Al Magazine Volume 22 Number 4 (2001) (© AAAI)

Interface Agents
in Model World
Environments

Robert St. Amant and R. Michael Young

B Choosing an environment is an important deci-
sion for agent developers. A key issue in this deci-
sion is whether the environment will provide real-
istic problems for the agent to solve, in the sense
that the problems are true to the issues that arise in
addressing a particular research question. In addi-
tion to realism, other important issues include
how tractable problems are that can be formulated
in the environment, how easy agent performance
can be measured, and whether the environment
can be customized or extended for specific research
questions. In the ideal environment, researchers
can pose realistic but tractable problems to an
agent, measure and evaluate its performance, and
iteratively rework the environment to explore
increasingly ambitious questions, all at a reason-
able cost in time and effort. As might be expected,
trade-offs dominate the suitability of an environ-
ment; however, we have found that the modern
graphic user interface offers a good balance among
these trade-offs. This article takes a brief tour of
agent research in the user interface, showing how
significant questions related to vision, planning,
learning, cognition, and communication are cur-
rently being addressed.

hoosing an environment is an impor-
‘ tant decision for agent developers. A key

issue in this decision is whether the
environment will provide realistic problems
for the agent to solve, in the sense that the
problems are true to the issues that arise in
addressing a particular research question. For
robotics researchers, realism might derive from
ambiguous sensing information in a naviga-
tion environment or from constrained manip-

ulation in a close physical environment. In
practical planning research, a realistic simula-
tion might pose problems of fluctuating
resources and dynamic changes in the envi-
ronment (Cohen et al. 1989; Hanks, Pollack,
and Cohen 1993). In other simulation work,
realism can be interpreted literally: How close-
ly does the simulation approach a natural tar-
get environment, which is presumably too
complex, too expensive, or inaccessible for use
during development? Often, we evaluate the
realism of an environment by whether the
problems that arise under controlled condi-
tions are those that an intelligent agent
(human or artificial) might be expected to
encounter and solve in the real world.

Beyond the question of realism, a number of
other, related questions are important in the
selection of a problem-solving environment
for an agent.

Are the Problems Tractable?

The opposite side of the realism coin is
tractability. Problems should be realistic but
not too difficult for an agent; progress would
otherwise be hindered. Thus, some RoboCup
competitions use an enclosed field and colored
goals (Asada et al. 2000); in some office-robot
environments, the robots can rely on artificial
navigation cues and target object markings.
Tractability is an issue for software agents as
well. In one well-known example, researchers
found the TILEWORLD environment too com-
plex for a planned set of experiments, forcing
a simplification of the environment to a grid
world without tiles (Kinny and Georgeff 1991).

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2001 / $2.00

Articles

WINTER 2001 95

Articles

96 AI MAGAZINE

Can the Environment
Be Tailored to a
Given Research Question?

Even if an environment can, in principle, pose
realistic, tractable problems to an agent, these
problems can inextricably be tied up with oth-
er problems not under consideration. For
example, a classical planning researcher might
prefer a static domain description to a dynamic
simulation if the simulation also requires that
the agent process sensor data, communicate
with other agents, and so forth.

Can Performance Be Evaluated?

Another important issue for environments is
what Hanks, Pollack, and Cohen (1993, p. 18)
describe as “the tension between realism and
the possibility of experimental control.” Rigor-
ous evaluation of an agent’s performance
requires experimentation, usually with the
need for instrumentation and experimental
control of the environment.

Is the Environment Extensible?
Can New Problems
Be Easily Defined?

Few environments are so general that they
exercise all agent capabilities of interest. Exten-
sibility to new classes of problems, as well as to
new classes of agents, can influence the accep-
tance of an environment by developers.

In the ideal environment, researchers can
pose realistic but tractable problems to an
agent, measure and evaluate its performance,
and iteratively rework the environment to
explore more ambitious questions, all at a rea-
sonable cost in time and effort.

Unfortunately, trade-offs dominate the suit-
ability of an environment. A simulation might
be tailored to, say, a class of learning algo-
rithms, able to generate a broad set of difficult
but not impossible problems and appropriately
instrumented for performance evaluation. If
these problems are all arbitrarily generated
abstractions, however, with no relationship to
real-world problems, then the simulation will
not reflect the environments in which we
would eventually expect to see an agent per-
form. Analogously, a real environment, either a
natural one such as an office space or an artifi-
cial one such as the World Wide Web, can be
available at low cost but might not lend itself
to experimental control, or it might demand
too much of an agent’s sensing or representa-
tion abilities.

In recent work, we have found that the mod-
ern graphic user interface offers a good balance
among these trade-offs. A graphic user interface
is an interactive visual environment that sup-
ports direct manipulation of the tools and
objects associated with a problem domain
(Lewis 1998; Shneiderman 1998). Work in
human-computer interaction (HCI) over the
past two decades has identified many factors
that contribute to the usability of interactive
software, including the continuous visibility of
objects in the environment, the directness of
the mapping between interface objects and
real-world objects, the simple command syn-
tax, and the richness of the representational
forms that can be conveyed through a visual
medium (Norman 1991; Shneiderman 1998).
In addition to benefiting human users, these
factors make the user interface attractive as a
general-purpose research environment.

This article is concerned with systems that
accommodate and exploit the properties of the
graphic user interface as an environment.
Many of these systems are interface agents, in
the sense defined by Maes (Shneiderman and
Maes 1997, p. 53): “An (interface) agent basi-
cally interacts with the application just like you
interact with the application.” Although nowa-
days the term interface agent encompasses all
types of agents that interact with users, even
those that don’t depend at all on the character-
istics of the interface medium, we focus on a
more specialized interpretation of the term. We
mean agents that interact with the objects in a
direct-manipulation graphic user interface, or
in other words, softbots whose sensors and
effectors are the input and output capabilities
of the interface (Lieberman 1998). Other efforts
we describe, not necessarily related to agents,
operate within the same constraints, treating
the user interface as an environment rather
than only a communication medium.

The graphic user interface provides a prob-
lem-solving environment with attractive fea-
tures for Al researchers.

Realism: The problems that users solve using
interactive software are by definition of interest
in the real world. Interface agents can be
applied to the same tasks, using the same tools.

Tractability: In the user interface, the
“physics” of interaction is far simpler, and tasks
are far more structured than in the natural
world. Contrast drawing concentric circles in
an illustration package with the visual coordi-
nation required of pencil and paper manipula-
tion. The degree to which the user interface
facilitates appropriate action can lead to
sophisticated agent-environment interactions
at a relatively low computational cost.

Measurement and control: The user inter-
face is designed for stability and user control; it
is usually a small matter to tailor it to the needs
of an experiment. Applications are usually also
designed for efficient presentation of relevant
information (Woods 1991), making instrumen-
tation straightforward.

Extensibility: Because of the breadth and
richness of problems solved in interactive soft-
ware, it is relatively easy to identify new prob-
lems for an agent to solve. Furthermore, user
interface design relies heavily on transfer of
existing knowledge and procedures from one
application to the next, structure that can also
be exploited by an agent.

Research in the user interface is a microcosm
of research in Al, encompassing vision, plan-
ning, learning, cognition, and communica-
tion, among other areas. This article takes a
brief tour of these areas. We begin by introduc-
ing the properties of the user interface as a
problem-solving environment, then continue
with a discussion of representative systems that
capitalize on these properties. Intelligent user
interface research in this vein draws on Al, cog-
nitive science, and human-computer interac-
tion; the projects we discuss have made contri-
butions in all these areas.

User Interface Design

Modern graphic user interfaces rely on a perva-
sive metaphor described by Hutchins (1989) as
the model world metaphor. In contrast to the
conversation metaphor, in which human-com-
puter interaction is likened to a dialog about a
task, the model-world metaphor involves the
creation of an artificial environment, a model
of the real world in which a user or agent
directly manipulates objects to accomplish the
task. Instead of talking about activities, one
simply acts.

It turns out that many of the features devel-
oped to make model-world interfaces effective
for human users also make them tractable for
Al systems. We find a striking correspondence
between user interface design guidelines, on
the one hand, and assumptions that Al systems
commonly make about their environments, on
the other. For each guideline that follows, we
discuss its properties and its correspondence to
assumptions common in Al systems. These
guidelines do not apply universally but
describe the most common applications in use
today.

Accessible State Information

One of the basic design guidelines for direct-
manipulation systems is that relevant objects

and actions should be continuously visible
(Shneiderman 1998). In other words, a good
interface makes available all information rele-
vant to the decision-making process. The
implication for an Al system using a well-
designed user interface is that information rel-
evant to a given decision will almost always be
accessible in the current state in interface. If it
is not immediately accessible, it will be avail-
able through simple observation strategies (Dix
1993; St. Amant and Zettlemoyer 2000), limit-
ing the amount of inference required of an
agent in interacting with its environment.

Environmental Stability

An important assumption for many Al systems
is that the agent’s environment does not
change except because of the actions of the
agent. In the user interface, two design guide-
lines promote a steady-state environment,
commonly described as (1) perceived stability
and (2) user control. The perceived stability
guideline entails that the user should be able to
depend on stability (for example, in visual lay-
out) as time passes (Apple 1992). Further, many
designers hold that users should exercise nearly
complete control over the user interface, which
is one of the defining characteristics of direct
manipulation (Shneiderman 1998).

In practice, this degree of control and stabil-
ity is not always present. Exogenous events
might occur in some circumstances (for exam-
ple, e-mail arrives, online news pages are
updated, the status of a network connection
changes, the system clock marches forward). In
applications for collaborative work, as with
games, exogenous events are even integral to
their functions. Nevertheless, in most single-
user productivity applications, event occur-
rences are of well-defined types and can be
dealt with by simple, fixed strategies, as with
accessing state information; often such events
can safely be ignored.

Discrete States and Actions

Newell and Simon’s (1972) early work on
human problem solving has been as influential
in human-computer interaction research as in
Al One important result of this influence is a
correspondence between the objects and
actions of a model world and the symbol struc-
tures and elementary information processes
that can be used to compose a problem space.
Specifically, objects, their properties, and rela-
tionships to other objects in the user interface
tend to be discrete and easily described in sym-
bolic terms. Buttons and other controls have
clear visual boundaries; they are distinct and
differentiated from one another. Actions are

Articles

Research in
the user
interface

is a
microcosm
of research
in Al,
encompassing
vision,
planning,
learning,
cognition,
and
communi-
cation,
among other
areas.

WINTER 2001 97

Articles

98 AI MAGAZINE

also discrete, and this property extends to their
preconditions as well as their effects.

When the mouse pointer moves over or
selects some object, its properties change to
reflect the action: A button simulates being
depressed on selection; a scroll arrow be-
comes highlighted for the duration of its acti-
vation. One straightforward interpretation is
that the objects behave in such a way as to
provide visual information about the precon-
ditions of relevant actions. Objects similarly
change state visually to reflect the effects of
actions.

Most applications follow common visual
guidelines for designing controls in the user
interface (for example, Mullet and Sano
[1995].) Again, these guidelines are not univer-
sal, as an examination of realistic games, virtu-
al reality environments, and gesture-based per-
sonal digital assistant interfaces shows, but
hold for a wide variety of applications
nonetheless.

Deterministic Actions

Actions are furthermore deterministic. From a
user interface design perspective, this point is
reflected in a variety of guidelines, most clear-
ly in the property of consistency, especially
procedural consistency (Apple 1992). Consis-
tency can be described in terms of matching
users’ expectations: The same action taken
under a well-defined set of conditions should
always produce the same effect. The implica-
tion for an Al system is that contingency plan-
ning, reasoning about uncertainty, and com-
parable activities are not needed in large
classes of applications. In combination with
the accessibility and stability of an interface,
this property allows that an AI system can
expect to have full state information at the
execution of an action and that its effect will
be predictable.

Decomposable Problems

User interfaces rely heavily on a divide-and-
conquer approach to problem solving. As the
complexity of an application grows, it soon
becomes impractical to have all its functions
available at a single mouse click. In a word
processor, for example, changing the proper-
ties of a text selection can cause a new dialog
window to pop up with a new set of controls to
manipulate. The user can make the desired
changes, usually relying on local information
and actions and, for the moment, ignoring the
global context.

Software applications are deliberately struc-
tured to support such problem solving. A com-
mon guideline is that tasks should be cleanly

separated to allow their independent execution
(Hix and Hartson 1993). This separation facili-
tates an incremental style of problem solving
in which one task is brought to completion
before the next is begun.

Bottom-Up Solutions

In a discussion of guidelines for interactive sys-
tems that support hierarchical task execution,
Hix and Hartson (1993) advocate that goals be
satisfiable in bottom-up fashion, with interme-
diate solutions constructed and combined
opportunistically at higher levels. This rule,
that is, what Hix and Hartson advocate, can be
seen in the prescription of nonmodal behavior
for user interfaces. For example, in a drawing
application, graphic objects can be selected in
any order for a group operation, and in a word
processot, the typeface and size properties of
text can be modified independently, in either
order. In most applications that allow wide user
latitude in selecting operations (wizards and
some drawing applications being notable
exceptions), the system does not enter into
states that require a strict sequential ordering
of solution components.

This discussion might continue at length.
Solutions for problems in the user interface
tend to be short, with regular feedback about
progress. Actions are generally reversible (pro-
viding what user interface developers call for-
giveness in an environment), so that simple
mistakes can easily be undone. Forcing func-
tions are often implemented to guard against
potentially catastrophic effects (for example,
“If you really want to reformat your hard drive,
press OK, otherwise Cancel”). These and relat-
ed prescriptions fill the HCI literature on infor-
mal design guidelines (for example, Hix and
Hartson 1993; Preece et al. 1994; Shneiderman
1998) and user models for HCI (Dix 1993; Dix
et al. 1998; Runciman and Hammond 1986;
Young, Green, and Simon 1989).

Problem Solving

A number of cognitive modeling systems have
been developed to solve problems in the user
interface. These models support accurate simu-
lation of human performance in a software
environment at the cognitive and often per-
ceptual-motor levels. To some extent, these
models also exploit the properties of the user
interface that facilitate interaction. It turns out
that the conditions under which a cognitive
model can effectively reproduce human behav-
ior are well matched by certain properties of
the user interface, as described earlier.
Systems in this area range from detailed,

general-purpose cognitive models to task-
analysis models specialized for tasks in the user
interface. Prominent examples include the fol-
lowing:

SOAR is a general architecture designed to
model human cognition (Newell 1990). It has
been applied to a broad range of activities,
including the modeling of complex interaction
tasks (John and Vera 1992).

ACT-R (Anderson and Lebiere 1998) is a pro-
duction system theory of human knowledge
and behavior. AcT-R has modeled restricted
interface tasks such as menu selection (Byrne
and Anderson 2001) but has also produced
models for much more complex domains, such
as experiment design (Schunn and Anderson
1998).

EPIC (executive-process interactive control) is
a detailed cognitive model of low-level interac-
tion with a computer interface, including visu-
al, aural, speech, and motor behavior (Kieras
and Meyer 1997).

Lical, a linked model of comprehension-
based action planning and instruction taking
(Kitajima and Polson 1997, 1995) is based on
Kintsch’s (1998) construction integration theo-
ry of human cognition. Licar simulates the exe-
cution of exploratory tasks in applications with
graphic user interfaces.

GLEAN (GoMms language evaluation and
analysis) is an engineering tool for simulation
of task- analysis models based on the Gowms
(goals-operations-methods-selection) rule para-
digm (Kieras 1999; Newell and Simon 1972).
GLEAN is part of a long history of research
toward the goal of building engineering mod-
els that reflect user behavior to improve inter-
face development and evaluation (John and
Kieras, 1996a, 1996b; Kieras 1988).

Even a brief discussion of these systems and
their differences is beyond the scope of this
article. It is instructive, however, to examine
representative examples of the development
and evaluation of these models in the inter-
face. Our discussion is not intended to show
that cognitive modeling results are limited in
scope by their application to problems in the
user interface but, rather, that the user inter-
face provides a congenial environment for
exploring and evaluating the behavior of a cog-
nitive model.

In our first example, in LicAl, the user is
shown a two-dimensional line plot showing
predicted versus observed response times for
data from an experiment. The user must gen-
erate the line plot by generating a sequence of
actions within the CRICKET GRAPH package on
the Apple maciNTOsH (Kitajima and Polson
1995). This process involves breaking down

the task into subtasks, such as creating a
default graph and modifying it to match the
target display. Primitive actions include read-
ing labels, selecting data columns, and press-
ing buttons. The goal of the model is to simu-
late a skilled user in carrying out this task,
even to the level of reproducing action slips.

This modeling task, although complex,
depends on a number of simplifying features of
the user interface, beyond those discussed ear-
lier. Actions are drawn from a large but fixed
set. Interface objects are represented internally
as objects with small sets of named attributes.
Attributes represent static properties of an
object, such as its type, location, color, and
shape, or dynamic properties that describe its
appearance and state, such as whether a check
box is selected, a button depressed, or a text
box activated. Simple spatial relationships
between objects are represented as well in sym-
bolic form. All this information can easily and
unambiguously be extracted from the inter-
face. The result is a rich but tractable environ-
ment for modeling and analyzing human prob-
lem solving.

The second example, in SOAR, departs from
many approaches to modeling in the interface
by taking on interaction within highly dynam-
ic, complex military training simulations. To
serve as effective team members and oppo-
nents within the simulation environment, the
SOAR agents are designed to match human per-
formance in a challenging context. In these
systems, a SOAR agent must control complex
military vehicles (for example, fighter aircraft)
and move through the environment, building
internal maps, interacting with environmental
features and objects, and dealing with oppo-
nents; the agents do not have any special
advantage in information or action with
respect to human users. Simulations such as
these can be much more difficult to interact
with than conventional applications. Com-
mon guidelines for building word processors
and drawing packages are here reversed: Impor-
tant information can be hidden from the user,
the environment can change unpredictably,
actions are not always successful, and cata-
strophic actions are rarely reversible.

Nevertheless, the agents still gain some
advantage, even in this challenging environ-
ment, from properties of the interface that
facilitate interaction. Objects are explicitly
defined by their type; actions are similarly
explicit. Problems to be solved remain largely
decomposable, with short, bottom-up se-
quences providing effective behavior.

In both these examples, as in many other
approaches to modeling in the user interface, we

Articles

WINTER 2001 99

Articles

VisMap
supports the
control of an
application
through its
graphic user
interface,
through the
same medium
as ordinary
users.

100 AI MAGAZINE

find rich opportunities to explore and better
understand intelligent problem-solving behav-
ior. This research is driven by questions about
human cognition but is also made feasible, often
in significant ways, by the properties of the user
interface, as discussed in the previous section.

Perception

Autonomous systems that interact with appli-
cations, such as the previous modeling sys-
tems, generally do not interact with off-the-
shelf applications directly through the user
interface in the way that ordinary users do.
Instead, they interact with an application pro-
gram interface, programmatically (Laird 2000),
sometimes with a simulation of the application
(Kieras 1999), or even with a specialized user
interface management system extended to sup-
port cognitive modeling functions (Ritter et al.
2000). Of these, the last approach is the most
flexible and most easily lends itself to model
evaluation in ecologically valid scenarios. Rit-
ter et al.’s (2000) work is some of the most
mature, having resulted in simulated percep-
tion and motor abilities for soAr and ACT-R as
well as interfaces to systems for air traffic con-
trol, puzzle solving, and graphics.

Recently, attention has turned to the possi-
bility that an interface agent (or a cognitive
model) might process the visual information
presented by an interface. After all, the user
interface is tailored to human visual process-
ing; giving a system such capabilities might
improve its performance as either an agent or a
cognitive model. Building a vision system for
the user interface might seem to be an imprac-
tical proposition, but interfaces are built on a
wide range of regularities that make the prob-
lem tractable.

Shape: Manipulable objects such as buttons
and text boxes are usually rectangular. Even
oddly shaped icons are often selectable by a
click within their rectangular bounding box.

Orientation: Objects are generally two
dimensional and appear in only one orienta-
tion, making template-based pattern matching
straightforward.

Color: Objects tend to be uniformly colored,
with distinct rectilinear borders separating
them from one another and the background.

Layout: Except for icons in specific situa-
tions and domain-specific graphics, objects are
generally arranged in columns, rows, grids, or
other simple symmetric structures. Specific
types of objects, such as OK and Cancel but-
tons in a dialog, are even placed in standard
positions, making them easy to find.

Annotation: Buttons and menu items are

labeled with their functions; simple inspection
is often enough to establish the correct inter-
pretation of objects in the environment.

Further, the dynamic behavior of the user
interface provides visual cues for appropriate
action. Visual highlighting indicates that a
type-in field has the current focus or that a spe-
cific button is the default action. The selection
of a window changes the appearance of its title
bar. In general, when implicit static structure is
insufficient for correct interpretation of infor-
mation, explicit dynamic cues are supplied.

The VisMAr (visual manipulation) system
exploits such regularities to generate input for
an external controller using visual processing
(St. Amant and Zettlemoyer 2000; Zettlemoyer
and St. Amant 1999; Zettlemoyer, St. Amant,
and Dulberg 1999). VisMar supports the con-
trol of an application through its graphic user
interface, through the same medium as ordi-
nary users. Input to VisMar is a pixel-level rep-
resentation of the display; output is a descrip-
tion of the high-level user interface
components. Processing is application and
domain independent and follows the general
functional constraints of biological visual pro-
cessing, although it departs significantly at a
detailed level.

Visual processing follows a three-stage
process of (1) segmentation, (2) feature compu-
tation, and (3) interpretation. The segmenta-
tion algorithm begins at an arbitrarily selected
pixel and incrementally generates like-colored
regions with eight-neighbor connectivity. The
process can be limited to a specific region and
can be reactivated if you want to complete the
process or if parts of the screen buffer change.
The result is a set of internally homogeneous,
often rectilinear pixel groups. These pixel
groups pass through a bottom-up feature com-
putation stage. Within-group features include
width, height, color, bounding box points,
area, and perimeter. Between-group features
capture simple spatial relationships between
pixel groups, such as containment. Finally, the
top-down application of rules imposes an
interpretation of pixel groups and their combi-
nation as objects. Each rule corresponds to a
different type of interface object; each can be
considered a specialized implementation of a
template for an object. For an object on the
screen to be recognized, a template must exist
that describes how specific components must
be present and in the correct relative positions.
Templates recognize right angles; rectangles;
circles; check marks; and up, down, left, and
right triangles. These simple templates are
components of more complex templates that
identify buttons, windows, check boxes, radio

buttons, list boxes, vertical and horizontal
scroll bars, plus more specialized objects.

The process recognizes all familiar user inter-
face controls in Microsoft wiNpDOws, such as
buttons, scroll bars (including the scroll box,
scroll arrows, and background regions), list
boxes, menu items, check boxes, radio buttons,
and application windows. It can even parse
text, doing a simple form of optical character
recognition, for the standard system typeface.

An agent based on VISMAr or a comparable
perception substrate gains access to informa-
tion through the interface that is not always
available programmatically. Augmented by an
effector module that generates mouse gestures
and keyboard input, such an agent can per-
form a broad range of interface tasks with only
limited reliance on application-specific mecha-
nisms. Agents based on VisMap can read and
edit text in a word processor (St. Amant and
Riedl 2001), draw and manipulate pictures in
an illustration package (St. Amant and Zettle-
moyer 2000), and perform intelligent interpre-
tation of user gestures (Dulberg, St. Amant, and
Zettlemoyer 1999). Figure 1 shows the user
interface in an intermediate stage of a VisMar
agent’s activities. The agent has strong limita-
tions; for example, it cannot recognize many of
the objects it can draw, lacking the appropriate
visual templates. It can nevertheless manipu-
late such objects in standard ways by recogniz-
ing and interacting with their control points
and selection boxes. In general, systems such as
VisMar allow agent developers to explore issues
of perception and problem solving in a simple
but challenging environment (figure 1).

Planning, Acting, and Narrative

Some interfaces are explicitly designed and
accessed as (virtual) worlds in which the user
forms goals and performs actions in their pur-
suit. These interfaces contrast with conven-
tional productivity applications by relaxing
some—but not all—of the interface constraints
that facilitate problem solving, as discussed
earlier. In most three-dimensional (3D) interac-
tive computer games, the primary interface for
the system is a first-person point of view
through which the user peers into a world with
which he/she interacts by controlling his/her
own virtual embodiment, or character. There
are a number of reasons why interactive gam-
ing environments of this type provide interest-
ing interface models for Al researchers. First,
the worlds that games portray are often quite
similar to the rich dynamic environments
modeled by conventional Al applications. Sec-
ond, unlike many real-world domains, gaming
environments are entirely accessible; that is,

agents operating in these worlds typically have
broad and accurate access to state information
that characterizes their environments. Finally,
it is now commonplace for these gaming sys-
tems to be highly extensible. Commercial gam-
ing environments typically include editing
tools, scripting language development environ-
ments, and other components that allow the
flexible and straightforward extension of the
system for access by intelligent agents.
Through their scripting languages, the internal
run-time state of these environments is also
accessible. Further, use of these environments
typically bears a direct relation to real-world
tasks (that is, either the worlds they model are
direct simulations of real-world environments,
such as in educational or training simulations,
or the virtual worlds are their own models, as is
often the case for entertainment applications).

One particularly exciting aspect of the 3D
interactive gaming interface is the central role
that the presentation and comprehension of
action sequences plays in its use. Users of gam-
ing systems simultaneously observe actions
taken by other characters in the world and per-
form actions within the world themselves, and
the synergy between these actions is at the core
of the user’s experience. In this sense, the 3D
gaming environment presents an interface that
is inherently narrative in nature. Stories are
played out by the collective actions of the
user(s) and the system, and the system’s effec-
tive creation of action sequences determines,
to a great degree, the level of engagement in
the story world felt by each user.

For the designer of a narrative-oriented sys-
tem that allows substantive user interaction,
the greatest design challenge revolves around
the balance between coherence and control.
For a user to understand an action sequence as
an unfolding story line, he/she must be able to
view the actions as a coherent plot where one
action is related to another in a temporal
sequence based on some rules of narrative (for
example, Balkanski [1993]), much like adjacent
utterances in a natural language discourse must
coherently be related to one another to be
comprehensible (Hobbs 1985; Mann and
Thompson 1992).

For a user to feel immersed within a virtual
environment, he/she must feel that he/she has
substantive control of his/her character as the
environment’s story line unfolds around
him/her. However, control and coherence are
in natural opposition to one another in inter-
active systems with a strong narrative orienta-
tion. If an interface’s design removes all control
from the user, the resulting system is reduced
to conventional narrative forms such as litera-

Articles

WINTER 2001 101

Articles

[3] Adobe Illustrator
File Edit Object Type Filter View Window Help

-

-

%D'—]"V_;

O

-

-

PR (|E (|2

8
o

3
Cl
&

@
[
]

" Untitled art 1 <100% >

This is my house.

TP

e P

102 Al MAGAZINE

Figure 1. A VisMaP Agent’s Results in Adobe ILLUSTRATOR.

ture or film. If a design provides the user with
complete control, the narrative coherence of a
user’s interaction is limited by his/her own
knowledge and abilities because without an
understanding of the unfolding story world
around him/her, a user’s actions can uninten-
tionally interfere with the story’s structure.
Because the problem of determining the
proper balance between control and coherence
is an open research issue, most interactive nar-
rative-based systems have taken a middle
ground, specifying at design time sets of
actions from which the user can choose at a
fixed set of points throughout a narrative. The
resulting collection of narrative paths is care-
fully designed so that each path provides the
user with an interesting narrative experience.

This approach, of course, limits the number
and type of stories that can be told.!

Several researchers have integrated Al tech-
niques into multiuser gaming environments in
both academic (Cavazza and Palmer 2000;
Laird 1999) and commercial (Davis 2000; Stout
1996) settings. The MiMEsIS Project takes the
notion of narrative as its central research issue.
The goal of the MIMESIS system is to provide a
dynamically created, interactive, narrative-
based virtual environment that produces in its
users the same cognitive and emotional
responses as conventional film and other nar-
rative media. In contrast to the design of most
computer gaming systems and many agent-
based architectures, MIMESIS makes use of a cen-
tralized controller to coordinate all the activi-

ties in the virtual world not initiated by the
user. Actions available in a gaming environ-
ment are represented declaratively and
accessed by a planning system to create, mon-
itor, and maintain compelling story lines in the
face of user activity. Although many virtual
reality systems strive to create systems that are
indistinguishable from the reality that they
model, the MIMESIS system intentionally seeks
to provide the user with an illusion of reality
(Thomas and Johnston 1981), one which,
when interacted with, provides more engaging
and comprehensible interaction than the
unstructured activity often found in explorato-
ry virtual reality systems. Figure 2 shows a
scene from a MIMESIS story line.

To create story lines that are at once coher-
ent and engaging, the MIMESIS system utilizes
recent models of plans and planning to repre-
sent the hierarchical and causal nature of nar-
ratives identified by narrative theorists. Specit-
ically, MIMESIS uses the DPOCL planner (Young,
Pollack, and Moore 1994), a partial-order,

Figure 2. A Scene in MIMESIS.

causal link planner that directly integrates hier-
archical reasoning into the causal link frame-
work. Two aspects of bPOCL’s action representa-
tion lend themselves to the representation of
interactive narrative structure. First, the plan
representations that are used contain a rich,
formal representation of the causal structure of
a plan. Each causal dependency between goal,
precondition, and effect in the plan is carefully
delineated during plan construction. Second,
the plan construction process used is one of
search through the space of all possible plans
rather than the incremental construction of a
single plan. Consequently, the system can
characterize a plan relative to the broader con-
text in which it occurs. Both of these features
are central to the capacity to create and main-
tain narrative structure in an interactive sys-
tem.

At its core, the MIMESIS controller is broken
down into two distinct components:

First, the procL planner is used to form plans
for user and system interaction that contain

Articles

WINTER 2001 103

Articles

104 AI MAGAZINE

such interesting and compelling narrative
structure as rising action, balanced conflict
between protagonist and antagonist, suspense,
and foreshadowing.

Second, an action mediator runs as an
embedded process within the game server
itself, detecting user activities that deviate from
the planned narrative (called exceptions) and
deciding how to respond.

Exceptions are dealt with by MIMEsIs in one of
two ways. The most straightforward way is by
intervention. Because all a user’s actions in the
environment are checked by MiMEsis before
they are executed by the gaming system, it is
MIMESIS itself that determines whether an action
succeeds or fails. Typically, the success or fail-
ure of an action within a virtual environment
is determined by software that approximates
the rules of the underlying story world (for
example, firing a pistol directly at an attacking
monster results in the creature’s timely death).
However, when a user’s action would violate
one of the narrative plan’s constraints, the sys-
tem can intervene, causing the action to fail in
some subtle or unanticipated manner.

The second response to an exception is to
adjust the narrative structure of the plan to
accommodate the new activity of the user. The
resolution of the conflict caused by the excep-
tion can involve only minor restructuring of
the plan, for example, selecting a different but
compatible location for an event when the user
takes an unexpected turn down a new path.
Alternatively, this conflict resolution might
involve more substantive changes to the plan,
for example, should a user stumble on the key
to a mystery early in a narrative or uninten-
tionally destroy a device required to rescue a
narrative’s central character.

MiMEsIs differs from work discussed in previ-
ous sections by leveraging only a few of the
facilitating properties of user interfaces, such as
the discreteness of states and actions and the
accessibility of state information. By carefully
managing other such properties, such as the
predictability of actions and interleaving of
plans, the system maintains an effective bal-
ance between realism and tractability, to the
extent of being able to rely on many classical
planning assumptions about the environment.

Situated Action

The work described to this point has taken a
traditional approach to Al, emphasizing the
role of symbolic knowledge representation,
planning, learning, and so on. An alternative
perspective that has sparked some interest in
planning and robotics focuses on the situated

nature of human activity (Agre 1997; Agre and
Chapman 1987; Agre and Rosenschein 1996;
Arkin 1998; Murphy 1999). Agre succinctly
characterizes the situated-action perspective by
describing three ways in which it contrasts
with the traditional view of intelligent behav-
ior as planning. First, people engage in activity
as an extended form of improvisation rather
than build detailed plans in advance. Second,
the reason that everyday activity appears to be
organized is not because of plans that people
impose on the world but rather because activi-
ty tends to follow routines, which lends order
and coherence to interactions with the world.
Third, this world is fundamentally benign;
much of the world is structured by design to
support the activities people engage in. Under
the situated view, plans are one resource people
draw on in interacting with the world but not
at all the only one (Agre and Chapman 1990;
Suchman 1987).

This view has a natural appeal in human-
computer—interaction circles (Flach et al. 1995;
Gaver 1991; Kirlik, Miller, and Jagacinski 1993;
Norman 1999, 1991; St. Amant 1999). User
interface designers can build interaction fea-
tures into the environment that facilitate spe-
cific types of behavior by matching and con-
straining known properties of human
perception, action, and cognition. Taking this
observation a step further, agent developers
can build autonomous systems that rely on
these same interaction features. VisMap and the
other systems discussed here do this to some
extent. One of the earliest and best examples,
though, is the series of TRIGGERS systems (Potter
1999, 1993).

TRIGGERS explores the idea of interprocess
communication using device-level operations,
in particular, through pixel data access. Using
pixel data access, a system reads and processes
the contents of the display buffer to retrieve
information about the state of another applica-
tion. This information is processed using
search for pixel patterns and simulated mouse
and keyboard actions combined in simple reac-
tive rules. This kind of low-level information
can sometimes support surprisingly flexible
operations; TRIGGERS can perform such activities
as graphic search and replace in drawing pro-
grams, circling of negative numbers in a
spreadsheet, and converting of file types in the
Macintosh user interface.

A TRIGGERS program is composed of an
ordered set of rules, or triggers. The controller
evaluates the precondition list of each trigger
in turn. When a trigger fires, its action
sequence is executed, and the process returns
to the first trigger in the set. The objects refer-

enced in the set of triggers are markers, rectan-
gles, and flags. Markers represent specific points
on the screen and can be specialized by type, to
give, for example, the cursor marker or the
screen origin marker. Rectangles (which are just
pairs or markers) bound the area within which
a trigger’s preconditions can be tested. Flags
contain the results of Boolean tests of pixel pat-
terns, computed by matching specified pat-
terns at a given location or within a rectangular
region. As an example of the capabilities of a
TRIGGERS program, consider the problem of
inscribing the letter Z with given proportions
inside an ellipse already drawn on the screen.
Instead of using trigonometry to determine the
four points at which the letter touches the
ellipse, a TRIGGERS program can instead scan the
screen for on pixels within appropriate regions
to determine those points by observation.

Some of the correspondences between TRIG-
GERS and other systems for situated action (for
example, PENGI [Agre 1997; Agre and Chapman
1987]) are suggestive. TRIGGERS does not main-
tain a complex internal representation of its
environment or its activities, yet it carries out
goal-directed behavior that adapts to different
conditions. Although its markers and rectangles
are maintained internally, TRIGGERS also displays
them visually in the interface; the system could
plausibly dispense with an internal representa-
tion and refer to the display instead. Control
over the set of triggers is straightforward and
could in principle be implemented in simple
hardware. Processing of arbitrarily complex
flags poses a difficulty from a cognitive model-
ing point of view but was not an issue for TRIG-
GERrs, which was designed with other research
goals in mind. The imposition of such con-
straints could be addressed by further work, as
is common in the evolution of cognitive mod-
eling systems (Anderson and Lebiere 1998).

The user interface provides an attractive are-
na for research on situated action. Observa-
tions about the inference (or lack of inference)
necessary to carry out complex tasks have
implications for agent design but also for users
who operate in the same environment.

Conclusions

IUI encompasses a number of other research
directions in which the model world metaphor
plays a significant role:

Knowledge representation: Model-based
interface specification is concerned with
automating the interface development process,
or significant parts of it (Castells, Szekely, and
Salcher 1997; Puerta and Maulsby 1997; Szeke-
ly 1996; Szekely, Luo, and Neches 1993).

Researchers have developed sophisticated Al
representations of interface structure and
behavior, making the close relationship
between Al agents and the interface seem only
natural.

Plan recognition: The ability to infer users’
goals from their actions in the interface would
allow an agent to simplify or even eliminate
tasks for the user, anticipate requests for infor-
mation, and in general act as an intelligent
assistant. Plan-recognition techniques are in
several ways well suited to this purpose (Lesh,
Rich, and Sidner 1998; Waern and Stenborg
1995).

Machine learning: Other techniques are
also applicable to the problem of learning and
reproducing common sequences of actions
users carry out, a problem considered in the
area of programming by demonstration (PBD)
(Cypher 1993; Lieberman 2001). Machine
learning techniques play an increasingly
important role in PBD research (Lau and Weld
1999; Maulsby and Witten 1997); user activity
can often be abstracted to a form amenable to
symbolic learning techniques.

These research directions rely on properties
of the user interface that facilitate interaction,
such as simple, discrete actions with visible
effects, repeated sequences of such actions,
simple control structures, and guided focus of
attention, along with all the interface proper-
ties identified earlier. Much can be gained by
understanding the ways in which designers
have constrained a problem for human users
and building interface agents and other sys-
tems that can exploit these constraints.

Not all problems, of course, can be solved by
agents interacting with the user interface as a
model world. Often the problems addressed by
IUI researchers appear within a specific domain
in which there is far less structure than suggest-
ed by the examples in this article. In tasks such
as reading and responding to e-mail or brows-
ing the World Wide Web, for example, it is
much more important for an intelligent assis-
tant to understand the information at hand
than to be able to manipulate the interface sup-
porting the task. Many other everyday tasks,
however, do lend themselves to agent interac-
tion at this level, providing rich opportunities
for research and development.

Acknowledgments

This effort was supported by the National Sci-
ence Foundation under award 0083281. The
information in this article does not necessarily
reflect the position or policies of the U.S. gov-
ernment, and no official endorsement should
be inferred.

Articles

WINTER 2001 105

Articles

Note

1. Amy Bruckman. The Combinatorics of
Storytelling: Mystery Train Revisited.
Unpublished manuscript.

References

Agre, P. E. 1997. Computation and Human
Experience. Cambridge, U.K.: Cambridge
University Press.

Agre, P. E., and Chapman, D. 1990. What
Are Plans For? Robotics and Autonomous Sys-
tems 6(1-2): 17-34.

Agre, P. E., and Chapman, D. 1987. pengi:
An Implementation of a Theory of Activity.
In Proceedings of the Sixth National Con-
ference on Artificial Intelligence, 268-272.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Agre, P., and Rosenschein, S., eds. 1996.
Computational Theories of Interaction and
Agency. Cambridge, Mass.: MIT Press.

Anderson, J., and Lebiere, C. 1998. The
Atomic Components of Thought. Hillsdale,
N.J.: Lawrence Erlbaum.

Apple. 1992. Macintosh Human Interface
Guidelines. Apple Computer, Inc., Cuperti-
no, California.

Arkin, R. C. 1998. Behavior-Based Robotics.
Cambridge, Mass.: MIT Press.

Asada, M.; Veloso, M. M.; Tambe, M.; Noda,
1.; Kitano, H.; and Kraetzchmar, G. K. 2000.
Overview of RoboCup-98. AI Magazine
21(1): 9-19.

Balkanski, C. 1993. Actions, Beliefs, and
Intentions in Multi-Action Utterances.
Ph.D. dissertation, Department of Comput-
er Science, Harvard University.

Byrne, M. D., and Anderson, J. R. 2001. acr-
r/PM and Menu Selection: Applying a Cogni-
tive Architecture to HCI. International Journal
of Human-Computer Studies. Forthcoming.
Castells, P.; Szekely, P.; and Salcher, E. 1997.
Declarative Models of Presentation. In Pro-
ceedings of the Third International Confer-
ence on Intelligent User Interfaces (IUI'97),
137-144. New York: Association of Com-
puting Machinery.

Cavazza, M. and Palmer, I. 2000. Natural
Language Control and Paradigms of Inter-
activity. Paper presented at the AAAI Spring
Symposium on Al and Interactive Enter-
tainment, 20-22 March, Stanford, Califor-
nia.

Cohen, P. R.; Greenberg, M. L.; Hart, D. M.;
and Howe, A. E. 1989. Trial by Fire: Under-
standing the Design Requirements for
Agents in Complex Environments. AI Mag-
azine 10(3): 32-48.

Cypher, A., ed. 1993. Watch What I Do: Pro-
gramming by Demonstration. Cambridge,
Mass.: MIT Press.

106 Al MAGAZINE

Davis, 1. 2000. Warp Speed: Path Planning
for Star Trek: Armada. Paper presented at
the AAAI Spring Symposium on Al and
Interactive Entertainment, 20-22 March,
Stanford, California.

Dix, A.J. 1993. Formal Methods for Interac-
tive Systems. San Diego, Calif.: Academic.
Dix, A. J.; Finlay, J. E.; Abowd, G. D.; and
Beale, R. 1998. Human-Computer Interaction.
Second ed. New York: Prentice Hall.

Dulberg, M. S.; St. Amant, R.; and Zettle-
moyer, L. 1999. An Imprecise Mouse Ges-
ture for the Fast Activation of Controls. In
Proceedings of the Seventh IFIP Conference
on Human-Computer Interaction (INTER-
ACT’99), 375-382. Amsterdam: 1OS.

Flach, J.; Hancock, P,; Caird, J.; and Vicente,
K., eds. 1995. Global Perspectives on the Ecol-
ogy of Human-Machine Systems. Hillsdale,
N.J.: Lawrence Erlbaum.

Gaver, W. W. 1991. Technology Affor-
dances. In Proceedings of the ACM Confer-
ence on Human Factors and Computing
Systems (CHI'91), 79-84. New York: Associ-
ation for Computing Machinery.

Hanks, S.; Pollack, M. E.; and Cohen, P. R.
1993. Benchmarks, Test Beds, Controlled
Experimentation, and the Design of Agent
Architectures. AI Magazine 14(4): 17-42.
Hix, D., and Hartson, H. R. 1993. Develop-
ing User Interfaces. New York: Wiley.
Hobbs, J. R. 1985. On the Coherence and
Structure of Discourse. Technical Report,
CSLI-85-37, Center for the Study of Lan-
guage and Information, Stanford Universi-
ty.

Hutchins, E. 1989. Metaphors for Interface
Design. In The Structure of Multimodal Dia-
logue, eds. M. M. Taylor, F. Neel, and D. G.
Bouwhuis, 11-28. Amsterdam: Elsevier Sci-
ence.

John, B. E., and Kieras, D. E. 1996a. The
goms Family of User Interface Analysis
Techniques: Comparison and Contrast.
ACM Transactions on Computer-Human
Interaction 3(4): 320-351.

John, B. E., and Kieras, D. E. 1996b. Using
goms for User Interface Design and Evalua-
tion: Which Technique? ACM Transactions
on Computer-Human Interaction 3(4):
287-319.

John, B. E., and Vera, A. H. 1992. A Goms
Analysis of a Graphic, Machine-Paced,
Highly Interactive Task. In Proceedings of
CHI'92, 251-258. New York: Association of
Computing Machinery.

Kieras, D. 1998. A Guide to comMs Model
Usability Evaluation using gomsl and
glean3. Technical Report, 38, TR-98/ARPA-
2, Department of Electrical Engineering
and Computer Science, University of
Michigan.

Kieras, D. E. 1988. Toward a Practical Goms

Model Methodology for User Interface
Design. In Handbook of Human-Computer
Interaction, ed. M. Helander, 135-157. Ams-
terdam: North-Holland.

Kieras, D., and Meyer, D. E. 1997. An
Overview of the epic Architecture for Cog-
nition and Performance with Application
to Human-Computer Interaction. Human-
Computer Interaction 12(4): 391-438.

Kinny, D., and Georgeff, M. 1991. Commit-
ment and Effectiveness of Situated Agents.
In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence,
82-88. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Kintsch, W. 1998. Comprehension: A Para-
digm for Cognition. Cambridge, U.K.: Cam-
bridge University Press.

Kirlik, A.; Miller, R. A.; and Jagacinski, R. J.
1993. Supervisory Control in a Dynamic
and Uncertain Environment II: A Process
Model of Skilled Human Environment
Interaction. IEEE Transactions on Systems,
Man, and Cybernetics 23(4): 929-952.
Kitajima, M., and Polson, P. G. 1997. A
Comprehension-Based Model of Explo-
ration. Human-Computer Interaction 12(4):
345-389.

Kitajima, M., and Polson, P. G. 1995. A
Comprehension-Based Model of Correct
Performance and Errors in Skilled, Display-
Based, Human-Computer Interaction.
International Journal of Human-Computer
Studies 43(1): 65-99.

Laird, J. 2000. It Knows What You're Going
to Do: Adding Anticipation to a Quake-Bot.
Paper presented at the AAAI Spring Sympo-
sium on Al and Interactive Entertainment,
20-22 March, Stanford, California.

Lau, T., and Weld, D. S. 1999. Programming
by Demonstration: An Inductive Learning
Formulation. In Proceedings of the Fifth
International Conference on Intelligent
User Interfaces (IUI'99), 145-152. New
York: Association of Computing Machin-
ery.

Lesh, N.; Rich, C.; and Sidner, C. L. 1998.
Using Plan Recognition in Human-Com-
puter Collaboration. Technical Report,
TR98-23, Mitsubishi Electric Research Lab-
oratories, Cambridge, Massachusetts.
Lewis, M. 1998. Designing for Human-
Agent Interaction. Al Magazine 19(2):
67-78.

Lieberman, H., ed. 2001. Your Wish Is My
Command: Programming by Example. San
Francisco, Calif.: Morgan Kaufmann.

Lieberman, H. 1998. Integrating User Inter-
face Agents with Conventional Applica-
tions. In Proceedings of the Fourth Interna-
tional Conference on Intelligent User
Interfaces (IUI'98), 39-46. New York: Asso-
ciation of Computing Machinery.

Mann, W. C., and Thompson, S. A., eds.
1992. Discourse Description: Diverse Linguis-
tic Analyses of a Fund-Raising Text. Amster-
dam: John Benjamins.

Maulsby, D., and Witten, 1. H. 1997. cima:
An Interactive Concept Learning System
for End-User Applications. Applied Artificial
Intelligence 11(7-8): 653-671.

Mullet, K., and Sano, D. 1995. Designing
Visual Interfaces: Communication-Oriented
Techniques. Englewood Cliffs, N.J.: Prentice
Hall.

Murphy, R. 1999. Case Studies of Gibson's
Ecological Approach to Mobile Robots.
IEEE Transactions on Systems, Man and
Cybernetics 29(1): 105-111.

Newell, A. 1990. Unified Theories of Cogni-
tion. Cambridge, Mass.: Harvard University
Press.

Newell, A., and Simon, H. 1972. Human
Problem Solving. New York: Prentice Hall.
Norman, D. A. 1999. Affordance, Conven-
tions, and Design. Interactions 6(3): 38—43.

Norman, D. A. 1991. Cognitive Artifacts. In
Designing Interaction: Psychology at the
Human-Computer Interface, ed.]J. M. Carroll,
17-38. Cambridge, U.K.: Cambridge Uni-
versity Press.

Potter, R. 1999. Pixel Data Access: Inter-
process Communication in the User Inter-
face for End-User Programming and Graph-
ical Macros. Ph.D. dissertation, Department
of Computer Science, University of Mary-
land.

Potter, R. 1993. TRIGGERS: Guiding Automa-
tion with Pixels to Achieve Data Access. In
Watch What I Do: Programming by Demon-
stration, ed. A. Cypher, 361-382. Cam-
bridge, Mass.: MIT Press.

Preece, J.; Rogers, Y.; Sharp, H.; Benyon, D.;
Holland, S.; and Carey, T. 1994. Human-
Computer Interaction. Reading, Mass.: Addi-
son-Wesley.

Puerta, A., and Maulsby, D. 1997. MOBI-D: A
Model-Based Development Environment
for User-Centered Design. In Proceedings of
the ACM Conference on Human Factors in
Computing Systems (CHI'97), 4-5. New
York: Association of Computing Machin-
ery.

Ritter, F. E.; Baxter, G. D.; Jones, G.; and
Young, R. M. 2000. Supporting Cognitive
Models as Users. ACM Transactions on Com-
puter-Human Interaction 7(2): 141-173.

Runciman, C., and Hammond, N. 1986.
User Programs: A Way to Match Computer
Systems and Human Cognition. In People
and Computers: Designing for Usability. Pro-
ceedings of the Second Conference of the British
Computer Society, Human-Computer Interac-
tion Specialist Group, 464-481. Cambridge,
U.K.: Cambridge University Press.

Schunn, C. D., and Anderson, J. R. 1998.

Perception and Action. In The Atomic Com-
ponents of Thought, eds.]J. R. Anderson and
C. Lebiere, 385-428. Hillsdale, N.J.:
Lawrence Erlbaum.

Shneiderman, B. 1998. Designing the User
Interface: Strategies for Effective Human-Com-
puter Interaction. Reading, Mass.: Addison-
Wesley.

Shneiderman, B., and Maes, P. 1997.
Debate: Direct Manipulation vs. Interface
Agents. Interactions 4(6): 42-61.

St. Amant, R. 1999. User Interface Affor-
dances in a Planning Representation.
Human Computer Interaction 14(3): 317-354.
St. Amant, R., and Riedl, M. O. 2001. A Per-
ception/Action Substrate for Cognitive
Modeling in HCI. International Journal of
Human-Computer Studies 55(1): 15-39.

St. Amant, R., and Zettlemoyer, L. S. 2000.
The User Interface as an Agent Environ-
ment. In Proceedings of Autonomous
Agents 2000, 483-490. New York: Associa-
tion of Computing Machinery.

Stout, B. 1996. Smart Moves: Intelligent
Path-Finding. In Game Developer’s Maga-
zine, October, 13-19.

Suchman, L. 1987. Plans and Situated
Action. Cambridge, U.K.: Cambridge Uni-
versity Press.

Szekely, P. 1996. Retrospective and Chal-
lenges for Model-Based Interface Develop-
ment. In Proceedings of Computer-Aided
Design of User Interfaces (CADUI'96),
1-27. Namur, Belgium: Namur University
Press.

Szekely, P.; Luo, P.; and Neches, R. 1993.
Beyond Interface Builders: Model-Based
Interface Tools. In Proceedings of Human
Factors in Computing Systems: INTER-
CHI'93, 383-390. Amsterdam: 10S.
Thomas, F., and Johnston, O. 1981. The
Illusion of Life: Disney Animation. New York:
Hyperion.

Waern, A., and Stenborg, O. 1995. A Sim-
plistic Approach to Keyhole Plan Recogni-
tion. Technical Report, T-1995-01, Swedish
Institute of Computer Science.

Woods, D. D. 1991. The Cognitive Engi-
neering of Problem Representations. In
Human-Computer Interaction and Complex
Systems, eds. G. R. S. Weir and J. L. Alty,
169-188. San Diego, Calif.: Academic.

Young, R. M.; Green, T. R. G.; and Simon, T.
1989. Programmable User Models for
Predictive Evaluation of Interface Designs.
In Proceedings of the ACM Conference on
Human Factors in Computing Systems
(CHI'89), 15-19. New York: Association of
Computing Machinery.

Young, R. M.; Pollack, M. E.; and Moore,]J.
D. 1994. Decomposition and Causality in
Partial Order Planning. In Proceedings of the
Second International Conference on Artificial

Articles

Intelligence Planning Systems (AIPS'94). Men-
lo Park, Calif.: AAAI Press.

Zettlemoyer, L., and St. Amant, R. 1999. A
Visual Medium for Programmatic Control
of Interactive Applications. In Proceedings
of the ACM Conference on Human Factors
in Computing Systems (CHI ‘99), 199-206.
New York: Association of Computing
Machinery.

Zettlemoyer, L.; St. Amant, R.; and Dulberg,
M. S. 1999. Ibots: Agent Control through
the User Interface. In Proceedings of the
Fifth International Conference on Intelli-
gent User Interfaces (IUI'99), 31-37. New
York: Association of Computing Machin-

ery.

Robert St. Amant is an
associate professor in the
Department of Comput-
er Science at North Car-
olina State University,
where he codirects the
Intelligent Interfaces/
Multimedia/Graphics
Lab. He received a B.S. in
computer science from the Johns Hopkins
University in 1985 and a Ph.D. in computer
science from the University of Massachu-
setts at Amherst in 1996. His current
research deals with user interface agents,
intelligent assistance for visualization, and
representations for human and agent tool
use. His e-mail address is stamant@cs.ncsu.
edu.

R. Michael Young is an
assistant professor in the
Computer Science De-
partment at North Caro-
lina State University
(NCSU). His interests
center on the use of Al
techniques in virtual
worlds. His work involves
research on planning and plan recognition,
natural language generation, and computa-
tional models of narrative. He has a Master’s
in computer science from Stanford Universi-
ty (1988) and a Ph.D. in intelligent systems
from the University of Pittsburgh (1997).
Prior to joining the faculty at NCSU, he
worked as a postdoctoral fellow in the
Robotics Institute at Carnegie Mellon Uni-
versity. His e-mail address is young@csc.
ncsu.edu.

WINTER 2001 107

Articles

Computation,
Causation,
D1scovery

Edited by Clark Glymom and
Gregory Cooper, M.D,

n science, business, and policymaking—anywhere data are used in prediction—two sorts of
problems requiring very different methods of analysis often arise. The first, problems of recogni-

tion and classification, concerns learning how to use some features of a system to accurately pre-
dict other features of that system. The second, problems of causal discovery, concerns learning how
to predict those changes to some features of a system that will result if an intervention changes other
features. This book is about the second—much more difficult—type of problem.

The contributors discuss recent research and applications using Bayes nets or directed graphic rep-
resentations, including representations of feedback or “recursive” systems. The book contains a thor-
ough discussion of foundational issues, algorithms, proof techniques, and applications to economics,
physics, biology, educational research, and other areas.

ISBN 0-262-57124-2
426 pp., bibliography, index

Published by AAAI Press
Copublished and Distributed by

The MIT Press
heep: v www.aaai‘org/

To order call toll free:
(800) 356-0343 or
(617) 625-8569 or

tax (617) 258-6779.
MasterCard and VISA accepted.

108 Al MAGAZINE

