
� This article presents the GRT planner, a forward
heuristic state-space planner, and comments on
the results obtained from the Fifth International
Conference on Artificial Intelligence Planning and
Scheduling (AIPS’00) planning competition. The
GRT planner works in two phases. In the prepro-
cessing phase, it estimates the distances between
the facts and the goals of the problem. During the
search phase, the estimates are used to guide a for-
ward-directed search. GRT participated in the STRIPS

track of the competition and showed promising
results. Although it did not gain any prize, it gave
us good prospects for the future.

The GRT planner is a domain-independent
heuristic planner (Refanidis and Vla-
havas 2001b, 1999a). It adopts the pure

STRIPS representation (Fikes and Nilsson 1971)
and searches forward in the space of the states.
The planner was inspired by the ASP planner
(Bonet, Loerincs, and Geffner 1997), but it has
been differentiated in several ways.

GRT solves planning problems in two phases:
(1) preprocessing and (2) search. The main idea
of the planner is to compute offline, in the pre-
processing phase, estimates for the distances
between the facts and the goals of a problem.
The word distance refers to the number of goal-
regression levels needed to achieve a specific
fact. This information is stored in a table, which
is indexed by the facts of the problem. We call
this table the greedy regression table (GRT).

To produce better estimates, GRT introduces
the notion of related facts in the goal-regression
process. These are facts that have been achieved
either by the same or subsequent actions, with-
out the last actions deleting the facts achieved
first. The cost of achieving simultaneously a set
of unrelated facts is considered equal to the
sum of their individual costs, whereas the cost
of achieving a set of related facts is considered
equal to the cost of the last achieved one.

The search phase consists of a simple best-
first search strategy. GRT uses the distances
between the individual facts and the goals and
the information about their relations to esti-

mate the distances between the intermediate
states and the goals, thus guiding the search
process in a forward direction.

An Example
We illustrate the GRT phases with the blocks-
world problem in figure 1. Part of the GRT for
this problem is shown in table 1.

Let us compute the distance between the
initial state and the goals based on the infor-
mation in table 1. The initial state consists of
the following facts:

(on A table) (clear A) (on B table) (on C B)
(clear C)

All these facts are related, with the fact (on C
B) being the last achieved; so, the combined
distance of these facts is the distance of the last
achieved, that is, 3, which in this case is also
the actual distance.

This approach is followed to estimate the
distances between all the intermediate states
that arise during the forward search phase and
the goals. GRT always selects to expand the state
with the smallest estimated distance.

Key Points of the GRT Planner
To regress the goals, GRT does not use actions
such that a single add-list fact is a goal fact, but
it uses actions such that all their add-list facts
are within the goals. This approach succeeds in
avoiding computing estimates for invalid facts
in the preprocessing phase. However, it intro-
duces some problems in situations where the
goal state is not completely described because
an action to regress the goals might not exist.

To cope with this situation, at the beginning
of the preprocessing phase, GRT performs an
achievability analysis concerning the facts of
the planning problem and computes the
mutual-exclusion relations between them in a
GRAPHPLAN-like manner (Blum and Furst 1997).
If there are facts that are not mutually exclu-
sive with any goal fact, there is a strong possi-
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state facts, which are not mutually exclusive
with any initial state fact, in a way similar to
the goal-enhancement process.

Comments on the Results
In the logistics domain, the GRT planner was
able to solve fast all the problems, and it pro-
duced good plans. In the blocks-world
domain, GRT solved only the small problems
(as many as nine blocks), unable to scale up to
the bigger ones. GRT faced difficulties with the
specific action representation, that is, the
actions stack/unstack and push/pop. We know
from our experience that if move actions were
used instead, GRT could easily solve problems
with more than 20 blocks. 

The schedule domain was of the ADL type,
and STRIPS planners did not take part. However,
experiments with GRT and an unofficial STRIPS

version of this domain exhibited very good
performance and good scalability.

In the FreeCell domain, GRT did not solve the
larger problems for two reasons: First, the com-
petition version of GRT did not instantiate
actions, the arguments of which were not pair-
wise different, a situation that arises in this
domain. Second, this version did not utilize a
closed list of visited states to avoid revisiting
them, a feature that would be valuable in this
domain. A newer version of GRT, without these
two weaknesses, is able to solve almost all the
FreeCell problems. Note that the exploitation of
a closed list of visited states improves the perfor-
mance of GRT in the blocks-world domain as
well, regardless of the representation that is used.

bility that the goals do not form a complete
state, and these facts are candidates to enhance
them (Refanidis and Vlahavas 1999b). GRT sup-
ports several strategies to select which of the
candidate facts to use to enhance the goals.

In some cases, there is also the need to enrich
the predicate set of the domain. The situation
arises in domains where negative facts are
implicitly present in the initial state and the
preconditions of the actions, as happens with
the boarded and served facts of the elevator
domain at the competition (a similar situation
arose in the movie domain at the AIPS’98 com-
petition). In such cases, GRT defines, at run time,
the negative predicates (that is, not-boarder,
not-served); it modifies the action schemas of
the domain accordingly; and it adds new facts
in the initial state. The identification of this sit-
uation is based on the detection of noninitial
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Figure 1. A 3-Blocks Problem.
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Table 1. Part of the Greedy Regression Table for the 3-Blocks Problem.

Fact Distance
from Goals

Related Facts

(on C  table) 0 —
(on B C) 0 —
(on A B) 0 —
(clear A) 0 —

(on A table) 1 (clear B)
(clear B) 1 (on A table)

(on B table) 2 (on A table) (clear A) (clear B) (clear C)
(clear C) 2 (on A table) (clear A) (clear B) (on B table)
(on C B) 3 (on A table) (clear A) (on B table ) (clear C)

... ... ...



Finally, in the elevator domain, GRT solved
all the problems very fast. In this domain, the
use of the enriched predicate set was quite
advantageous.

Recent Extensions
In the last year, GRT has been extended in two
ways. The first extension concerns the avoid-
ance of local optimal states of the heuristic
function by exploiting domain-specific knowl-
edge in the form of state constraints. The new
planner, GRTSC, uses this knowledge to decom-
pose a complex problem in easier subproblems
that have to be solved in sequence (Refanidis
and Vlahavas 2000a). The second extension,
MO-GRT, concerns generating and evaluating
plans on the basis of multiple criteria, such as
duration, cost, safety, and planning time
(Refanidis and Vlahavas 2001, 2000b).1

Conclusions
The competition results have shown that the
performance of the domain-independent
heuristic planners is strongly affected by the
representation of the domains. As for GRT, its
performance varies significantly over the two
alternative blocks-world representations; how-
ever, the observation concerns other similar
planners too. We know also that different plan-
ners are better in different domains, so it would
be interesting to investigate which features of
the domains favor specific planning tech-
niques and approaches. In any case, we believe
that the heuristic state-space planners have
good prospects in the area of domain-indepen-
dent planning.

Note

1. All GRT-related stuff is available at www.csd.auth.
gr/~lpis/grt/main.html.
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