’s technical
drawing skills, for example, gave him a base for
departure from representational art. Chase and
Simon (1973) suggested that years of prepara-
tion are essential for developing skills and
knowledge that allow a person to perform at
grand-master levels in any discipline.

Johnson-Laird (1988) sums this up in a sen-
tence:

Geniuses need to know more, and to have
this knowledge in a form that can control
the generation of new ideas.

Sternberg (1988b, p. 137), too, puts it suc-
cinctly:

It is impossible to have novel ideas about
something if one knows nothing about it.

However, many writers have pointed out the
inhibiting effect of having too much knowl-
edge or at least of believing too strongly in the
framework that one already has. In describing
Alexander Graham Bell’s work, for example, his
assistant, Watson (1913, p. 21), quotes his own
mentor in electricity, Moses Farmer:

If Bell had known anything about electric-

ity he would never have invented the tele-
phone.

Although there is no consensus on exactly
what we mean when we call a person creative,4

we do have a sense of when most of us would
say that one person is more creative than
another. We can use this sense as a guide to
developing more creative programs and, thus,
raise the bar on what we have demonstrated AI
programs can do (figure 1).

Marvin Minsky links the criteria defining
creative behavior with the possibility that
machines can be creative. Once we can say
what behavior we are looking for, he says, then
there is no doubt that machines are capable of
it. On what he calls the puzzle principle, he
writes (Minsky 1986b):

We can program a computer to solve any
problem by trial and error, without know-
ing how to solve it in advance, provided
only that we have a way to recognize
when the problem is solved.

That is, defining the criteria for acting cre-
atively assures us that a computer can be cre-
ative.

There are many other people in AI and psy-
chology whose writing on creativity I am draw-
ing on, and I would recommend to you. The
literature in psychology is voluminous, and it
is not entirely clear how we can get our arms
around it, but the titles listed in the bibliogra-
phy, starting with Sternberg (1999) and Boden
(1994), might be good places to start.
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Figure 1. Raising the Bar on What We Call Creative Thought.



Hokku Syntax:
1. 3 lines
2. Lines one and three = 5 syllables
3. Line two = 7 syllables

Hokku Semantics:
4. Poem suggestive or epigrammatic 

Haiku Constraint:
5. The need to refer in some way to one of the

seasons, often very obliquely. 

Margaret Masterman (1971, p. 180) nearly
30 years ago explored natural language genera-
tion in the context of a haiku writing program.
One example from this program is

All black in the mist,
I trace thin birds in the dawn.
Whirr! The crane has passed.

She describes how this haiku satisfies the
constraints, how it could be modified, and
what it means, and she explicitly talks about
the oblique reference to the seasons in this
haiku (birds migrating). However, is the art
form so constrained that it leaves no room for
creativity at all, or are we willing to call a haiku
master creative? It is a question that we all have
to answer for ourselves because the notion of
structure is terrifically important in every activ-
ity. In particular, is it possible for creative prob-
lem solving to be carried on without any struc-
ture at all, and what would it mean?

In an invited talk at AAAI-1998, the compos-
er David Cope (1998) described his program
EXPERIMENTS IN MUSIC, which is distinctly combi-
natorial in nature. By the account of most
everyone who listened to examples from the
program, the program is creative indeed. The
program considers specific elements of Bach
chorales, Rachmaninoff concertos, or Cope’s
own compositions and links small pieces
together, adding one at a time, with the seman-
tic rules that preserve phraseology and an over-
all sense of musical flow. In one case, which I
have oversimplified in figure 2, Cope’s program
has taken the first two notes from Chorale 127
and then, using some linking rules, the next
four notes from Chorale 223, and so on. The
program continues combining overlapping
fragments, guided by its sense of overall conti-
nuity and phrase, to create a pleasing chorale
that Bach never wrote but might have.

Even though we can explain quite mecha-
nistically how the piece is assembled, the result
appears to be creative.

Harold Cohen’s art program, named AARON

(McCorduck 1991), is a much more talented
and creative artist than most of us would claim
to be. AARON is an especially interesting exam-
ple because Cohen himself does not think that
it is creative for reasons that I try to explain.

Creative AI Programs
In the literature in and about AI, several well-
known programs have been called creative (for
example, Boden [1999]). In one of the papers
on the logic theorist program (LT), Newell,
Shaw and Simon (1958) wrote explicitly about
creative behavior and the possibility that LT’s
discoveries of new proofs in logic were creative.
Even in the mid-1950s, they were finding
examples of several working programs they
were willing to call creative. These included,
besides LT, programs that were composing
music, playing chess, and designing electric
motors. What many of these programs have in
common is the ability to put together known
elements in new ways. 

Examples of some other programs that have
been called creative include those listed in
table 1.  Three are from literature and the arts,
three from science and mathematics. If you
keep in mind the combinatorial aspects of
these programs, you will understand why they
are often used as illustrations.

In haiku poetry, perhaps the most creative
person was the person a few centuries ago who
changed an art form called hokku into the art
form called haiku by adding one more con-
straint on the semantics: 
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Poetry M. Masterman Program for Haiku
Music D. Cope EXPERIMENTS IN MUSIC

Art H. Cohen AARON

Historical science H. Simon et al. BACON, GLAUBER, STAHL

Chemistry E. Feigenbaum et al. DENDRAL and METADENDRAL

Mathematics D. Lenat AM and EURISKO

Table 1. Examples of Programs That Have Been Called Creative.

#223

#127 #187

#211

#223

#239

Parts of Bach Chorales

Figure 2. Composition by Substitution in D. Cope’s Program.
In this example, the program has started with an initial phrase from Bach Chorale
#127, added a phrase from #223 that starts on the ending note of #127, and so on. 



Figure 3 shows an example of one of AARON’s
more recent paintings—and yes, AARON

designed and executed everything in this draw-
ing, including the choice of colors and the col-
oring itself.5

This pseudoportrait, like every painting pro-
duced by AARON, is unique, although it is exe-
cuted within a framework that Cohen has spec-
ified in the code that avoids, for example,
coloring faces green or purple. Therefore, AARON

will never make a choice to break the rules, nor
will it reflect on those constraints as something
that it might want to change. There certainly is
a framework, which might even be called a
rigid framework, that includes a fixed palette of
800 colors to work with, but it is clearly less
rigid than the haiku structure. Within this
framework, AARON is moving through an
immense combinatorial space where each
thing that it does is predicated on what it has
just done.

Now, one of the limiting factors in both
Cohen’s use of the term creativity, and his need
to avoid it for this program, is that AARON has
no sense of continuity or sense of experience
from one drawing to the next. Even though
each one is unique, not one of them is based
on any prior experience from previous draw-
ings or a previous history in a way that Cohen
believes creative visual artists need to be. Part
of his reluctance to say that AARON exhibits cre-
ativity is philosophical:

“Creative” is a word I do my very best
never to use if it can be avoided (Cohen
1999a).

However, when pressed to talk about this
kind of behavior, which he calls behavior X,
Cohen says it is “the ability of the individual …
to move forward, to develop, to introduce new
material…”  (Cohen 1999b). Some of the com-
ponents of behavior X, according to Cohen,
are the abilities to construct new territory,
reflect on the predicates and the criteria, mod-
ify his/her own—and the accepted—criteria of
the field, and learn from past actions. 

AARON does none of these. To someone who
is a creative artist, AARON’s work might seem
“merely clever”; to me, it seems imaginative
enough within its large, albeit fixed, framework
to be called creative.

In the realm of science, programs have
demonstrated unusual abilities to produce nov-
el solutions to problems. Programs in the fam-
ily of BACON, GLAUBER, STAHL, and DALTON by
Simon, Langley, Zytkow, and others, create
explanations of historical facts in science (Lan-
gley et al. 1987). By most every account, they
are exercising creativity in proposing hypothe-
ses that scientists have become famous for. 

The task of each of these programs was to
postulate some laws of science that explain the
facts as known at the time, without the benefit
of modern science. BACON was working with
quantitative laws, and GLAUBER, among others,
was working on formulating qualitative laws.
For example, given a set of facts, such as the
fact that hydrochloric acid (HCl) and sodium
hydroxide (NaOH) react to form sodium chlo-
ride (NaCl), GLAUBER formulates the general rule
that every salt is the reaction product of an acid
and an alkali:

(∀Salt) (∃Acid) (∃Alkali) (Acid + Alkali → Salt)

As an example of combinatorial behavior
that is considered creative, Boden cites
DENDRAL’s problem solving in chemistry (Lind-
say et al. 1980). DENDRAL produced plausible
solutions to new problems through what we
have come to call the exclusion paradigm (Brink-
ley et al. 1988): With a complete definition of
the search space, generate all plausible combi-
nations of the elementary units (that is, those
combinations that fit explicit constraints), and
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Figure 3. A Painting Conceived and Executed by 
H. Cohen’s Program AARON

(Reproduced with permission).



that looks plausible and could sometimes be
called creative. 

Some of METADENDRAL’s results became the
first examples of a scientific result discovered
by a program that were new and useful enough
to be published in the refereed scientific
literature (Buchanan et al. 1976). 

Doug Lenat’s program classics, AM and
EURISKO, are two of the most creative programs
in the AI literature (Davis and Lenat 1982;
Lenat 1983). Both programs are more than
“merely clever.”  From a number of primitive
axioms of set theory, AM was asked to find inter-
esting conjectures and found many important
concepts and conjectures in number theory.
Among other things, it rediscovered the con-
cept of numbers with exactly two divisors, that
is, prime numbers, as being an interesting set
of numbers, quite correctly so. (For another
example in mathematics, see Colton, Bundy,
and Walsh [2000]).

Lenat’s EURISKO program moved a level up to
explore a space of heuristics so that a program
such as AM would have the ability to move
through its own well-defined space and make
better conjectures than it was able to before.
EURISKO could, as most of you know, learn
heuristics for playing games. Looking at
Extrema, for example, it was able to find loop-
holes in the rules of a tournament game that
allowed a game-playing program to beat all
human opponents. Although the framework
for the problem-solving (game playing) pro-
gram is fixed, another program is able to
change it to “break the rules.”

Models for Creative Programs
Much of the work on creativity in psychology
and AI has been analyzed and distilled into var-
ious models that can be used either to recognize
creative work or produce it. Of course, a starting
point for developing AI models is believing that
creativity is another facet of cognitive activity
that can be explained, that is, it is not inexplic-
able. Early in the history of AI, Minsky (1963, p.
447) made this point that there might be noth-
ing mysterious about explaining intelligent
behavior in the first place:

It may be … that when we understand
finally the structure and program, the feel-
ing of mystery (and self-approbation) will
weaken.

The models of creativity developed by AI
scientists, psychologists, and cognitive scien-
tists seem to fall into four classes: (1) combina-
torial  = generate and test; (2) heuristic search
= push local test criteria into the generator, add
additional global test criteria; (3) transforma-

prune items that are not plausible—then all
items not excluded remain plausible. Figure 4
shows an example. 

Although the problems that DENDRAL solves
are difficult, it is easy to see how the distinctly
combinatorial method can put chemical atoms
and groups of atoms into chemical graphs to
find solutions to new problems. (See Buchanan
[1985] for other early examples.)

With the METADENDRAL program, the task was
to formulate the rules that allowed the DENDRAL

program to determine which explanations
were plausible. From a set of data linking
known chemical structures and known data,
METADENDRAL finds the general rules that
explain the whole collection. For the class of
steroid structures, of which estriol is a particu-
lar example, figure 5 shows some of the kinds
of rule that METADENDRAL found, where each
arrow corresponds to a rule indicating which
chemical bonds would be broken in the instru-
ment and where the electronic charge would
be located. (There are a number of primitives
available besides breaking and charging; for
example, neutral molecules would be lost, and
various numbers of ions could be transferred
from one half to the other.) All the primitives
are combined in understandable ways in a
space that is immense but produces a result
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DENDRAL Example
Find an explanation for analytic data from
an unknown chemical compound
E.g.,  The mass spectrum from a C18H24O3 
steroid can be explained by the estriol structure: 

OH

O

HO

Figure 4. From the Mass Spectrum of Some Compound 
with 18 Carbon and 3 Oxygen Atoms.

DENDRAL finds the structure that explains the empirical data. The compound estri-
ol is postulated as such a structure that will explain the data. 



tional = add analogies and other transforma-
tions to the space of hypotheses; and (4) lay-
ered search = include bias space search at the
metalevel.

These four classes of models suggest a struc-
ture that helps to organize the vast literature.
There is considerable written discussion about
generate and test with a combinatorial genera-
tor. As a baseline, it provides a good starting
point for problem solvers and has been sug-
gested as a starting point for people who feel a
“creative block.” For example, in lateral think-
ing, people are encouraged to list properties of
objects, synonyms of concepts, and so on
(deBono 1970; Osborn 1953). In divergent
thinking (Baer 1993), people are encouraged to
look for (we would say “generate”) many alter-
natives from a wide range, including unusual
ones. 

Combinatorial search can be made smarter,
however, by introducing heuristics into the
generator. Providing some guidance and prun-
ing before actual generation of the full space is
the essence of heuristic search, which is the
predominant problem-solving paradigm for AI
programs. As an extension of the fundamental
axiom that all problem solving is search,
Newell, Shaw, and Simon emphasize that
heuristic search might well be sufficient for
explaining creative behavior. According to the

associationist model of creative thought in psy-
chology (Mednick 1962), people are helped
greatly in generating new ideas by thinking of
concepts loosely associated with concepts in
the problem description. Loose association
either augments or replaces a strictly combina-
torial generator of ideas.

The psychologist Johnson-Laird (1988)
wrote that there were only three classes of algo-
rithms that he could conceive for creative
behavior (figure 6), which all are variations on
the first and second search models. He added,
“the three classes of algorithm exhaust the
computational possibilities,” which leaves out
the last two of the four classes.

The first one, “Neo-Darwinian,” he believes
is not computationally plausible because it
depends on unguided, random combinations.
Genetic algorithms, however, have been
shown to be an effective computational proce-
dure for finding new solutions in seemingly
creative ways (Holland 1992). The second class
of models is essentially generate and test. The
third is heuristic search, with the heuristics
moved back up into the generator for guidance
during generation. There is no mention here of
either analogy or reflection at the metalevel,
which I take to be important computational
possibilities. 

Weisberg, a contemporary psychologist,
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Find rules explaining analytic data from a
class of known chemical compounds

E.g.,  Mass spectra from estriol and other
estrogenic steroids can be explained by:

Meta-DENDRAL Example

Figure 5. The METADENDRAL Program Finds General Rules for a Collection of 
Chemical Structures and Associated Mass Spectra.

A dotted line indicates that these chemical bonds would be broken. An arrow indicates which fragment carries
the charge.



plausible hypotheses are excluded by the
heuristics, which are based on general knowl-
edge of the domain as well as the data of a spe-
cific problem. In principle, the program is
exploring every plausible conjecture—either
individually or as a class—and ruling out the
ones that are not plausible. The scientist is left
in a position of much more strength than if we
use a generator that is not complete, where it is
not entirely explicit what has been left out.
Knowledge of chemistry and the data at hand
guide the program to generate small numbers
of hypotheses in the combinatorial space. The
emphasis on background knowledge is even
stronger and more explicit in this model than
in Weisberg’s.

By way of contrast, AM’s search space of con-
jectures in elementary set theory was open
ended and, therefore, not amenable to defining
a complete move generator (Davis and Lenat
1982). One of the most interesting parts of
Lenat’s work was the introduction of a plausi-
ble move generator, which worked for AM part-
ly because the space of interesting conjectures
in this domain was very rich. A plausible move
generator could find so many interesting
things that the ones it left out became less
important.

Another approach is offered by Boden
(1994), who discusses three basic models for
programs and people: (1) combinatorial, (2)
exploratory, and (3) transformational, as listed
in figure 7. 

The combinatorial and exploratory models

underscores the point that Newell, Shaw, and
Simon were making—that creative problem
solving is, after all, problem solving that makes
essential use of background knowledge in the
process (Weisberg 1999). In his model (Weis-
berg 1993), the same thought processes are
going on in creative problem solving as in the
ordinary kind but with some additional level of
commitment that leads to the persistence that
many people have mentioned. Thinking time,
in his model, gets put into the background,
becoming the incubation time that many psy-
chologists have talked about. During this time,
a person can incorporate a lot more back-
ground knowledge into problem solving,
which most of us in AI would believe to be
essential. Background knowledge, in the Weis-
berg model, then gives the person or the pro-
gram the ability to explore a rich space much
more efficiently. Overall, the model is one of
successive modifications of ideas, generating
successors by processes that are not elaborated.
His emphasis on background knowledge, how-
ever, suggests both heuristic search and analo-
gy as the generating mechanisms.

Feigenbaum’s and Lederberg’s model of
hypothesis formation in science implemented
in DENDRAL was a variation on heuristic search,
which, as mentioned earlier, is sometimes
called we have come to call the exclusion par-
adigm. In this model, the legal move generator
is capable, in principle, of generating the com-
plete space of possibilities with a combinatorial
successor function. However, whole classes of
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“The three classes of algorithm exhaust the
computational possibilities.”

� “Neo-Darwinian”  [computationally implausible]
Random Combination
Evaluation Function as Test

� “Neo-Lamarckian”
Generation Informed by Criteria
Arbitrary Choice among Alternatives

� “Multi-Stage”
Heuristic Search, some criteria applied in generation
Different Criteria Applied in Test

Figure 6. Johnson-Laird’s Three Models for Creative Thought.



are very much in the genre of heuristic search.
We understand these models well, and what
needs considerably more work is the transfor-
mational.  She also talks about transformation-
al creativity as involving analogical reasoning,
for example, some transfer of concepts from
one domain to another that allows some
extension to the fixed space that the program
is exploring. For example, it has been helpful
to transform a discussion of biological mecha-
nisms acting on the sequence of nucleotides in
DNA from the domain of biology to the
domain of string manipulation in computers.
Under this metaphor, the repertoire of copy-
ing, matching, and editing procedures on
strings suggests easily understood biological
mechanisms.

Roger Schank’s (1988, p. 227) model is a
combination of search and alteration (close to
Boden’s transformation) involving three kinds
of heuristics:

Creativity in a computer means supplying
the computer with three types of heuris-
tics, namely: 

Creativity heuristics
1. Heuristics for the intentional remind-
ing of XPs (explanation patterns)
2. Heuristics for the adaptation of old pat-
terns to the current situation
3. Heuristics for knowing when to keep
alive seemingly useless hypotheses

This model emphasizes analogy and transfor-
mation almost to the exclusion of combinato-
rial search.

Three sources of insights in creative think-
ing (figure 8) are offered by psychologist Robert

Sternberg (Sternberg and Davidson 1983), who
has done considerable work on creativity and
who has pulled together the literature into var-
ious cogent collections.

Insightful thinking comes from selective
encoding, selective combination, and selective
comparison (Sternberg and Davidson 1983). In
AI terms, we would call these three sources cor-
rectly choosing an ontology, searching heuris-
tically, and finding an effective evaluation
function and criteria for ranking plausible
hypotheses. Once again, the essential proce-
dural element is search, but the choices of
ontology and evaluation function might be
seen as outside (that is, “meta” to) the search
program. 

The last of the four classes of models is lay-
ered search models. Although Sternberg recog-
nizes the importance of choices at the metalev-
el, he stops short of suggesting that these
choices can be made by search, which is the
essence of layered search models. Newell, Shaw,
and Simon talk explicitly about modifying the
generator as a way of changing the framework
within which search is conducted. Introducing
new heuristics, for example, can make problem
solving more effective, and seemingly more
creative.6

McCarthy’s (1958) advice-taker paper, Pro-
grams with Common Sense, is another early
piece of wisdom that anticipated the layered
search model: 

In order for a program to be capable of
learning something it must first be capa-
ble of being told it.7

That is, there is immense power in a declar-
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�  producing novel combinations of familiar ideas
[= combinatorial creativity]

�  exploring complex conceptual spaces
[= exploratory creativity]

�  transforming a conceptual space by adding 
dimensions or dropping constraints

[= transformational creativity]

Figure 7. Boden’s Three Models for Generating New Ideas.



programs was encapsulated in Buchanan et al.
(1978). Provost’s research on searching a bias
space for learning continues in this vein
(Provost and Buchanan 1995), demonstrating
that at the metalevel a program can decide, for
example, what is the best set of features for
learning.

Gary Livingston’s (2001) dissertation pro-
gram called HAMB extends the AM model of
exploration into empirical science. HAMB’s plau-
sible move generator is a rule-induction pro-
gram that suggests plausible generalizations
from data. It is capable of generating an arbi-
trarily large number of conjectures with heuris-
tics that guide the search for interesting sets of
data, interesting attributes, and interesting
attribute-value pairs to focus on as well as for
interesting general rules. One of the most
important features of HAMB is its ability to
define which problems to work on by reflecting
(at the metalevel) about the tasks and objects it
might work on.

One preliminary result from HAMB is shown
in figure 9. Starting with data from protein
crystallography, namely, data about experi-
ments that grow successful crystals of proteins
and those that were failures, the exploratory
question was whether the program could find
any interesting conjectures that would pro-
mote the crystal growth of new proteins. It is
a very large space. At one point, over 8000
conjectures had been generated that were
plausible. The collaborating X-ray crystallog-
rapher was not willing to look through 8000
things, certainly not numerous times. Liv-
ingston introduced domain-independent cri-
teria for what makes a conjecture interesting
in science. For example, singularities and
exceptions are interesting, and attributes that
have a great deal of explanatory power are
also interesting. Thus, using these domain-
independent criteria, HAMB found 219 conjec-
tures, about three-quarters of which were

ative, explicit representation of everything that
the program knows, so that it can be changed
from the outside. In this paper, McCarthy pro-
vides features that we can build into programs
that allow them to be more intelligent, and we
would say more creative, problem solvers. For
example, all aspects of the behavior should be
made as explicit and modular as possible, so
they can be adaptive. 

Arthur Samuel’s (1959) work was a tour de
force; no work in machine learning came close
to Samuel’s checker player for at least 25 years.
A simple polynomial representation of the
evaluation function for scoring positions on a
checkerboard made explicit what needed to be
changed to improve the program, namely, the
coefficients in the polynomial. Samuel’s ap-
proach was especially creative in that he intro-
duced a second-level decision in which the
program itself selected the terms in the polyno-
mial that were used to evaluate checkerboard
positions.

Lenat also implemented a layered search
model in his EURISKO program, which auto-
mates the discovery and introduction of new
heuristics, so that the program itself was mak-
ing changes that allowed a problem-solving or
game-playing program to be more effective. A
central part of both the AM and EURISKO pro-
grams is Lenat’s sets of heuristics for defining
interestingness. Metalevel thinking also plays a
large role in Hofstadter’s (1985) writings on
creativity.

In some of my own work at the University of
Pittsburgh, and previously at Stanford Univer-
sity, I and creative collaborators have been
looking at what it means to do metalevel rea-
soning to improve the performance of a prob-
lem solver or learning program. Randy Davis’s
dissertation research explored the power of
explicit, metalevel reasoning (Davis and
Buchanan 1977; Davis and Lenat 1982). Our
early model of metalevel reasoning for learning
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Insightful thinking comes from

�  Selective encoding                (ontology)

�  Selective combination (search)

�  Selective comparison (criteria)

Figure 8. The Sternberg and Davidson Model.



judged by this expert to be actually interesting.
Because HAMB’s heuristics, like EURISKO’s, are

domain independent, this result can be repeat-
ed in other domains, which we are in the
process of confirming. We are also working on
criteria of novelty that encode relationships in
existing models so they are not rediscovered
(Ludwig et al. 2000). By generating three times
as many interesting conjectures as not interest-
ing ones, HAMB has encouraged us to believe a
program can find interesting, novel, and useful
hypotheses in science.

The schematic model of what I am suggest-
ing as a key to creative problem solving, shown
in figure 10, is that search at the metalevel
gives us a means for identifying the choices
that are most effective for performing a specific
task. In the sphere of machine learning, this
model is, essentially, what Mitchell (1997) and
others call bias space search. The model of cre-
ativity at the metalevel is shown in figure 10.
At the performance level, a program works
within a fixed ontology, fixed criteria, and
fixed methods. At the metalevel are libraries of
ontologies and criteria and methods or genera-
tors of them. Searching multiple variations on
the performance program might find just that
variation of the performance program that will
solve a class of problems most efficiently or
with the highest-quality solutions—or at least
find a satisficing alternative. 

Challenges
The end of a millennium is a fitting time to
take stock of what we have learned about cre-
ating creative programs. With respect to the
language we use, there appears to be a great
deal of variability in our use of the term cre-
ative. However, there also appears to be no mys-
tery in this: Creative problem solving is prob-
lem solving (ditto science, mathematics, logic);
creative art is art (ditto music, poetry, litera-
ture). Once we can define the criteria we would
use ourselves to judge a person or a person’s
work to be creative, we can map them into pro-
grams.

With respect to the important abilities
involved in creative work, cognitive scientists
have identified several things: (1) knowledge,
skill, and prior experience; (2) the ability to
modify the ontology, the vocabulary, and the
criteria that are used; (3) motivation, persis-
tence, time on task; (4) the ability to learn from
prior experience and adapt old solutions to
new problems; and (5) the ability to define new
problems for oneself. Some of these items we
understand better than others, but there has
been substantial research on all these items
(Colton and Steel 1999; Simon, Valdez-Perez,
and Sleeman 1997).  

With respect to the methods used in prob-
lem solving, we certainly understand heuristic
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Figure 9. One Expert’s Assessment of 219 Conjectures 
That HAMB Judged to Be “Interesting.”

From 
Crystallography Data Base

52%

24%
20%

4%

Uninteresting

Interesting 
but not novel

Interesting 
and novel

Uninteresting 
but true 

[N = 219 conjectures
versus 8000 plausible]



Accumulation
Today’s programs do not routinely accumulate
experience or use past experience to accumu-
late knowledge. Art Samuel demonstrated the
power of rote learning, yet we do not routinely
include even this simple mechanism in our
programs. Although it is the heart of case-based
reasoning (CBR) (Leake 1996), the transfer
aspects of CBR are still highly problem depen-
dent. A few programs record and save users’
preferences, but most do not accumulate
knowledge of current practices and cultural
norms. This knowledge is given within a given
framework, which is our best guess as to the
“best” one, and programs rarely are given the
capability to modify the framework.

By accumulating knowledge of what is
known and building models of the world, a
program is better equipped to solve new prob-
lems. One difficulty in building a library of
problems and associated methods for solving
them is that we don’t have a representation of
problems and procedures that is both flexible
enough to be changed and structured enough
to be explicit. By accumulating and explicitly
representing knowledge of cultural norms,
including moral preferences and aesthetic cri-
teria, a program reflecting at the metalevel can
know, for example, that some solutions to
problems are morally unacceptable, even
though technically feasible.  The fundamental
problem here is understanding and defining
the criteria for ourselves in the first place. 

Reflection
Reflection is thinking at the metalevel; in psy-
chology, it is referred to as “metacognition”
(Baer 1993). It includes knowledge about tasks
and problem-solving procedures, knowledge
about strategies, and knowledge about applica-
bility conditions for procedures. We now know
enough about explicitly representing some
parts of a program’s knowledge to enable a sec-
ond-order program to reason about it, which
can take several forms, for example, (1) shift
representation = transform the space, (2) intro-
duce new ways to satisfy constraints, (3) intro-
duce “just enough” randomness, (4) reflect on
and change values, and (5) define new prob-
lems.

Shifting the representation has been de-
scribed in the AI literature as a hard and essen-
tial problem for several decades (Amarel 1972).
We have more computing power now than was
available even 10 years ago, and we understand
much better how a program can make some
minor shifts in its representation. It is possible,
therefore, for a program to look at the conse-
quences of thousands of modifications to find

search. The essential components that we need
are a generator that combines the primitive ele-
ments into new ones, a goal test that deter-
mines when we are done, and an evaluation
function that determines which partial paths
are more likely to yield a solution. 

Two main reasons account for my optimism
for progress in creating more creative pro-
grams.  First, in the last 50 years, we have come
to understand the models of creativity that
Boden calls combinatorial and exploratory,
that is, heuristic search. Second, we have orders
of magnitude more computing power avail-
able. It is not unthinkable to solve the same
problem in thousands of different ways to find
the best framework and assumptions empiri-
cally even when we do not know enough to
choose the right ontology, evaluation criteria,
methods, and so on, at the onset. To achieve
more creativity in problem solving, however, it
is also important that we can reason analogi-
cally and carry on a search at the metalevel.

We are poised to challenge the creativity bar
once again. However, as we look at today’s pro-
grams, it seems they fall short of what Boden
and others describe in three important ways:
(1) they do not accumulate experience and,
thus, cannot reason about it; (2) they work
within fixed frameworks, including fixed
assumptions, methods, and criteria of success;
and (3) they lack the means to transfer con-
cepts and methods from one program to
another. Therefore, I place the major chal-
lenges to creating more creative programs into
three categories: (1) accumulation, (2) reflec-
tion, and (3) transfer.
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Figure 10. Creativity at the Metalevel.



a solution to a problem. For example, finding a
representation that transforms a hard problem
into an easy one can be cast as metalevel
search. With a library of millions of problems
solved by computers around the world—plus
the assumptions and methods used to solve
them—a second-order CBR system would find
numerous things to try.

When the constraints in problems are repre-
sented explicitly, it is possible for programs to
reflect on new ways to solve them, which is the
essence of much of the work on creativity in
design (Brown 1993; Gero 1992; Goel 1997),
pointing the way to finding novel ways of sat-
isfying constraints in any problem area. 

The element of randomness in problem solv-
ing is captured in the mutation operator of
genetic algorithms (Holland 1992), for exam-
ple. The rate of random moves often needs to
be tuned from the outside, or by a second-order
program. At the metalevel, this is another
explicit strategic element. It can be changed
again and again until there is a satisfactory
result from the performance program. Insofar
as random perturbations of an idea can lead to
surprising and novel suggestions, genetic algo-
rithms can produce creative products. The fact
that random search is so inefficient in people
as to be ruled out as an explanation for human
creativity should not preclude its use by com-
puters. But we do not need to fall back on total-
ly random changes. Guiding the random
changes by associations in a semantic net, for
example, would be consistent with descrip-
tions of lateral thinking, divergent thinking, or
madness.

Values can also be considered to be high-lev-
el constraints on an activity. For example, dif-
ferent values are reflected in designing an auto-
mobile for fuel efficiency or road rage or
nostalgia. In medicine, the relative value of
true positive predictions against the cost of
false positive errors influences much of medical
practice. One point that Harold Cohen makes
is that artists are considered to be more creative
when they change the criteria used for judging
their work. The impressionist painters, for
example, rejected realism as a primary objec-
tive in painting and sought instead to convey
an impression of the play of light, a change in
values they made more readily than their aca-
demic critics. Reflecting on values at the meta-
level will give programs new capabilities for
creative behavior.

One of the strongest criticisms of good-old-
fashioned-AI programs is that they only solve
the problems they are designed to solve. META-
DENDRAL only constructed rules of mass spec-
trometry using planar graph descriptions of

chemical molecules within a fixed framework
of chemical atoms and bonds. Cohen’s AARON

program only creates portraits within the
framework he set. Both programs are capable of
producing arbitrarily many variations within
their frameworks, but neither one is capable of
inventing a new framework. By searching
through variations on conceptual frameworks
at the metalevel, programs will partly over-
come this objection.

Transfer
Transferring what is known in one problem
domain to another one is not a common part
of AI programs, although the state of our
understanding has been advanced by substan-
tial research in the last two decades. Represen-
tation, once again, is a key to improving the
capabilities of programs. Four suggestions for
experimenting with transfer are based on
progress in the following four areas: (1) share
ontologies, (2) use analogy engines, (3) import
concepts from an old domain, and (4) modify
previously successful methods.

It is difficult to see how one program can use
the concepts and methods of another if their
representational frameworks are radically differ-
ent. Knowledge sharing is an active and produc-
tive area of AI research (Gruber 1993; Neches et
al. 1991) that points the way to transferring
knowledge from one problem area to another.
Representing much of the critical information
in the form of probabilities, as in Bayesian nets,
gives programs a simpler representation than,
say, structured objects do. Programs with sim-
ple, heterogeneous representations would seem
to be candidates for straightforward applica-
tions of sharing ontologies routinely.

Gentner’s work on analogical reasoning
(Falkenhainer, Forbus, and Gentner 1989) and
work by Winston (1980), Hofstadter (1985),
Carbonell (1986), and Langley and Jones
(1988) provide many insights into the compu-
tational mechanisms of analogy. In addition,
work on case-based reasoning (for example,
Leake [1996]) also offers working models of
programs that can transfer concepts and meth-
ods from one problem area to another. These
methods need to be routinely incorporated in
problem solvers that we want to be more cre-
ative. 

A program supported by a library of pro-
grams and their ontologies might well be able
to look for new concepts to import. It need not
invent wholly new concepts anew, if there is
accumulated knowledge elsewhere that can
help solve a problem. Kekule’s importing the
concept of cyclic graphs into chemistry (sug-
gested by his famous dream of a snake chasing

… as we look
at today’s
programs, it
seems they
fall short of
what Boden
and others
describe in
three
important
ways: 
(1) they 
do not
accumulate
experience
and, thus,
cannot reason
about it; 
(2) they work
within fixed
frameworks,
including
fixed
assumptions,
methods, and
criteria of
success; and
(3) they lack
the means to
transfer
concepts 
and methods
from one
program to
another.
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drafts and made suggestions, and to those who
suggested additional readings after this talk was
presented. Jeremy Ludwig, in particular, was
very helpful in discussing some of the land-
mark publications. Financial support was pro-
vided in part from grants from the National
Library of Medicine (LM-6625) and the Nation-
al Science Foundation (9412549).

Notes
1. T. Dartnall, 1994. Creativity. In Dictionary of the
Philosophy of Mind, ed. C. Eliasmith. Available from
artsci.wustl.edu/~philos/MindDict/creativity.html.

2. Sternberg & O’Hara (1999) survey the literature on
the relationship of creativity and intelligence and
conclude there is still a need for clarification. Taylor
(1988) lists over 50 different definitions of creativity.

3. Motivation seems to be more of a problem for peo-
ple than for computers. For more on motivation, see
Collins and Amabile (1999).

4. It is not altogether clear that we apply the same cri-
teria to products of artists, musicians, and writers as
we do to the products of scientists and mathemati-
cians. The former are visual works of art, auditory
performances, or written words; the latter are
abstract ideas. It is also not clear when we should be
talking about products or people (and programs).
Creative products must be novel and interesting; cre-
ative persons must either produce new and valuable
products or have the capacity to produce them.

5. AARON has been made available as a screensaver, so
a larger audience can now enjoy its unique drawings.

6. Newell, Shaw, and Simon also talk about the need
for adaptation, anticipating to some extent some of
Cohen’s reservations about the AARON program. They
point to the power of rote learning as in Samuel’s
checker-playing program. You can also read into
their 1958 paper some early words anticipating SOAR’s
chunking mechanism, which routinely stores gener-
alized solutions to subproblems during search.

7. Also see the articles that accompany this article.
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