
■ This article is an edited transcript of a lecture given
at IJCAI-99, Stockholm, Sweden, on 4 August
1999. The article summarizes concepts, principles,
and tools that were found useful in applications
involving causal modeling. The principles are
based on structural-model semantics in which
functional (or counterfactual) relationships repre-
senting autonomous physical processes are the
fundamental building blocks. The article presents
the conceptual basis of this semantics, illustrates
its application in simple problems, and discusses
its ramifications to computational and cognitive
problems concerning causation.

The subject of my lecture this evening is
causality.1 It is not an easy topic to speak
about, but it is a fun topic to speak about.

It is not easy because like religion, sex, and
intelligence, causality was meant to be prac-
ticed, not analyzed. It is fun because, like reli-
gion, sex, and intelligence, emotions run high;
examples are plenty; there are plenty of inter-
esting people to talk to; and above all, the
experience of watching our private thoughts
magnified under the microscope of formal
analysis is exhilarating. 

From Hume to AI
The modern study of causation begins with the
Scottish philosopher David Hume (figure 1).
Hume has introduced to philosophy three rev-
olutionary ideas that, today, are taken for
granted by almost everybody, not only
philosophers: First, he made a sharp distinc-
tion between analytic and empirical
claims—analytic claims are the product of
thoughts; empirical claims are matters of fact.
Second, he classified causal claims as empirical

rather than analytic. Third, he identified the
source of all empirical claims with human
experience, namely, sensory input.

Putting ideas 2 and 3 together has left
philosophers baffled for over two centuries
over two major riddles: First, what empirical
evidence legitimizes a cause-effect connection?
Second, what inferences can be drawn from
causal information and how?

We in AI have the audacity to hope that
today after two centuries of philosophical
debate, we can say something useful on this
topic because for us, the question of causation
is not purely academic. We must build
machines that make sense of what goes on in
their environment so they can recover when
things do not turn out exactly as expected.
Likewise, we must build machines that under-
stand causal talk when we have the time to
teach them what we know about the world
because the way we communicate about the
world is through this strange language called
causation. 

This pressure to build machines that both
learn about, and reason with, cause and effect,
something that David Hume did not experi-
ence, now casts new light on the riddles of cau-
sation, colored with an engineering flavor:
How should a robot acquire causal informa-
tion from the environment? How should a
robot process causal information received from
its creator-programmer?

I do not touch on the first riddle because
David Heckerman (1999) covered this topic
earlier, both eloquently and comprehensively.
I want to discuss primarily the second prob-
lem—how we go from facts coupled with
causal premises to conclusions that we could
not obtain from either component alone.

On the surface, the second problem sounds
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What if we open the left lock? 
Output: 

The right lock might get closed.

In these two examples, the strange output is
derived from solid logical principles, chaining
in the first, constraint satisfaction in the sec-
ond, yet we feel that there is a missing ingredi-
ent that the computer did not quite grasp,
something to do with causality. Evidently there
is some valuable information conveyed by
causal vocabulary that is essential for correct
understanding of the input. What is this infor-
mation, and what is that magic logic that
should permit a computer to select the right
information, and what is the semantics behind
such logic? It is this sort of question that I
would like to address in this talk because I
know that many in this audience are dealing
with such questions and have made promising
proposals for answering them. Most notable
are people working in qualitative physics, trou-
bleshooting, planning under uncertainty,
modeling behavior of physical systems, con-
structing theories of action and change, and
perhaps even those working in natural lan-
guage understanding because our language is
loaded with causal expressions. Since 1990, I
have examined many (though not all) of these
proposals, together with others that have been
suggested by philosophers and economists,
and I have extracted from them a set of basic
principles that I would like to share with you
tonight. 

The Basic Principles
I am now convinced that the entire story of
causality unfolds from just three basic princi-
ples: (1) causation encodes behavior under
interventions, (2) interventions are surgeries
on mechanisms, and (3) mechanisms are stable
functional relationships.

The central theme is to view causality as a
computational scheme devised to facilitate
prediction of the effects of actions. I use the
term intervention here, instead of action, to
emphasize that the role of causality can best be
understood if we view actions as external enti-
ties, originating from outside our theory not as
a mode of behavior within the theory.

To understand the three principles it is better
to start from the end and go backwards: (3) The
world is modeled as an assembly of stable
mechanisms, or physical laws, that are suffi-
cient for determining all events that are of
interest to the modeler. The mechanisms are
autonomous, like mechanical linkages in a
machine or logic gates in electronic circuits—
we can change one without changing the oth-
ers. (2) Interventions always involve the break-

trivial: One can simply take the causal rules,
apply them to the facts, and derive the conclu-
sions by standard logical deduction. However,
it is not as trivial as it sounds. The exercise of
drawing the proper conclusions from causal
input has met with traumatic experiences in
AI. One of my favorite examples is described in
the following hypothetical man-machine dia-
logue:

Input: 
1. If the grass is wet, then it rained. 
2. If we break this bottle, the grass will get
wet. 
Output: 
If we break this bottle, then it rained.

Another troublesome example (Lin 1995) is
illustrated in the following dialogue:

Input: 
1. A suitcase will open iff both locks are
open. 
2. The right lock is open. 
3. The suitcase is closed.
Query: 
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down of mechanisms. I call this breakdown a
surgery to emphasize its dual painful-remedial
character. (1) Causal relationships tell us which
mechanism is to be surgically modified by any
given action.

Causal Models
These principles can be encapsulated neatly
and organized in a mathematical object called
a causal model. In general, the purpose of a
model is to assign truth values to sentences in
a given language. If models in standard logic
assign truth values to logical formulas, causal
models embrace a wider class of sentences,
including phrases that we normally classify as
“causal.” These include:

Actions:
B will be true if we do A.

Counterfactuals:
B would be different if A were true. 

Explanation:
B occurred because of A.

There could be more, but I concentrate on
these three because they are commonly used
and because I believe that all other causal sen-
tences can be reduced to these three. The dif-
ference between actions and counterfactuals is
merely that in counterfactuals, the clash
between the antecedent and the current state
of affairs is explicit.

To allay any fear that a causal model is some
formidable mathematical object, let me exem-
plify the beast with two familiar examples. Fig-
ure 2 shows a causal model we all remember
from high school—a circuit diagram. There are
four interesting points to notice in this example:

First, it qualifies as a causal model because it
contains the information to confirm or refute
all action, counterfactual, and explanatory sen-
tences concerning the operation of the circuit.
For example, anyone can figure out what the
output would be if we set Y to zero, if we
replace a certain OR gate with a NOR gate, or if
we perform any of the billions of combinations
of such actions.

Second, Boolean formulas are insufficient for
answering such action queries. For example,
the Boolean formula associated with the circuit
{Y = OR(X, Z), W = NOT(Y)} is equivalent to the
formula associated with {W = NOR(X, Z), Y =
NOT(W)}. However, setting Y to zero in the first
circuit entails W = 1; not so in the second cir-
cuit, where Y has no effect on W. 

Third, the actions about which we can rea-
son, given the circuit, were not specified in
advance; they do not have special names, and
they do not show up in the diagram. In fact,
the great majority of the action queries that
this circuit can answer have never been

considered by the designer of this circuit. 
Fourth, how does the circuit convey this

extra information? It is done through two
encoding tricks: (1) The symbolic units corre-
spond to stable physical mechanisms (that is,
the logical gates). Second, each variable has
precisely one mechanism that determines its
value. In our example, the electric voltage in
each junction of the circuit is the output of one
and only one logic gate (otherwise, a value
conflict can arise under certain input combina-
tions).

As another example, figure 3 displays the
first causal model that was put down on paper:
Sewal Wright’s (1921) path diagram. It shows
how the fur pattern of the guinea pigs in a lit-
ter is determined by various genetic and envi-
ronmental factors. 

Again, (1) it qualifies as a causal model, (2)
the algebraic equations in themselves do not
qualify as a causal model, and (3) the extra
information comes from having each variable
determined by a stable functional relationship
connecting it to its parents in the diagram. (As
in O = eD + hH + eE, where O stands for the per-
centage of black area on the guinea pig fur.)

Now that we are on familiar ground, let us
observe more closely the way a causal model
encodes the information needed for answering
causal queries. Instead of a formal definition
that is given shortly (definition 1), I illustrate
the working of a causal model through a vivid
example. It describes a tense moment in the
life of a gentleman facing a firing squad (figure
4). The captain (C) awaits the court order (U);
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S2(Abduction)—If the prisoner is alive, then
the captain did not signal: 
¬D ⇒ ¬C.

S3(Transduction)—If rifleman A shot, then B
shot as well:
A ⇒ B.

S4(Action)—If the captain gave no signal,
and rifleman A decides to shoot, then the
prisoner will die, and B will not shoot:
¬C ⇒ DA and ¬BA.

S5(Counterfactual)—If the prisoner is dead,
then the prisoner would still be dead even if
rifleman A had not shot: 
D ⇒ D¬A.

S6(Explanation)— The prisoner died because
rifleman A shot. 
Caused(A, D).

The simplest sentences are S1 to S3, which
can be evaluated by standard deduction; they
involve standard logical connectives because
they deal with inferences from beliefs to beliefs
about a static world. 

Next in difficulty is action sentence S4,
requiring some causal information; then comes
counterfactual S5, requiring more detailed
causal information; and the hardest is the expla-
nation sentence (S6) whose semantics is still not
completely settled (to be discussed later). 

Sentence S4 offers us the first chance to wit-
ness what information a causal model provides
on top of a logical model.

Shooting with no signal constitutes a blatant
violation of one mechanism in the story: rifle-
man A’s commitment to follow the captain’s sig-
nal. Violation renders this mechanism inactive;
hence, we must excise the corresponding equa-
tion from the model, using a surgeon’s knife,
and replace it with a new mechanism: A = TRUE
(figure 5). To indicate that the consequent part
of our query (the prisoner’s death, D) is to be
evaluated in a modified model, with A = TRUE
overriding A = C, we use the subscript notation
DA. Now we can easily verify that D holds true in
the modified model; hence, S4 evaluates to true.
Note that the surgery suppresses abduction;
from seeing A shoot, we can infer that B shot as
well (recall A ⇒ B), but from making A shoot, we
can no longer infer what B does, unless we know
whether the captain signaled.

Everything we do with graphs, we can, of
course, do with symbols. We need to be careful,
however, in distinguishing facts from rules
(domain constraints) and mark the privileged
element in each rule (the left-hand side), as in
figure 6.

Here we see for the first time the role of
causal order: Which mechanism should be
excised by an action whose direct effect is A?

riflemen A and B obey the captain’s signal; the
prisoner dies iff any of the riflemen shoot. The
meaning of the symbols is obvious from the
story: the only new symbol is the functional
equality =, which is borrowed here from Euler
(around 1730), meaning that the left-hand side
is determined by the right-hand side and not
the other way around.

Answering Queries with 
Causal Models
Assume that we want to evaluate (mechanical-
ly) the following sentences:

S1(Prediction)—If rifleman A did not shoot,
then the prisoner is alive: 
¬A ⇒ ¬ D.
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Figure 3. Genetic Models (S. Wright, 1920).

U: Court orders the execution

C: Captain gives a signal

A: Rifleman-A shoots

B: Rifleman-B shoots

D: Prisoner Dies

=: Functional Equality (New Symbol) 
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Figure 4. Causal Models at Work (the Impatient Firing Squad).



(Note that the symbol A appears in two equa-
tions.) The answer is, Excise the equation in
which A is the privileged variable (A = C in fig-
ure 6). Once we create the mutilated model
MA, we draw the conclusions by standard
deduction and easily confirm the truth of S4:
The prisoner will be dead, denoted DA, because
D is true in MA. 

Consider now our counterfactual sentence
S5: If the prisoner is dead, he would still be
dead if A were not to have shot, D ⇒ D¬A. The
antecedent ¬A should still be treated as inter-
ventional surgery but only after we fully
account for the evidence given: D.

This calls for three inferential steps, as
shown in figure 7: (1) abduction: interpret the
past in light of the evidence; (2) action: bend
the course of history (minimally) to account
for the hypothetical antecedent (¬ A); and (3)
prediction: project the consequences to the
future.

Note that this three-step procedure can be
combined into one. If we use an asterisk to dis-
tinguish postmodification from premodifica-
tion variables, we can combine M and MA into
one logical theory and prove the validity of S5
by purely logical deduction in the combined
theory. To illustrate, we write S5 as D ⇒ D*¬A*
(thus, if D is true in the actual world, then D
would also be true in the hypothetical world
created by the modification ¬A*) and prove the
validity of D* in the combined theory, as
shown in figure 8. 

Suppose now that we are not entirely igno-
rant of U but can assess the degree of belief
P(u). The same three steps apply to the compu-
tation of the counterfactual probability (that
the prisoner be dead if A were not to have
shot). The only difference is that we now use
the evidence to update P(u) into P(u | D) and
draw probabilistic, instead of logical, conclu-
sions (figure 9).

Graphically, the combined theories of figure
8 can be represented by two graphs sharing the
U variables (called twin network) (figure 10). The
twin network is particularly useful in proba-
bilistic calculations because we can simply
propagate evidence (using Bayes’s network
techniques) from the actual to the hypotheti-
cal network.

Let us now summarize the formal elements
involved in this causal exercise.

Definition 1: Causal Models
A causal model is a 3-tuple

〈M = V, U, F〉
with a mutilation operator do(x): M → Mx,
where

(1) V = {V1, …, Vn} endogenous variables,

(2) U = {U1, …, Um} background variables

(3) F = set of n functions, fi: V \ Vi × U →
Vi, each of the form
vi = fi(pai, ui) PAi ⊆ V \ Vi Ui U

(4) Mx = 〈U, V, Fx〉, X⊆ V, x ∈ X, where
Fx = {fi: Vi ∉X} ∪ {X = x}
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Figure 5. Why Causal Models? Guide for Surgery.
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Model MA (Modify A = C):

Figure 6. Mutilation in Symbolic Causal Models.
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(Replace all functions fi corresponding to X
with the constant functions X = x).

Definition 2: Counterfactual
The sentence, Y would be y had X been x,”
denoted Yx(u) = y, is interpreted to mean
“the solution for Y in Mx is equal to y
under the current conditions U = u.”

The Role of Causality
We have seen that action queries can be
answered in one step: standard deduction on a
mutilated submodel. Counterfactual queries,
however, required a preparatory stage of
abduction. The questions naturally arise: Who
needs counterfactuals? Why spend time on
computing such convoluted sentences? It
turns out that counterfactuals are common-
place, and abduction-free action sentences are
a fiction. Action queries are brought into focus
by certain undesired observations, potentially
modifiable by the actions. The step of abduc-
tion, which is characteristic of counterfactual
queries, cannot be disposed of and must there-
fore precede the surgery step. Thus, most
action queries are semantically identical to
counterfactual queries.

Consider an example from troubleshooting,
where we observe a low output and we ask:

Action query:
Will the output get higher if we replace the
transistor?

Counterfactual query:
Would the output be higher had the transis-
tor been replaced?

The two sentences in this example are equiv-
alent: Both demand an abductive step to
account for the observation, which compli-
cates things a bit. In probabilistic analysis, a
functional specification is needed; conditional
probabilities alone are not sufficient for
answering observation-triggered action
queries. In symbolic analysis, abnormalities
must be explicated in functional details; the
catch-all symbol ¬ab(p) (standing for “p is not
abnormal”) is not sufficient. 

Thus, we come to the million dollar ques-
tion: Why causality?

To this point, we have discussed actions,
counterfactuals, surgeries, mechanism, abduc-
tion, and so on, but is causality really neces-
sary? Indeed, if we know which mechanisms
each action modifies, and the nature of the
modification, we can avoid all talk of causa-
tion—the ramification of each action can be
obtained by simply mutilating the appropriate
mechanisms, then simulating the natural
course of events. The price we pay is that we
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Prove: D ⇒ D¬A

Combined Theory:

(U)

C* = U C = U (C)

¬A* A = C (A)

B* = C* (B)

D*= A* � B* D = A � B (D)

Facts: D

Conclusions: U, A, B, C, D, ¬A*, C*, B*, D*

B = C

Figure 8. Symbolic Evaluation of Counterfactuals.
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need to specify an action not by its direct
effects but, rather, by the mechanisms that the
action modifies.

For example, instead of saying “this action
moves the coffee cup to location x,” I would
need to say, “This action neutralizes the static
friction of the coffee cup and replaces it with a
forward acceleration a for a period of 1 second,
followed by deceleration for a period of 2 sec-
onds....”

This statement is awfully clumsy: Most
mechanisms do not have names in nontechni-
cal languages, and when they do, the names do
not match the granularity of ordinary lan-
guage. Causality enables us to reason correctly
about actions while we keep the mechanism
implicit. All we need to specify is the action’s
direct effects; the rest follows by mutilation
and simulation.

However, to figure out which mechanism
deserves mutilation, there must be one-to-one
correspondence between variables and mecha-
nisms. Is this a realistic requirement? In gener-
al, no. An arbitrary collection of n equations on
n variables would not normally enjoy this
property. Even a typical resistive network (for
example, a voltage divider) does not enjoy it.
But because causal thinking is so pervasive in
our language, we can conclude that our con-
ceptualization of the world is more structured
and that it does enjoy the one-to-one corre-
spondence. We say “raise taxes,” “clean your
face,” “make him laugh,” or, in general, do(p),
and miraculously, people understand us with-
out asking for a mechanism name.2

Perhaps the best “AI proof” of the ubiquity
of the modality do(p) is the existence of the
language STRIPS (Fikes and Nilsson 1971), in
which actions are specified by their
effects—the ADD-LIST and DELETE-LIST. Let us
compare causal surgeries to STRIPS surgeries.
Both accept actions as modalities, both per-
form surgeries, but STRIPS performs the surgery
on propositions, and causal theories first iden-
tify the mechanism to be excised and then per-
form the surgery on mechanisms, not on
propositions. The result is that direct effects
suffice, and indirect ramifications of an action
need not be specified; they can be inferred
from the direct effects using the mutilate-sim-
ulate cycle of figure 5. 

Applications
Thus, we arrive at the midpoint of our story. I
have talked about the story of causation from
Hume to robotics, I have discussed the seman-
tics of causal utterances and the principles
behind the interpretation of action and coun-

terfactual sentences, and now it is time to ask
about the applications of these principles. I
talk about two types of applications: The first
relates to the evaluation of actions and the sec-
ond to finding explanations. 

Inferring Effects of Actions
Let us start with the evaluation of actions. We
saw that if we have a causal model M, then pre-
dicting the ramifications of an action is triv-
ial—mutilate and solve. If instead of a com-
plete model we only have a probabilistic
model, it is again trivial: We mutilate and prop-
agate probabilities in the resultant causal net-
work. The important point is that we can spec-
ify knowledge using causal vocabulary and can
handle actions that are specified as modalities. 

However, what if we do not have even a
probabilistic model? This is where data come
in. In certain applications, we are lucky to have
data that can supplement missing fragments of
the model, and the question is whether the
data available are sufficient for computing the
effect of actions. 

Let us illustrate this possibility in a simple
example taken from economics (figure 11).
Economic policies are made in a manner simi-
lar to the way actions were taken in the firing
squad story: Viewed from the outside, they are
taken in response to economic indicators or
political pressure, but viewed from the policy
maker’s perspective, the policies are decided
under the pretense of free will.

Like rifleman A in figure 5, the policy maker
considers the ramifications of nonroutine
actions that do not conform to the dictates of
the model, as shown in the mutilated graph of
figure 11. If we knew the model, there would
be no problem calculating the ramifications of
each pending decision—mutilate and pre-
dict—but being ignorant of the functional rela-
tionships among the variables, and having
only the skeleton of the causal graph in our
hands, we hope to supplement this informa-
tion with what we can learn from economic
data. 

Unfortunately, economic data are taken
under a “wholesome” model, with tax levels
responding to economic conditions, and we
need to predict ramifications under a mutilated
model, with all links influencing tax levels
removed. Can we still extract useful informa-
tion from such data? The answer is yes. As long
as we can measure every variable that is a com-
mon cause of two or more other measured vari-
ables, it is possible to infer the probabilities of
the mutilated model directly from those of the
nonmutilated model, regardless of the under-
lying functions. The transformation is given by
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of cancer cases. Controlled experiment could
decide between the two models, but these are
impossible, and now also illegal, to conduct. 

This is all history. Now we enter a hypothet-
ical era where representatives of both sides
decide to meet and iron out their differences.
The tobacco industry concedes that there
might be some weak causal link between smok-
ing and cancer, and representatives of the
health group concede that there might be
some weak links to genetic factors. According-
ly, they draw this combined model (model C in
figure 12), and the question boils down to
assessing, from the data, the strengths of the
various links. In mutilation language, the ques-
tion boils down to assessing the effect of smok-
ing in the mutilated model shown here (model
D) from data taken under the wholesome mod-
el shown before (model C). They submit the
query to a statistician, and the answer comes
back immediately: impossible. The statistician
means that there is no way to estimate the
strength for the causal links from the data
because any data whatsoever can perfectly fit
either one of the extreme models shown in
model A and model B; so, they give up and
decide to continue the political battle as usual. 

Before parting, a suggestion comes up: Per-
haps we can resolve our differences if we mea-
sure some auxiliary factors. For example,
because the causal link model is based on the
understanding that smoking affects lung can-
cer through the accumulation of tar deposits in
the lungs, perhaps we can measure the amount
of tar deposits in the lungs of sampled individ-
uals, which might provide the necessary infor-

the manipulation theorem described in the
book by Spirtes, Glymour, and Schienes (1993)
and further developed by Pearl (2000, 1995). 

Remarkably, the effect of certain policies can
be inferred even when some common factors
are not observable, as is illustrated in the next
example (Pearl 2000). 

Smoking and the Genotype Theory
In 1964, the surgeon general issued a report
linking cigarette smoking to death, cancer, and
most particularly, lung cancer. The report was
based on nonexperimental studies in which a
strong correlation was found between smoking
and lung cancer, and the claim was that the
correlation found is causal; namely, if we ban
smoking, the rate of cancer cases will be rough-
ly the same as the rate we find today among
nonsmokers in the population (model A, figure
12). These studies came under severe attacks
from the tobacco industry, backed by some
very prominent statisticians, among them Sir
Ronald Fisher. The claim was that the observed
correlations can also be explained by a model
in which there is no causal connection be-
tween smoking and lung cancer. Instead, an
unobserved genotype might exist that simulta-
neously causes cancer and produces an inborn
craving for nicotine (see model B, figure 12). 

Formally, this claim would be written in our
notation as

P(cancer | do(smoke)) 
= P(cancer | do(not_smoke)) 
= P(cancer)

stating that making the population smoke or
stop smoking would have no effect on the rate
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Figure 11. Intervention as Surgery.



mation for quantifying the links? Both sides
agree that this suggestion is  reasonable, so
they submit a new query to the statistician:
Can we find the effect of smoking on cancer
assuming that an intermediate measurement
of tar deposits is available?

Sure enough, the statistician comes back
with good news: It is computable! In other
words, it is possible now to infer the effect of
smoking in the mutilated model shown here
(model B) from data taken under the original
wholesome model (model C). This inference is
valid as long as the data contain measurements
of all three variables: smoking, tar, and cancer.
Moreover, the solution can be derived in closed
mathematical form, using symbolic manipula-
tions that mimic logical derivation but are gov-
erned by the surgery semantics. How can this
derivation be accomplished?

Causal Calculus
To reduce an expression involving do(x) to
those involving ordinary probabilities, we
need a calculus for doing, a calculus that
enables us to deduce behavior under interven-
tion from behavior under passive observations.
Do we have such a calculus? 

If we look at the history of science, we find
to our astonishment that such a calculus does
not in fact exist. It is true that science rests on
two components: one consisting of passive
observations (epitomized by astronomy) and
the other consisting of deliberate intervention
(represented by engineering and craftsman-
ship). However, algebra was not equally fair to
these two components. Mathematical tech-
niques were developed exclusively to support
the former (seeing), not the latter (doing). Even
in the laboratory, a place where the two com-
ponents combine, the seeing part enjoys the
benefits of algebra, whereas the doing part is at
the mercy of the scientist’s judgment. True,
when a chemist pours the content of one test
tube into another, a new set of equations
becomes applicable, and algebraic techniques
can be used to solve the new equations. How-
ever, there is no algebraic operation to repre-
sent the transfer from one test tube to another
and no algebra for selecting the correct set of
equations when conditions change. Such selec-
tion has thus far relied on unaided scientific
judgment. 

Let me convince you of this imbalance using
a simple example. If we want to find the
chance it rained, given that we see wet grass,
we can express our question in a formal sen-
tence, P(rain | wet) and use the machinery of
probability theory to transform the sentence
into other expressions that are more conve-

nient or informative. However, suppose we ask
a different question: What is the chance it
rained if we make the grass wet? We cannot
even express our query in the syntax of proba-
bility because the vertical bar is already taken
to mean “given that we see.” We know intu-
itively what the answer should be—P(rain |
do(wet)) = P(rain)—because making the grass
wet does not change the chance of rain. How-
ever, can this intuitive answer, and others like
it, be derived mechanically to comfort our
thoughts when intuition fails? 

The answer is yes, but it takes a new algebra
to manage the do(x) operator. To make it into a
genuine calculus, we need to translate the
surgery semantics into rules of inference, and
these rules consist of the following (Pearl
1995):

Rule 1: Ignoring observations 

Rule 2: Action-observation exchange

P y do x do z w

P y do x z w Y Z X W
GX Z

( ) ( )( )
= ( )( ) ⊥⊥

, ,

, , ( , ) if 

P y do x z w

P y do x w Z X W
GX

( )( )
= ( )( ) ⊥⊥( )

, ,

 if Y, ,
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A. Surgeon General (1964):

Smoking Cancer

B. Tobacco Industry:
Genotype (Unobserved)

Smoking Cancer

C. Combined:

Cancer

D. Combined and Refined

P(c | do(s)) = computable

Smoking

Smoking CancerTar

P(c | do(s)) = noncomputable

P(c | do(s)) = P(c)

P(c | do(s)) � P(c | s)

Figure 12. Predicting the Effects of Banning Cigarette Smoking.
A. Model proposed by the surgeon general. B. Model proposed by the tobacco
industry. C. Combined model. D. Mutilated combined model, with one addition-
al observation.



given any information whatsoever on the hid-
den genotype: It might be continuous or dis-
crete, unidimensional or multidimensional,
yet measuring an auxiliary variable (for exam-
ple, tar) someplace else in the system enables
us to discount the effect of this hidden geno-
type and predict what the world would be like
if policy makers were to ban cigarette smoking. 

Thus, data from the visible allow us to
account for the invisible. Moreover, using the
same technique, a person can even answer
such intricate and personal questions as, “I am
about to start smoking—should I?” 

I think this trick is amazing because I cannot
do such calculations in my head. It demon-
strates the immense power of having formal
semantics and symbolic machinery in an area
that many respectable scientists have surren-
dered to unaided judgment. 

Learning to Act 
by Watching Other Actors
The common theme in the past two examples
was the need to predict the effect of our actions
by watching the behavior of other actors (past
policy makers in the case of economic deci-
sions and past smokers-nonsmokers in the
smoking-cancer example). This problem recurs
in many applications, and here are a couple of
additional examples. 

In the example of figure 14, we need to pre-
dict the effect of a plan (sequence of actions)
after watching an expert control a production
process. The expert observes dials that we can-
not observe, although we know what quanti-
ties these dials represent. 

Rule 3: Ignoring actions 

These three rules permit us to transform
expressions involving actions and observations
into other expressions of this type. Rule 1
allows us to ignore an irrelevant observation,
the third to ignore an irrelevant action, the sec-
ond to exchange an action with an observation
of the same fact. The if statements on the right
are separation conditions in various subgraphs
of the diagram that indicate when the transfor-
mation is legal.3 We next see them in action in
the smoking-cancer example that was dis-
cussed earlier. 

Figure 13 shows how one can prove that the
effect of smoking on cancer can be determined
from data on three variables: (1) smoking, (2)
tar, and (3) cancer. 

The question boils down to computing the
expression P(cancer | do(smoke)) from nonex-
perimental data, namely, expressions involv-
ing no actions. Therefore, we need to eliminate
the do symbol from the initial expression. The
elimination proceeds like an ordinary solution
of an algebraic equation—in each stage, a new
rule is applied, licensed by some subgraph of
the diagram, until eventually we achieve a for-
mula involving no do symbols, meaning an
expression computable from nonexperimental
data. 

If I were not a modest person, I would say
that this result is amazing. Behold, we are not

P y do x do z w

P y do x w Y Z X W
GX Z W

( , , )

, ,
, ( )

( ) ( )
= ( )( ) ⊥⊥( ) if 
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Smoking Tar Cancer
P(c | do{s}) = Σt P(c | do{s}, t) P(t | do{s})

= Σs′ Σt P(c | do{t}, s′) P(s′ | do{t}) P(t | s)

= Σt P(c | do{s}, do{t}) P(t | do{s})

= Σt P(c | do{s}, do{t}) P(t | s) 

= Σt P(c | do{t}, P(t | s) 

= Σs′ Σt P(c | t, s′) P(s′) P(t | s) 

= Σs′ Σt P(c | t, s′) P(s′ | do{t}) P(t | s)

Probability Axioms

Probability Axioms

Rule 2

Rule 2

Rule 3

Rule 3

Rule 2

Genotype (Unobserved)

Figure 13. Derivation in Causal Calculus.



The example in figure 15 (owed to J. Robins)
comes from sequential treatment of AIDS
patients.

The variables X1 and X2 stand for treatments
that physicians prescribe to a patient at two
different times: Z represents observations that
the second physician consults to determine X2,
and Y represents the patient’s survival. The
hidden variables U1 and U2 represent, respec-
tively, part of the patient history and the
patient disposition to recover. Doctors used the
patient’s earlier PCP history (U1) to prescribe
X1, but its value was not recorded for data
analysis. 

The problem we face is as follows: Assume
we have collected a large amount of data on
the behavior of many patients and physicians,
which is summarized in the form of (an esti-
mated) joint distribution P of the observed four
variables (X1, Z, X2, Y). A new patient comes in,
and we want to determine the impact of the
plan (do(x1), do(x2)) on survival (Y), where x1
and x2 are two predetermined dosages of
bactrim, to be administered at two prespecified
times. 

Many of you have probably noticed the sim-
ilarity of this problem to Markov decision
processes, where it is required to find an opti-
mal sequence of actions to bring about a cer-
tain response. The problem here is both sim-
pler and harder. It is simpler because we are
only required to evaluate a given strategy, and
it is harder because we are not given the tran-
sition probabilities associated with the elemen-
tary actions—these need to be learned from
data, and the data are confounded by spurious
correlations. As you can see on the bottom line
of figure 15, this task is feasible—the calculus
reveals that our modeling assumptions are suf-
ficient for estimating the desired quantity from
the data. 

Deciding Attribution
I now demonstrate how causal calculus can
answer questions of attribution, namely, find-
ing causes of effects rather than effects of caus-
es. The U.S. Army conducted many nuclear
experiments in Nevada in the period from
1940 to 1955. Data taken over a period of 12
years indicate that fallout radiation apparently
has resulted in a high number of deaths from
leukemia in children residing in southern
Utah. A lawsuit was filed. Is the Army liable for
these deaths? 

According to a fairly common judicial stan-
dard, damage should be paid if and only if it is
more probable than not that death would not
have occurred but for the action. Can we calcu-
late this probability PN that event y would not

have occurred but for event x? (PN stands for
probability of necessity.) The answer is yes; PN
is given by the formula 

where x′ stands for the complement of x. How-
ever, to get this formula, we must assume a
condition called monotonicity; that is, radiation
cannot prevent leukemia. In the absence of
monotonicity, the formula provides a lower
bound on the probability of necessity (Pearl
2000; Tian and Pearl 2000). 

This result, although it is not mentioned
explicitly in any textbooks on epidemiology,

PN
P y x P y x

P y x

P y x P y do x

P x y

=
( ) ′ ′( )[ ]

( )
+

′( ) ′( )( )
( )

–

–

,
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X1

U1

Z
X 2

U2

Y Output

For Example,
Process Control

Hidden
Dials

Visible
Dials

Control
Knobs

Problem: Find the effect of (do(x1), do(x2)) on Y,
from data on X1, Z, X2, and Y.

U1

X1

Y   Recovery/Death

For Example, Drug Management
(Pearl and Robins 1985)

Patient's
History

Patient's
Immune
Status

Episodes of PCP

Solution: P(y | do(x1), do(x2)) = Σz P(y | z, x1, x2) P(z | x1)

Dosages
of Bactrim Z

X 2

U2

Figure 14. Learning to Act by Watching Other Actors (Process Control).

Figure 15. Learning to Act by Watching Other 
Actors (Treatment Management).



of dollars are invested each year on various
public health studies: Is chocolate ice cream
good for you or bad for you? Would red wine
increase or decrease your heart rate? The same
applies to the social sciences. Would increasing
police budget decrease or increase crime rates?
Is the Columbine school incident owed to TV
violence or failure of public education? The
Interuniversity Consortium for Political and
Social Research distributed about 800 gigabytes
worth of such studies in 1993 alone. 

Unfortunately, the causal-analytic method-
ology currently available to researchers in these
fields is rather primitive, and every innovation
can make a tremendous difference. Moreover,
the major stumbling block has not been statis-
tical but, rather, conceptual—lack of semantics
and lack of formal machinery for handling
causal knowledge and causal queries—perfect
for AI involvement. Indeed, several hurdles
have recently been removed by techniques
that emerged from AI laboratories. I predict
that a quiet revolution will take place in the
next decade in the way causality is handled in
statistics, epidemiology, social science, eco-
nomics, and business. Although news of this
revolution will never make it to the Defense
Advanced Research Projects Agency newsletter,
and even the National Science Foundation
might not be equipped to manage it, it will
nevertheless have an enormous intellectual
and technological impact on our society. 

Causes and Explanations
We now come to one of the grand problems in
AI: generating meaningful explanations. It is
the hardest of all causal tasks considered thus
far because the semantics of explanation is still
debatable, but some promising solutions are
currently in the making (see Pearl [2000] and
Halpern and Pearl [2001a, 2001b]).

The art of generating explanations is as old
as mankind (figure 16). 

According to the Bible, it was Adam who
first discovered the ubiquitous nature of causal
explanation when he answered God’s question
with “she handed me the fruit and I ate.” Eve
was quick to catch on: “The serpent deceived
me, and I ate.” Explanations here are used for
exonerating one from blame, passing on the
responsibility to others. The interpretation
therefore is counterfactual: “Had she not given
me the fruit, I would not have eaten.”

Counterfactuals and Actual Causes
The modern formulation of this concept starts
again with David Hume, who stated (1748):
“We may define a cause to be an object fol-

statistics, or law, is rather startling. First, it
shows that the first term, which generations of
epidemiologists took to be the formal interpre-
tation PN, by the power of which millions of
dollars were awarded (or denied) to plaintiffs in
lawsuits, is merely a crude approximation of
what lawmakers had in mind by the legal term
but for (Greenland 1999). Second, it tells us
what assumptions must be ascertained before
this traditional criterion coincides with law-
makers’ intent. Third, it shows us precisely
how to account for confounding bias P(y | x′) –
P(y | do(x′)) or nonmonotonicity. Finally, it
demonstrates (for the first time, to my knowl-
edge) that data from both experimental and
nonexperimental studies can be combined to
yield information that neither study alone can
provide.

AI and Peripheral Sciences
Before I go to the topic of explanation, I would
like to say a few words on the role of AI in such
applications as statistics, public health, and
social science. One of the reasons that I find
these areas to be fertile ground for trying out
new ideas in causal reasoning is that unlike AI,
tangible rewards can be reaped from solving
relatively small problems. Problems involving
barely four to five variables, which we in AI
regard as toy problems, carry tremendous pay-
offs in public health and social science. Billions
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Figure 16. Causal Explanation.
“She handed me the fruit and I ate.”
“The serpent deceived me, and I ate.”



lowed by another, …, where, if the first object
has not been, the second never had existed.”

This counterfactual definition was given a
possible-world semantics by David Lewis
(1973) and an even simpler semantics using
our structural interpretation of definition 2.
Note how we write, in surgery language,
Hume’s sentence: “If the first object (x) had not
been, the second (y) never had existed”:

(1) X(u) = x

(2) Y(u) = y

(3) Yx′(u) ≠ y for x′  ≠ x

meaning that given situation u, the solution
for Y in a model mutilated by the operator
do(X = x′) is not equal to y.

However, this definition of cause is known to
be ridden with problems: It ignores aspects of
sufficiency, it fails in the presence of alterna-
tive causes, and it ignores the structure of inter-
vening mechanisms. I first demonstrate these
problems by examples and then provide a solu-
tion using a notion called sustenance that is
easy to formulate in our structural-model
semantics.

Let us first look at the aspect of sufficiency
(or production), namely, the capacity of a
cause to produce the effect in situations where
the effect is absent. For example, both match
and oxygen are necessary for fire, and neither is
sufficient alone. Why is match considered an
adequate explanation and oxygen an awkward
explanation? The asymmetry surfaces when we
compute the probability of sufficiency: 

P(x is sufficient for y) 
= P(Yx = y | X ≠ x, Y ≠ y)

for which we obtain:

P(oxygen is sufficient for fire) = P(match) = low

P(match is sufficient for fire) = P(oxygen) 
= high

Thus, we see that human judgment of
explanatory adequacy takes into account not
merely how necessary a factor was for the
effect but also how sufficient it was. 

Another manifestation of sufficiency occurs
in a phenomenon known as overdetermination.
Suppose in the firing squad example (figure 4),
rifleman B is instructed to shoot if and only if
rifleman A does not shoot by 12 noon. If rifle-
man A shoots before noon and kills, we would
naturally consider his shot to be the cause of
death. Why? The prisoner would have died
without A’s shot. The answer lies in an argu-
ment that goes as follows: We cannot exoner-
ate an action that actually took place by
appealing to hypothetical actions that might
or might not materialize. If for some strange
reason B’s rifle gets stuck, then death would

not have occurred were it not for A’s shot. This
argument instructs us to imagine a new world,
contrary to the scenario at hand, in which
some structural contingencies are introduced,
and in this contingency-inflicted world, we are
to perform Hume’s counterfactual test. I call
this type of argument sustenance (Pearl 2000)
formulated as follows:

Definition 3: Sustenance
Let W be a set of variables, and let w, w′ be
specific realizations of these variables. We
say that x causally sustains y in u relative to
contingencies in W if and only if
(1) X(u) = x; 

(2) Y(u) = y; 

(3) Yxw(u) = y for all w; and

(4) Yx′w′(u) = y′ ≠ y for some x′ ≠ x and some w′.
The last condition Yx′w(u) = y′ weakens

necessity by allowing Y to differ from y (under
x′ ≠ x) under a special contingency, when W is
set to some w′. However, the third condition,
Yxw(u) = y carefully screens the set of permitted
contingencies by insisting that Y retain its val-
ue y (under x) for every setting of W = w. 

We now come to the second difficulty with
the counterfactual test—its failure to incorpo-
rate structural information.

Consider the circuit in figure 17. If someone
were to ask us which switch causes the light to
be on in this circuit, we would point to switch
1. After all, switch 1 (S1) causes the current to
flow through the light bulb, but switch 2 (S2)
is totally out of the game. However, the overall
functional relationship between the switches
and the light is deceptively symmetric:

Light = S1 � S2

Turning switch 1 off merely redirects the
current but keeps the light on, but turning
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Light

Switch-2

Switch-1

On

Off

Which switch is the actual cause of light? S1!

Deceiving symmetry: Light = S1 � S2

Figure 17. Preemption: How the Counterfactual Test Fails.



but also the inner structure of the process lead-
ing from causes to effects. How? 

Causal Beam
The solution I would like to propose here is
based on local sustenance relationships. Given
a causal model, and a specific scenario in this
model, we construct a new model by pruning
away, from every family, all parents except
those that minimally sustain the value of the
child. I call the new model a causal beam (Pearl
2000). In this new model, we conduct the
counterfactual test, and we proclaim an event
X = x the actual cause of Y = y if y depends on
x in the new model. I now demonstrate this
construction using a classical example owed to
P. Suppes (figure 18). It is isomorphic to the
two-switch problem but more bloodthirsty. 

A desert traveler T has two enemies. Enemy
1 poisons T’s canteen, and enemy 2, unaware
of enemy 1’s action, shoots and empties the
canteen. A week later, T is found dead, and the
two enemies confess to action and intention. A
jury must decide whose action was the actual
cause of T’s death. Enemy 1 claims T died of
thirst, and enemy 2 claims to have only pro-
longed T’s life. 

Now let us construct the causal beam associ-
ated with the natural scenario in which we
have death (Y = 1), dehydration (D = 1), and no
poisoning (C = 0). Consider the C-family (fig-
ure 19). 

Because emptying the canteen is sufficient
for sustaining no cyanide intake, regardless of
poisoning, we label the link P → C inactive and
the link X → C sustaining. The link P → C is
inactive in the current scenario, which allows
us to retain just one parent of C, with the func-
tional relationship C = ¬X (figure 20).

Next, consider the Y-family (in the situation
D = 1, C = 0) (figure 21). Because dehydration
would sustain death regardless of cyanide
intake, we label the link C → Y inactive and the
link D → Y sustaining.

We drop the link C → Y, and we end up with
a causal beam leading from shooting to death
through dehydration. In this final model we
conduct the counterfactual test and find that
the test is satisfied because Y = X. Thus, we
have the license to classify the shooter as the
cause of death, not the poisoner, though none
meets the counterfactual test for necessity on a
global scale—the asymmetry emanates from
structural information. 

Things will change of course if we do not
know whether the traveler craved for water
before or after the shot. Our uncertainty can be
modeled by introducing a background vari-
able, U, to represent the time when the traveler
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Dehydration  D

Y Death

C   Cyanide Intake

Enemy-1
Poisons Water

Enemy-2
Shoots Canteen

P = 1X = 1

D = 1 C = 0 

Y = 1

Figure 18. The Desert Traveler (The Actual Scenario).

Inactive

Dehydration   D

Y  Death

C  Cyanide Intake

Enemy-1
Poisons Water

Enemy-2
Shoots Canteen

Sustaining

¬X � P

P = 1X = 1

D = 1 C = 0

Y = 1

Figure 19. The Desert Traveler (Constructing a Causal Beam-1).

Dehydration   D

Y  Death

C    Cyanide Intake

Enemy-1
Poisons Water

Enemy-2
Shoots Canteen

C = ¬X

P = 1X = 1

D = 1 C = 0

Y = 1

Figure 20. The Desert Traveler (Constructing a Causal Beam-2).

switch 2 off has no effect whatsoever—the
light turns off if and only if both switches are
off. Thus, we see that the internal structure of
a process affects our perception of actual cau-
sation. Evidently, our mind takes into consid-
eration not merely input-output relationships



first reached for drink (figure 22). 
If the canteen was emptied before T needed

to drink, we have the dehydration scenario, as
before (figure 21). However, if T drank before
the canteen was emptied, we have a new causal
beam in which enemy 1 is classified as the
cause of death. If U is uncertain, we can use
P(u) to compute the probability P(x caused y)
because the sentence “x was the actual cause of
y” receives a definite truth value for every value
u of U. Thus, 

Temporal Preemption
We come now to resolve a third objection
against the counterfactual test—temporal pre-
emption. Consider two fires advancing toward
a house. If fire 1 burned the house before fire 2,
we (and many juries nationwide) would con-
sider fire 1 the actual cause of the damage,
although fire 2 would have done the same if it
were not for fire 1. If we simply write the struc-
tural model as

H = F1 � F2,

where H stands for “house burns down,” the
beam method would classify each fire equally
as a contributory cause, which is counterintu-
itive. Here, the second cause becomes ineffec-
tive only because the effect has already hap-
pened—a temporal notion that cannot be
expressed in the static causal model we have
used thus far. Remarkably, the idea of a causal
beam still gives us the correct result if we use a
dynamic model of the story, as shown in figure
23. 

Dynamic structural equations are obtained
when we index variables by time and ask for
the mechanisms that determine their values.
For example, we can designate by S(x, t) the
state of the fire in location x and time t and
describe each variable S(x, t) as dependent on
three other variables: (1) the previous state of
the adjacent region to the north, (2) the previ-
ous state of the adjacent region to the south,
and (3) the previous state at the same location
(figure 24).

To test which fire was the cause of the dam-
age, we simulate the two actions at their corre-
sponding times and locations and compute the
scenario that unfolds from these actions.
Applying the process equations recursively,
from left to right, simulates the propagation of
the two fires and gives us the actual value for
each variable in this spatiotemporal domain.
In figure 24, white represents unconsumed
regions, black represents regions on fire, and
grey represents burned regions. 

P x y P u
u x y u

 caused 
 caused  in 

( ) = ( )
{ }

∑
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Figure 21. The Desert Traveler (The Final Beam).
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Figure 22. The Enigmatic Desert Traveler (Uncertain Scenario).

x

x* House

t*

Fire-1

Fire-2 t

Figure 23. Dynamic Model under Action: do(Fire-1), do(Fire-2).

We are now ready to construct the beam
and conduct the test for causation. The result-
ing beam is unique and is shown in figure 25.

The symmetry is clearly broken—there is a
dependence between fire 1 and the state of the



medicine, biology, economics, and social sci-
ence, and I believe AI is in a unique position to
help these areas because only AI enjoys the
combined strength of model searching, learn-
ing, and automated reasoning within the logic
of causation. 

The second quote is from Albert Einstein
who, a year before his death, attributed the
progress of Western science to two fortunate
events: “Development of Western science is
based on two great achievements: The inven-
tion of the formal logical system (in Euclidean
geometry) by the Greek philosophers, and the
discovery of the possibility to find out causal
relationships by systematic experiment (during
the Renaissance).”

I have tried to convince you that experimen-
tal science has not fully benefited from the
power of formal methods—formal mathemat-
ics was used primarily for analyzing passive
observations under fixed boundary conditions,
but the choice of actions, the design of new
experiments, and the transitions between
boundary conditions have been managed by
the unaided human intellect. The develop-
ment of autonomous agents and intelligent
robots requires a new type of analysis in which
the doing component of science enjoys the
benefit of formal mathematics side by side
with its observational component. A short
glimpse at these benefits was presented here. I
am convinced that the meeting of these two
components will eventually bring about
another scientific revolution, perhaps equal in
impact to the one that took place during the
Renaissance. AI will be the major player in this
revolution, and I hope each of you take part in
seeing it off the ground. 
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I have borrowed many ideas from other
authors, the most influential ones are listed in
the references, but others are cited in Pearl
(2000). I only mention that the fundamental
idea that actions be conceived as modifiers of
mechanisms goes back to Jacob Marschak and

house (in location x*) at all times t ≥ t*; no such
dependence exists for fire 2. Thus, the earlier
fire is proclaimed the actual cause of the house
burning.

Conclusions
I would like to conclude this article by quoting
two great scientists. The first is Democritus
(460–370 B.C.), the father of the atomic theory
of matter, who said: “I would rather discover
one causal relation than be King of Persia.”
Although the political situation in Persia has
changed somewhat from the time he made this
statement, I believe Democritus had a valid
point in reminding us of the many application
areas that could benefit from the discovery of
even one causal relation, namely, from the
solution of one toy problem, on an AI scale. As
I discussed earlier, these applications include
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Figure 25. The Dynamic Beam.



Herbert Simon. Strotz and Wold (1960)
were the first to represent actions by
“wiping out” equations, and I would
never have taken seriously the writings
of these “early” economists if it were
not for Peter Spirtes’s lecture,4 where I
first learned about manipulations and
manipulated graphs.

Craig Boutilier deserves much credit
for turning my unruly lecture into a
readable article.

Notes
1. The lecture was delivered as part of the
IJCAI Research Excellence Award for 1999.
Color slides and the original transcript can
be viewed at bayes.cs.ucla.edu/IJCAI99/.
Detailed technical discussion of this mate-
rial can be found in Pearl (2000).

2. H. Simon (1953) devised a test for decid-
ing when a one-to-one correspondence
exists; see Pearl (2000).

3. The notation is defined in Pearl (2000).
For example,

states that in the subgraph formed by delet-
ing all arrows entering X and leaving Z, the
nodes of X d-separate those of Y from those
of Z.

4. Given at the International Congress of
Philosophy of Science, Uppsala, Sweden,
1991.
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AAAI invites proposals for the 2003 Spring Symposium Series,
to be held March 24-26, 2003 at Stanford University, California.

The Spring Symposium Series is an annual set of meetings run in
parallel at a common site. It is designed to bring colleagues together
in an intimate forum while at the same time providing a significant
gathering point for the AI community. The two and a half day format
of the series allows participants to devote considerably more time to
feedback and discussion than typical one-day workshops. It is an ideal
venue for bringing together new communities in emerging fields.

The symposia are intended to encourage presentation of specula-
tive work and work in progress, as well as completed work. Ample
time should be scheduled for discussion. Novel programming, includ-
ing the use of target problems, open-format panels, working groups,
or breakout sessions, is encouraged. Working notes will be prepared,
and distributed to the participants. At the discretion of the individual
symposium chairs, these working notes may also be made available as
AAAI Technical Reports following the meeting. Most participants of
the symposia will be selected on the basis of statements of interest or
abstracts submitted to the symposia chairs; some open registration
will be allowed. All symposia are limited in size, and participants will
be expected to attend a single symposium.

Proposals for symposia should be between two and five pages in
length, and should contain:

A title for the symposium.
A description of the symposium, identifying specific areas of inter-
est, and, optionally, general symposium format.
The names and addresses (physical and electronic) of the organiz-
ing committee: preferably three or more people at different sites, all
of whom have agreed to serve on the committee.
A list of potential participants that have been contacted and that
have expressed interest in participating. A common way of gather-
ing potential participants is to send email messages to email lists
related to the topic(s)of the symposium. Note that potential partic-
ipants need not commit to participating, only state that they are
interested.
Ideally, the entire organizing committee should collaborate in pro-

ducing the proposal. If possible, a draft proposal should be sent out to
a few of the potential participants and their comments solicited.

Approximately eight symposia on a broad range of topics within
and around AI will be selected for the 2003 Spring Symposium Series.
All proposals will be reviewed by the AAAI Symposium Committee,
chaired by Holly Yanco, University of Massachusetts Lowell. The cri-
teria for acceptance of proposals include:

Perceived interest to the AAAI community. Although AAAI encour-
ages symposia that cross disciplinary boundaries, a symposium must
be of interest to some subcommunity of the AAAI membership. Sym-
posia that are of interest to a broad range of AAAI members are also
preferred.

Appropriate number of potential participants. Although the series
supports a range of symposium sizes, the target size is around 40-60
participants.

Lack of a long-term ongoing series of activities on the topic. The
Spring Symposium Series is intended to nurture emerging communi-
ties and topics, so topics that already have yearly conferences or work-
shops are inappropriate.

An appropriate organizing committee. The organizing committee
should have (1) good technical knowledge of the topic, (2) good orga-
nizational skills, and (3) connections to the various communities
from which they intend to draw participants. Committees for cross-
disciplinary symposia must adequately represent all the disciplines to
be covered by the symposium.

Accepted proposals will be distributed as widely as possible over the
subfields of AI, and balanced between theoretical and applied topics.
Symposia bridging theory and practice and those combining AI and
related fields are particularly solicited.

Symposium proposals should be submitted as soon as possible, but
no later than April 22, 2002. Proposals that are submitted significantly
before this deadline can be in draft form. Comments on how to
improve and complete the proposal will be returned to the submitter
in time for revisions to be made before the deadline. Notifications of
acceptance or rejection will be sent to submitters around May 6, 2002.
The submitters of accepted proposals will become the chair of the
symposium, unless alternative arrangements are made. The sympo-
sium organizing committees will be responsible for:

Producing, in conjunction with the general chair, a Call for Partic-
ipation and Registration Brochure for the symposium, which will
be distributed to the AAAI membership
Additional publicity of the symposium, especially to potential audi-
ences from outside the AAAI community
Reviewing requests to participate in the symposium and determin-
ing symposium participants
Preparing working notes for the symposium
Scheduling the activities of the symposium
Preparing a short review of the symposium, to be printed in AI
Magazine

AAAI will provide logistical support, will take care of all local arrange-
ments, and will arrange for reproducing and distributing the working
notes. Please submit (preferably by electronic mail) your symposium
proposals, and inquiries concerning symposia, to: 

Holly Yanco
Computer Science Department
University of Massachusetts Lowell
Olsen Hall, 1 University Avenue
Lowell, MA 01854
Voice: 978-934-3642
Fax: 978-934-3551
E-mail: holly@cs.uml.edu 
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