
■ In this article, we first survey the three major types
of computer music systems based on AI tech-
niques: (1) compositional, (2) improvisational,
and (3) performance systems. Representative
examples of each type are briefly described. Then,
we look in more detail at the problem of endowing
the resulting performances with the expressiveness
that characterizes human-generated music. This is
one of the most challenging aspects of computer
music that has been addressed just recently. The
main problem in modeling expressiveness is to
grasp the performer’s “touch,” that is, the knowl-
edge applied when performing a score. Humans
acquire it through a long process of observation
and imitation. For this reason, previous approach-
es, based on following musical rules trying to cap-
ture interpretation knowledge, had serious limita-
tions. An alternative approach, much closer to the
observation-imitation process observed in
humans, is that of directly using the interpretation
knowledge implicit in examples extracted from
recordings of human performers instead of trying
to make explicit such knowledge. In the last part of
the article, we report on a performance system,
SAXEX, based on this alternative approach, that is
capable of generating high-quality expressive solo
performances of jazz ballads based on examples of
human performers within a case-based reasoning
(CBR) system.

AI has played a crucial role in the history
of computer music almost since its
beginning in the fifties. However, until

recently, most efforts had been on composi-
tional and improvisational systems, and little
efforts had been devoted to performance sys-
tems. Furthermore, AI approaches to perfor-
mance tried to capture the performer’s touch,
that is, the knowledge applied when perform-
ing a score by means of rules. This performance
knowledge concerns not only technical fea-
tures but also the affective aspects implicit in
music. Humans acquire it through a long

process of observation and imitation (Dowling
and Harwood 1986). For this reason, AI
approaches, based on following musical rules
trying to capture interpretation knowledge,
have serious limitations when attempting to
model humanlike music performance. The last
sections of this article describe the SaxEx sys-
tem (Arcos and Lopez de Mantaras 2001; Arcos,
Lopez de Mantaras, and Serra 1998).1 SaxEx
directly uses the performance knowledge
implicit in examples extracted from recordings
of human performers instead of trying to make
that knowledge explicit by means of rules.
With this approach, closer to the observation-
imitation process observed in humans, SaxEx
is capable of generating high-quality human-
like monophonic (one single melodic instru-
ment) performances of jazz ballads based on
examples of human performers.2

SAXEX is based on a type of analogical reason-
ing called CBR. In CBR (Aamodt and Plaza 1994;
Kolodner 1993; Leake 1996), problems are
solved by reusing (often through some sort of
adaptation process) the solutions to similar, pre-
viously solved problems. It relies on the reason-
able assumption that similar problems have
similar solutions. CBR is appropriate for prob-
lems where (1) many examples of already
solved similar problems are available and (2) a
large part of the knowledge involved in the
solution of problems is tacit, that is, difficult to
verbalize and generalize (as is the case for
knowledge involved when playing expressive-
ly). An additional advantage of CBR is that each
new solved problem can be revised by a human
and memorized, and therefore, the system can
improve its problem-solving capabilities by
experience; in other words, it learns by experi-
ence. It is worth noticing here that although the
use of CBR was motivated by the observation-
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satisfied the rules, a simple backtracking proce-
dure was used to erase the entire composition to
that point, and a new cycle was started again.
The goals of Hiller and Isaacson excluded any-
thing related to expressiveness and emotional
content. In an interview (Schwanauer and
Levitt 1993), Hiller and Isaacson said that before
addressing the expressiveness issue, simpler
problems needed to be handled first. We believe
that this was a very correct observation in the
fifties. After this seminal work, many other re-
searchers based their computer compositions on
Markov probability transitions but also with
rather limited success, judging from the stand-
point of melodic quality. Indeed, methods rely-
ing too heavily on Markovian processes are not
complete enough to produce high-quality
music consistently.

However, not all the early work on composi-
tion relies on probabilistic approaches. A good
example is the work of Moorer (1972) on tonal
melody generation. Moorer’s program generat-
ed simple melodies, along with the underlying
harmonic progressions, with simple internal
repetition patterns of notes. This approach
relies on simulating human composition
processes using heuristic techniques rather
than on Markovian probability chains. Levitt
(1993) also avoided the use of probabilities in
the composition process. He argued that ran-
domness tends to obscure rather than reveal
the musical constraints needed to represent
simple musical structures. His work is based on
constraint-based descriptions of musical styles.
He developed a description language that
allows expressing musically meaningful trans-
formations of input, such as chord progressions
and melodic lines, through a series of con-
straint relationships that he calls style templates.
He applied this approach to describe a tradi-
tional walking jazz bass player simulation as
well as a two-handed ragtime piano simulation.

The early systems by Hiller and Isaacson and
Moore were both based also on heuristic
approaches. However, possibly the most gen-
uine example of the early use of AI techniques
is the work of Rader (1974). Rader used rule-
based AI programming in his musical round (a
circle canon such as “Frère Jacques”) generator.
The generation of the melody and the harmony
were based on rules describing how notes or
chords can be put together. The most interest-
ing AI components of this system are the ap-
plicability rules, which determine the applicabil-
ity of the melody and chord-generation rules,
and the weighting rules, which generate the like-
lihood of application of an applicable rule by
means of a weight. We can already appreciate
the use of metaknowledge in this early work.

imitation process observed in humans, we do
not claim that SAXEX entirely reproduces what
musicians do when performing music.

This article starts by briefly surveying a set of
representative work on composition, improvisa-
tion, and performance. Then, through the
description of SAXEX, we look in more detail at
the problem of endowing the computer-gener-
ated performances with the expressiveness that
characterizes human performances. Indeed, as
described in the AI and Music section, existing
approaches typically deal with two expressive
resources (such as dynamics and rubato, rubato
and vibrato, or rubato and articulation). In con-
trast, with the approach used in SAXEX, we are
capable of dealing with all the main expressive
resources: dynamics (loudness), rubato (varia-
tions in note duration and attack time), vibrato
(repeated small variation in pitch’s frequency
and amplitude), articulation (variations in the
transition time between notes), and attack of the
notes. Another distinctive aspect of SAXEX is that
it works with non-MIDI sound files, which
makes the problem much more difficult but also
more interesting because the resulting perfor-
mances are much more humanlike. We end the
article by describing the experiments per-
formed, the results obtained, and presenting a
discussion on the limitations and conclusions.

AI and Music
In this section, we survey a set of representative
computer music systems that use several AI
techniques. It is organized into three subsec-
tions: The first is devoted to compositional sys-
tems, the second describes improvisation sys-
tems, and the third is devoted to performance
systems. These are the subfields of computer
music in which AI techniques have mostly
been applied. In the performance subsection,
we raise the important problem of generating
humanlike expressive performances. An exam-
ple of a successful step toward humanlike per-
formance is described in detail in the last sec-
tions of the article.

Compositional Systems
Hiller and Isaacson’s (1958) work on the ILLIAC

computer, is the best-known pioneering work in
computer music. Their chief result is the Illiac
Suite, a string quartet composed following the
generate-and-test problem-solving approach.
The program generated notes pseudorandomly
by means of Markov chains. The generated
notes were next tested by means of heuristic
compositional rules of classical harmony and
counterpoint. Only the notes satisfying the
rules were kept. If none of the generated notes
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AI pioneers such as Herbert Simon or Marvin
Minsky also published works relevant to com-
puter music. Simon and Sumner (1968, p. 83)
described a formal pattern language for music
as well as a pattern induction method to dis-
cover patterns more or less implicit in musical
works. Simon and Sumner (1968, p. 83)
describe one example of a pattern that can be
discovered: “The opening section is in C Major,
it is followed by a section in dominant and
then a return to the original key.” Although the
program was not completed, it is worth notic-
ing that it was one of the firsts in dealing with
the important issue of music modeling, a sub-
ject that has been, and still is, largely studied.
For example, the use of models based on gener-
ative grammars has been, and continues to be,
an important and useful approach in music
modeling (Lerdahl and Jackendoff 1983).

Marvin Minsky (1981) in his well-known
paper Music, Mind, and Meaning addresses the
important question of how music impresses
our minds. He applies his concepts of agent
and its role in a society of agents as a possible
approach to shed light on this question. For
example, he hints that one agent might do
nothing more than noticing that the music has
a particular rhythm. Other agents might per-
ceive small musical patterns such as repetitions
of a pitch and differences such as the same
sequence of notes played one fifth higher. His
approach also accounts for more complex rela-
tions within a musical piece by means of high-
er-order agents capable of recognizing large
sections of music. It is important to clarify that
in this paper, Minsky does not try to convince
the reader about the question of the validity of
his approach; he just hints at its plausibility.

Among the compositional systems, there are
a large number dealing with the problem of
automatic harmonization using several AI
techniques. One of the earliest works is that of
Rothgeb (1969). He wrote a SNOBOL program to
solve the problem of harmonizing the unfig-
ured bass (given a sequence of bass notes, infer
the chords and voice leadings that accompany
these bass notes) by means of a set of rules such
as “if the bass of a triad descends a semitone,
then the next bass note has a sixth.” The main
goal of Rothgeb was not the automatic harmo-
nization itself but testing of the computational
soundness of two bass harmonization theories
from the eighteenth century.

One of the most complete works on harmo-
nization is that of Ebcioglu (1993). He devel-
oped an expert system, CHORAL, to harmonize
chorales in the style of J. S. Bach. CHORAL is giv-
en a melody and produces the corresponding
harmonization using heuristic rules and con-

straints. The system was implemented using a
logical programming language designed by the
author. An important aspect of this work is the
use of sets of logical primitives to represent the
different viewpoints of the music (chords view,
time-slice view, melodic view, and so on).
These sets of logical primitives allowed tackling
the problem of representing large amounts of
complex musical knowledge.

MUSACT (Bharucha 1993) uses neural net-
works to learn a model of musical harmony. It
was designed to capture musical intuitions of
harmonic qualities. For example, one of the
qualities of a dominant chord is to create in the
listener the expectancy that the tonic chord is
about to be heard. The greater the expectancy,
the greater the feeling of consonance of the
tonic chord. Composers can choose to satisfy
or violate these expectancies to varying
degrees. MUSACT is capable of learning such
qualities and generate graded expectancies in a
given harmonic context

In HARMONET (Feulner 1993), the harmoniza-
tion problem is approached using a combina-
tion of neural networks and constraint-satisfac-
tion techniques. The neural network learns
what is known as harmonic functions of the
chords (chords can play the function of tonic,
dominant, subdominant, and so on), and con-
straints are used to fill the inner voices of the
chords. The work on HARMONET was extended in
the MELONET system (Hörnel and Dagenhardt
1997; Hörnel and Menzel 1998). MELONET uses
a neural network to learn and reproduce high-
er-level structure in melodic sequences. Given
a melody, the system invents a baroque-style
harmonization and variation of any chorale
voice. According to the authors, HARMONET and
MELONET together form a powerful music-com-
position system that generates variations
whose quality is similar to those of an experi-
enced human organist.

Pachet and Roy (1998) also used constraint-
satisfaction techniques for harmonization.
These techniques exploit the fact that both the
melody and the harmonization knowledge
impose constraints on the possible chords.
However, efficiency is a problem with pure
constraint-satisfaction approaches. 

In Sabater, Arcos, and López de Mántaras
(1998), the problem of harmonization is
approached using a combination of rules and
CBR. This approach is based on the observa-
tion that purely rule-based harmonization usu-
ally fails because in general the rules don’t
make the music; it is the music that makes the
rules. Then, instead of relying only on a set of
imperfect rules, why not making use of the
source of the rules, that is, the compositions
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in the empty spaces between signatures. To
properly insert them, EMI has to deal with prob-
lems such as linking initial and concluding
parts of the signatures to the surrounding mo-
tives avoiding stylistic anomalies, maintaining
voice motions, and maintaining notes within a
range. Proper insertion is achieved by means of
an augmented transition network (Woods
1970). The results, although not perfect, are
quite consistent with the style of the composer.

Improvisation Systems
An early work on computer improvisation is
the FLAVORS BAND system of Fry (1984). FLAVORS

BAND is a procedural language, embedded in
Lisp, for specifying jazz and popular music
styles. Its procedural representation allows the
generation of scores in a prespecified style by
making changes to a score specification given
as input. It allows combining random func-
tions and musical constraints (chords, modes,
and so on) to generate improvisational varia-
tions. The most remarkable result of FLAVORS

BAND was an interesting arrangement of the
bass line, and an improvised solo, of John
Coltrane’s composition “Giant Steps.”

GENJAM (Biles 1994) builds a model of a jazz
musician learning to improvise by means of a
genetic algorithm. A human listener plays the
role of fitness function by rating the offspring
improvisations. Papadopoulos and Wiggins
(1998) also used a genetic algorithm to impro-
vise jazz melodies on a given chord progres-
sion. Contrary to GENJAM, the program
includes a fitness function that automatically
evaluates the quality of the offspring improvi-
sations rating eight different aspects of the
improvised melody, such as the melodic con-
tour, note duration, and intervallic distances
between notes.

Franklin (2001) uses recurrent neural net-
works to learn how to improvise jazz solos
from transcriptions of solo improvisations by
saxophonist Sonny Rollins. A reinforcement
learning algorithm is used to refine the behav-
ior of the neural network. The reward function
rates the system solos in terms of jazz harmony
criteria and Rollins style.

The lack of interactivity, with a human
improviser, of these previous approaches has
been criticized (Thom 2001) on the grounds
that they remove the musician from the phys-
ical and spontaneous creation of a melody.
Although it is true that the most fundamental
characteristic of improvisation is the sponta-
neous, real-time, creation of a melody, it is also
true that interactivity was not intended in
these approaches, but nevertheless, they could
generate very interesting improvisations.

themselves? CBR allows using examples of
already harmonized compositions as cases for
new harmonizations. The system harmonizes a
given melody by first looking for similar, al-
ready harmonized, cases; when similar cases
cannot be found, it looks for applicable general
rules of harmony. If no rule is applicable, the
system fails and backtracks to the previous
decision point. The experiments have shown
that the combination of rules and cases results
in much fewer failures in finding an appropri-
ate harmonization than using either technique
alone. Another advantage of the case-based
approach is that each newly correctly harmo-
nized piece can be memorized and made avail-
able as a new example to harmonize other
melodies. That is, a learning by experience
process takes place. Indeed, the more examples
the system has, the less often the system needs
to resort to the rules, and therefore, it fails less.
MUSE (Schwanauer 1993) is also a learning sys-
tem that extends an initially small set of voice-
leading constraints by learning a set of rules of
voice doubling and voice leading. It learns by
reordering the rules agenda and chunking the
rules that satisfy the set of voice-leading con-
straints. MUSE successfully learned some of the
standard rules of voice leading included in tra-
ditional books of tonal music.

Morales-Manzanares et al. (2001) developed
a system called SICIB capable of music composi-
tion using body movements. This system uses
data from sensors attached to the dancer and
Prolog rules to couple the gestures with the
music. The architecture of SICIB also allows real-
time performance.

Certainly the best-known work on computer
composition using AI is David Cope’s (1990,
1987) EMI project. This work focuses on the
emulation of styles of various composers. It has
successfully composed music in the styles of
Cope, Mozart, Palestrina, Albinoni, Brahms,
Debussy, Bach, Rachmaninoff, Chopin, Stra-
vinsky, and Bartok. It works by searching for
recurrent patterns in several (at least two)
works of a given composer. The discovered pat-
terns are called signatures. Because signatures
are location dependent, EMI uses one of the
composer’s works as a guide to fix them to their
appropriate locations when composing a new
piece. To compose the musical motives
between signatures, EMI uses a compositional
rule analyzer to discover the constraints used
by the composer in his/her works. This analyz-
er counts musical events such as voice- leading
directions and the use of repeated notes and
represents them as a statistical model of the
analyzed works. The program follows this
model to compose the motives to be inserted
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Thom (2001) with her BAND-OUT-OF-A-BOX (BOB)
system addresses the problem of real-time
interactive improvisation between BOB and a
human player. In other words, BOB is a “music
companion” for real-time improvisation.
Thom’s approach follows Johnson-Laird’s
(1991) psychological theory of jazz improvisa-
tion. This theory opposes the view that impro-
vising consists of rearranging and transforming
prememorized “licks” under the constraints of
a harmony. Instead he proposes a stochastic
model based on a greedy search over a con-
strained space of possible notes to play at a giv-
en point in time. The very important contribu-
tion of Thom is that her system learns these
constraints and, therefore, the stochastic mod-
el, from the human player by means of an
unsupervised probabilistic clustering algo-
rithm. The learned model is used to abstract
solos into user-specific playing modes. The
parameters of this learned model are then
incorporated into a stochastic process that gen-
erates the solos in response to four-bar solos of
the human improviser. BOB has been very suc-
cessfully evaluated by testing its real-time solo
tradings in two different styles, that of saxo-
phonist Charlie Parker and that of violinist
Stephane Grapelli.

Another remarkable interactive improvisa-
tion system was developed by Dannenberg
(1993). The difference with Thom’s approach is
that in Dannenberg’s system, music generation
is mainly driven by the composer’s goals rather
than the performer’s goals. Wessel’s (Wessel,
Wright, and Kahn 1998) interactive improvisa-
tion system is closer to Thom’s in that it also
emphasizes the accompaniment and enhance-
ment of live improvisations.

Performance Systems
The compositional and improvisation systems
described to this point, even though they gen-
erated some audible output in many cases
(very early systems by electronic means and
later systems by MIDI instruments), did not
specifically address the problem of
expressiveness. However, for performance sys-
tems, expressiveness is a mandatory concern
because the brain is mainly interested in
change. Auditory neurons, like the other neu-
rons in the brain, fire constantly even in silent
environments. What really matters is not the
firing rate but the changes in firing rate. There
are auditory neurons whose firing rate changes
only when the sound frequency or the intensi-
ty increase or decrease. Other neurons react
similarly when a sound repeats. Conversely,
most of the primary auditory neurons also
exhibit what is known as habituation (Baars

1998). When neurons repeatedly receive the
same stimulus, their firing rate, instead of
remaining constant, decreases over time,
which means that we deafen to a sound unless
it manifests some form of novelty or renewal in
its characteristics. Therefore, it is not surprising
that music becomes more interesting when it is
not too repetitive; that is, when it contains
alterations in dynamic, pitch, and rhythm.
This pack of alterations might partly explain
why synthesized music is much less interesting
than human-performed music: A real instru-
ment sends to the auditory cortex more stimuli
to react to than synthesized music. Indeed, the
so-called expressive resources provide an
extremely rich source of changes to our brains.

In the remaining sections of this article, we
focus on the use of AI techniques for generat-
ing expressive performances. It is worth notic-
ing that there has been much less work on AI
techniques for performance than on AI for
composition and improvisation and that all
the existing work is recent. 

One of the first attempts to provide high-lev-
el musical transformations using a rule-based
system is that of Johnson (1992). She devel-
oped an expert system to determine the tempo
and the articulation to be applied when play-
ing Bach’s fugues from “The Well-Tempered
Clavier.” The rules were obtained from two
expert human performers. The output gives
the base tempo value and a list of performance
instructions on note duration and articulation
that should be followed by a human player.
The results very much coincide with the
instructions given in well-known commented
editions of “The Well-Tempered Clavier.” The
main limitation of this system is its lack of gen-
erality because it only works well for fugues
written in a 4/4 meter. For different meters, the
rules should be different. Another obvious con-
sequence of this lack of generality is that the
rules are only applicable to Bach fugues.

The work of the KTH group from Stockholm
(Bresin 2001; Friberg 1995; Friberg, Sunberg,
and Fryden 2000; Friberg et al. 1998) is one of
the best-known long-term efforts on perfor-
mance systems. Their current DIRECTOR MUSICES

system incorporates rules for tempo, dynamic,
and articulation transformations constrained
to MIDI. These rules are inferred both from
theoretical musical knowledge and experimen-
tally from training, especially using the so-
called analysis-by-synthesis approach. The
rules are divided into three main classes: (1)
differentiation rules, which enhance the differ-
ences between scale tones; (2) grouping rules,
which show what tones belong together; and
(3) ensemble rules, that synchronize the various
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pendency, the more expressive resources one
tries to model, the more difficult it is to find
the appropriate rules.

As mentioned in the introduction, in the
SAXEX system, we directly use the interpreta-
tion knowledge implicit in examples from
monophonic recordings of human performers
instead of try to make this knowledge explicit
by means of rules. This approach allows us to
deal with the five most important expressive
resources: (1) dynamics, (2) rubato, (3) vibrato,
(4) articulation, and (5) attack of the notes.
Furthermore, we do it in the context of an
expressively richer (non-MIDI) instrument
such as a tenor saxophone. Besides, ours was
the first attempt to apply CBR to music as well
as the first attempt to cover the full cycle from
a non-MIDI inexpressive input sound file to an
expressive output sound file. Working directly
with sound files is much more complex than
working with MIDI because sound files require
automatically extracting the higher-level para-
meters that are relevant for expressiveness.
Besides, it also complicates the expressive
transformation process and the synthesis.
However, with our approach, we achieve
expressive performances that are much closer
to human performances. The remaining sec-
tions describe our system.

SAXEX: A Case-Based Reasoning
Approach to Expressive 

Performance
The task of SAXEX is to infer a set of expressive
transformations to apply to every note of an
inexpressive monophonic input so that the
output sounds expressive. In other words, what
SaxEx does is add expressiveness to a given flat
performance. To do so, SAXEX uses a case mem-
ory (figure 1) containing examples of expres-
sive human performances, analyzed by means
of spectral modeling techniques (Serra et al.
1997), and musical knowledge. SAXEX also
knows the score of the performance. The heart
of the method is to analyze each input note
determining its “role” in the musical phrase it
belongs to, identify and retrieve notes with
similar roles in the expressive cases, and trans-
form the input note so that its expressive prop-
erties (dynamics, vibrato, rubato, articulation,
and attack of the notes) match the properties
of the retrieved similar notes.

Two types of analysis are performed on the
expressive human performances. First, using
spectral modeling techniques (Serra et al.
1997), the SMS subsystem computes, for each of
the five expressive resources, a qualitative val-
ue representing how each note, in the expres-

voices in an ensemble.
Another long-term effort is the project led by

G. Widmer (2001, 1996). It is another example
of the use of rules for performing transforma-
tions of tempo and dynamics. The approach
taken in this project was first to record and pre-
process a large amount of high-quality musical
performances (containing more than 400,000
notes). The large amount of examples is used to
induce performance rules by means of machine
learning techniques. The project has already
produced very promising results.

Canazza et al. (1997) developed a system to
analyze how the musician’s expressive inten-
tions are reflected in the performance. The
analysis reveals two different expressive dimen-
sions: (1) one related to the energy (dynamics)
and (2) the other one related to the kinetics
(rubato) of the piece. The authors also devel-
oped a program for generating expressive per-
formances according to these two dimensions.

The work of Dannenberg and Derenyi (1998)
is also a good example of articulation transfor-
mations using manually constructed rules. They
developed a trumpet synthesizer that combines
a physical model with a performance model.
The goal of the performance model is to gener-
ate control information for the physical model
by means of a collection of rules manually
extracted from the analysis of a collection of
controlled recordings of human performance.

Another approach taken for performing
tempo and dynamics transformation is the use
of neural network techniques. In Bresin (1998),
a system that combines symbolic decision rules
with neural networks is implemented for sim-
ulating the style of real piano performers. The
output of the neural networks express time and
loudness deviations. These neural networks
extend the standard feed-forward network
trained with the back-propagation algorithm
with feedback connections from the output
neurons to the input neurons.

We can see that except for the work of the
KTH group that considers three expressive
resources, the other systems are limited to two
resources such as rubato and dynamics or ruba-
to and articulation. This limitation has to do
with the use of rules. Indeed, the main prob-
lem with the rule-based approaches is that it is
difficult to find rules general enough to capture
the variety present in different performances of
the same piece by the same musician and even
the variety within a single performance
(Kendall and Carterette 1990). Furthermore,
the different expressive resources interact with
each other. That is, the rules for dynamics
alone change when rubato is also taken into
account. Obviously, because of this interde-
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sive examples, has been played by the human
performer. This value is stored with each note
in the case memory and is available to SAXEX.
The possible qualitative values are very low,
low, medium, high, and very high. To compute
them, SMS computes the average quantitative
value of the whole performed piece for each
one of the expressive resources and then com-
pares how each individual note has been
played in relation with these averages. For
example, if the dynamics (in decibels) of a note
is much higher than the average dynamics of
the piece, then the symbolic value “very high
dynamics” is associated with this note. The
same occurs for the other values and the other
expressive resources.

The second analysis applies the generative
theory of tonal music (Lerdahl and Jackendoff
1983) and Narmour´s (1990) music cognition
model to determine the role of each note in the
musical phrase. For example, a note might be
the last of an ascending melodic progression,
have long duration, be metrically strong, be
harmonically stable, and be the most promi-
nent note in the bar.

As a result of these two analyses, each note in

the stored expressive performance is annotated
with its role in the musical phrase it belongs to
and its qualitative expressive values. These
annotations are represented in the cases of the
system. It is worth clarifying here that the GEN-
ERATIVE THEORY OF TONAL MUSIC (GTTM) and Nar-
mour’s analyses introduce important context
information on the notes (because the role of
each note in the phrase depends on its relation
to the remaining phrase notes as well as on the
chord); therefore, SAXEX cases do not contain
information only on single notes but include
contextual knowledge at the phrase level. 

To generate the expressive performance, SAX-
EX applies the second analysis to the inexpres-
sive input performance to identify the role of
each note. It then searches for similar notes
(that is, notes having similar roles within the
musical phrase) in the stored expressive perfor-
mances. When a similar note is selected, SAXEX

applies the set of expressive values that will
make the inexpressive note sound like the
retrieved expressive one. The rationale behind
this way of proceeding is that similar expres-
sive nuances (similar solutions in CBR terms)
should be applied to similar musical phrases

Articles

FALL  2002   49

Score

.snd

Inexpressive
Phrase

Input

.mid
Affective
Labels

Retrieve Reuse

Noos

Revise

Retain

Musical
Models Cases

SMS

SynthesisAnalysis

.snd

Expressive Phrase

Output

User
Interaction

Figure 1. SAXEX Schema.



Narmour’s Implication-
Realization Model

An intuition shared by many people
is that appreciating music has to do
with expectation. That is, what we
have already heard builds expecta-
tions on what is to come. These
expectations can be fulfilled or not by
what is to come. If fulfilled, the lis-
tener feels satisfied. If not, the listener
is surprised or even disappointed.
Based on this observation, Narmour
proposed a theory of cognition of
melodies based on a set of basic
grouping structures (figure A). These
structures characterize patterns of
melodic implications (or expecta-
tions) that constitute the basic units
of the listener’s perception. Other
resources such as duration and rhyth-
mic patterns emphasize or inhibit the
perception of these melodic implica-
tions. The use of the implication-real-
ization model provides a musical
analysis of the melodic surface of the
piece. The basic grouping structures
are (figure A) the P structure (a pattern
composed of a sequence of at least
three notes with similar intervalic
distances and the same registral direc-
tion), the ID structure (a sequence of
three notes with the same intervalic
difference and different registral
direction), the D structure (a repeti-
tion of at least three notes), the IP
structure (a sequence of three notes
with similar intervalic distances and
different registral direction), the VP
structure (a sequence of three notes
with the same registral direction; the
first intervalic distance is a step, and
the second is a leap), the R structure (a
sequence of three notes with a differ-
ent registral direction; the first inter-
valic distance is a leap, and the sec-
ond is a step), the IR structure (a
sequence of three notes with the
same registral direction; the first
intervalic distance is a leap, and the
second is a step), and the VR structure
(a sequence of three notes with differ-
ent registral direction; both intervals
are leaps). In figure B, the first three
notes form a P structure, the next

three notes an ID, and the last three
notes another P. The two P structures
in the figure have a descending regis-
tral direction, and in both cases, there
is durational cumulation (the last
note is significantly longer).

Looking at melodic groupings in
this way, we can see how each pitch
interval implies the next. Thus, an
interval can be continued with a sim-
ilar one (such as P or ID or IP or VR)
or reversed with a dissimilar one.
That is, a step (small interval between
notes) followed by a leap (large inter-
val between notes) in the same direc-
tion would be a reversal of the
implied interval (another step was
expected, but instead, a leap is heard)
but not a reversal of direction. Pitch
motion can also be continued by
moving in the same direction (up or
down) or reversed by moving in the
opposite direction. The strongest
kind of reversal involves both a rever-
sal of interval and a reversal of direc-
tion. When several small intervals
(steps) move consistently in the same
direction, they strongly imply con-
tinuation in the same direction with
similar small intervals. If a leap oc-
curs instead of a step, it creates a con-
tinuity gap, which triggers the expec-
tation that the gap should be filled in.
To fill it, the next step intervals
should move in the opposite direc-
tion from the leap, which also tends
to limit pitch range and keeps
melodies moving back toward a cen-
ter. Basically, continuity (satisfying the

expectations) is nonclosural and pro-
gressive, whereas reversal of implica-
tion (not satisfying the expectation) is
closural and segmentive. A long note
duration after reversal of implication
usually confirms phrase closure.

Any given melody can be described
by a sequence of Narmour structures.
SAXEX performs an automatic parsing
of the melody to extract the Narmour
structures (figure B). Then, SAXEX uses
these structures to search and retrieve
notes in the case memory that are
similar to the input inexpressive
notes. To do this retrieval, it takes
into account the kind of structure it
belongs to and its position within the
structure (first note, inner note, or
last note). To select the most pre-
ferred notes among the retrieved
ones, it uses the registral direction
(notes having the same registral
direction as the input note will be
preferred), and the durational cumu-
lation (if the input note has a long
duration and is the last note of the
structure, retrieved notes having this
properties will be the preferred ones).
The rationale is that two notes that
share these Narmour properties
should be played similarly. This ratio-
nale agrees with the main case-based
reasoning assumption that similar
problems have similar solutions.
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Figure A (top). Narmour’s Basic Structures.

Figure B (bottom). Narmour’s Parsing of the Beginning of “All of Me.”



(similar problems in CBR terms). For example,
if the dynamics of the expressive note is high,
the rubato is low, the vibrato is very high, the
articulation is medium, and the attack is very
noisy, SAXEX will apply these same values to
the inexpressive input note. These expressive
values are then given to the SMS synthesizer,
which generates the output sound file (see
footnote 2) by transforming the inexpressive
sound file given as input.

The SMS Subsystem
Sound analysis and synthesis techniques based
on spectral models are useful for extracting
high-level parameters from sound files, trans-
forming them and synthesizing a modified ver-
sion of such sound files. Our system uses the
SMS subsystem (figure 1) to extract key informa-
tion related to the five expressive resources we
deal with. Furthermore, we use the SMS synthe-
sis component to generate the expressive inter-
pretations inferred by the CBR subsystem. SMS

is based on decomposing the original sound
into sinusoids plus a spectral residual (noise).
From the sinusoidal representation, SMS

extracts high-level attributes such as attack and
release times of the notes, formant structure,
vibrato, and average pitch and amplitude
when the sound is monophonic. These attrib-
utes can be modified according to the expres-
sive values inferred by the CBR subsystem (see
next section), and the result can be added back
to the spectral representation without loss of
sound quality. In summary, this sound analysis
and synthesis software is ideal as a preprocessor
that provides to the CBR subsystem a high-lev-
el musical description of the sound files and as
a postprocessor that adds the expressive trans-
formations inferred by the CBR subsystem to
the inexpressive input sound file.

The CBR Subsystem
Solving a problem in the SAXEX system
involves three parts: (1) the analysis, (2) the
reasoning, and (3) the synthesis. The analysis
and the synthesis are done using the SMS sub-
system as described earlier. The reasoning part
is achieved by means of the CBR subsystem
(figure 1) and consists of inferring a set of
expressive transformations to apply to every
note of an inexpressive input so that the out-
put sounds expressive. To do this inference, the
CBR subsystem has to be able to retrieve, from
a memory containing expressive interpreta-
tions, those notes that are, musically speaking,
similar to the input inexpressive notes. The
retrieved notes are candidates to be imitated.
The next four subsections describe the neces-
sary CBR steps performed by SAXEX.

The Retrieval Step
From the overall description section, we can
see that the key problem for SAXEX is finding
the appropriate note to imitate or, in other
words, to figure out when two notes belonging
to two different musical pieces play a similar
role in their respective musical phrases. When
musicians compare two music scores, they use
their musical knowledge to solve this problem.
For example, they take into account the fol-
lowing five elements: 

First is the metrical strength of the notes (the
metrical strength of notes played on strong
beats is higher than the metrical strength of
notes played on weak beats). 

Second is the harmonic stability of the notes
according to jazz harmony (position of the
note within its underlying chord and the role
of the note in the chord progression), 

Third is the notes duration. 
Fourth is the hierarchical relations of the note

with respect to the rest of the notes in the
phrase according to the GTTM (Lerdahl and
Jackendoff 1983). For example, some notes
elaborate other notes (some notes are essential,
and others are ornamental), some notes create
tensing and relaxing relations with respect to
others (some notes give a feeling of finality or
settledness; others feel unstable, and when
they are played, the listener feels a tension that
is resolved when the piece returns to a more
stable note). (see sidebar 2 for further details).

Fifth is the position of notes in Narmour’s
(1990) basic musical grouping structures, such as
melodic progressions, repetitions, and changes
in registral directions. Narmour, in his implica-
tion-realization model of cognition of melodies,
identified a small number of basic structures that
constitute the basic units of the listener’s percep-
tion (see sidebar 1 for further details).

SAXEX represents, in its case memory, all this
knowledge about metrical strength, harmonic
stability, note duration, hierarchical relations,
Narmour structures, and so on, by means of the
NOOS object-oriented language (Arcos 1997) and
uses this knowledge to retrieve the appropriate
notes to imitate in the case memory of expres-
sive notes. That is, SAXEX retrieves notes that are
musically similar to the inexpressive input
notes. For example, assume that the inexpressive
input note is the last of a melodic progression, is
metrically strong, and is harmonically stable.
Then, SAXEX searches for notes with similar
musical properties in the case memory because
notes with these properties would clearly be
good candidates to imitate. Assume for the
moment that only one similar note is found. In
this simple situation, this note would immedi-
ately be retrieved for imitation. In other words,
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tated; that is, SAXEX decides to apply expressive
transformations to make the inexpressive
input note sound like the selected expressive
one. In the case where the preference criteria
cannot single out a note, and therefore, several
are equally appropriate according to all the
available musical criteria, a fuzzy aggregation
operator similar to a weighted average (Arcos
and Lopez de Mantaras 2002) is applied to
compute a set of expressive values that com-
bines all the expressive values of the selected
notes. The user can also preselect one of the
following alternatives to replace the aggrega-
tion operator:

First, the majority rule chooses, for each
expressive resource, the value that was applied
in the majority of the selected expressive notes.

Second, the strict majority rule chooses the

SAXEX would decide to apply, to the inexpressive
input note, the set of expressive qualitative val-
ues that will make that note sound like the
retrieved expressive one. For example, if the
dynamics of the retrieved expressive note is
high, the rubato is low, the vibrato is very high,
the attack is very noisy, and the articulation is
medium, SAXEX will apply these values to the
inexpressive input note.

When several similar notes are found, an
additional step is carried out to select the most
preferred one using additional musical criteria
such as the registral direction (ascending or
descending) and the duration of the note (see
sidebars for further details).

The Reuse Step
In this step, the selected expressive note is imi-
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Lerdahl and Jackendoff’s Generative
Theory of Tonal Music 

According to the GENERATIVE THEORY OF

TONAL MUSIC (GTTM), music is built
from an inventory of notes and a set
of rules. The rules assemble notes into
a sequence and organize them into
hierarchical structures of music cog-
nition. To understand a piece means
to assemble these mental structures as
we listen to the piece. It proposes four
types of structures associated with a
piece: (1) grouping, (2) metric, (3)
time-span reduction, and (4) prolon-
gational reduction. The grouping struc-
ture describes the hierarchically re-
lated segmentation units that
listeners can establish when hearing a
melody: motifs, phrases, and sec-
tions. The listener feels that notes
group into motifs, which, in turn, are
grouped into phrases, which are
grouped into sections, which are
finally grouped into full pieces. The
metric structure describes the rhyth-
mical hierarchy of the piece. It assigns
a weight to each note depending on
the beat in which it is played in such
a way that the metric strength of
notes played on strong (down) beats
is higher than the metric strength
(accent) of notes played on weak (up)
beats. In figure A, the metric structure
is illustrated by the dots under the
notes: the more dots, the stronger the
accent on that note. The time-span
reduction is a hierarchical structure
describing the relative structural
importance of notes within the audi-
ble rhythmic units of a phrase (figure
A). It differentiates in the melody the
essential parts from the ornaments.
The essential parts are further dissect-
ed into even more essential parts and
ornaments on them. The reduction
continues until the melody is reduced
to a skeleton of the few most promi-
nent notes. There are two types of
nodes in this hierarchical structure:
(1) left elaboration and (2) right elab-
oration. For example, in figure A, the
first quarter note of the second bar
(C) belongs to a left leaf in a right-
elaboration node because the

following two notes (D and C) elabo-
rate the first note. In turn, these two -
notes belong to a left-elaboration
node because the second note (D)
elaborates the third (C). In figure A,
we can see then that the C of the first
bar is the most prominent note; the
next most prominent notes are the
first C of the second bar and the B of
the third bar, and so on. The
prolongational reduction is a hierar-
chical structure describing tension-
relaxation relations among notes.
There are two basic types of nodes in
this structure: (1) tensing and (2)
relaxing. Besides, there are three pos-
sible modes of branch chaining: (1)
strong prolongation, in which events
repeat maintaining sonority (for
example, notes of the same chord
such as the notes of the first and third
measures in figure A); (2) weak prolon-
gation, in which events repeat in an
altered form (for example, from an I
chord to a I6 Chord); (3) jumps in
which two completely different
events are connected (for example
from an I chord to a dominant chord
such as the jump from the Cmaj7
chord of the second measure to the E7
chord of the third measure in figure
A). This structure captures the sense
of musical flow across phrases, that is,
the buildup and release of tension

within longer and longer passages of
the piece, until a feeling of maximum
repose at the end of the piece. Ten-
sion builds up as the melody departs
from more stable notes to less stable
ones and is discharged when the me-
lody returns to stable notes. For
example, in figure A, the D of the sec-
ond bar creates a tension (a D is not a
note of the underlying Cmaj7 chord)
that is immediately resolved in the
next note (C). Tension and release are
also felt as a result of moving from
dissonant to consonant chords, from
nonaccented to accented notes, from
higher to lower notes, and from pro-
longed to nonprolonged notes. SAXEX

uses this model to search and retrieve
notes from the case memory whose
metrical strength is similar to the
input inexpressive note. However, the
role (prominent note, ornamental
note, tensing note, relaxing note) of
the retrieved notes in the time-span
and prolongational reduction trees
are used by SAXEX as preference crite-
ria to prefer some notes and discard
others. Those notes whose roles are
similar to the roles of the input note
will be the preferred ones. Again, the
rationale is that similar notes (in the
sense of the GTTM theory) should be
played similarly.
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non has been studied quite extensively both
from the psychological point of view (Davis
and Thaut 1989; Dowling and Harwood 1986;
Goldstein 1980; Krumhansl 1997; Robazza,
Macaluso, and D’Urso 1994; Sloboda 1991)
and, more recently, from the neurological
point of view (Boold et al. 1999). SAXEX also
gives the user the possibility to bias the results
along several affective dimensions. Thus, the
expressive performances in the case memory
also include information related to their affec-
tive content. This information is represented
by a sequence of affective regions. Affective
regions group sequences of notes with com-
mon affective expressiveness along three
dimensions: (1) tender-aggressive, (2) sad-joy-
ful, and (3) calm-restless. These dimensions are
graded by means of five ordered qualitative val-
ues expressed by means of linguistic labels. The
middle label represents no predominance (for
example, neither tender nor aggressive in the
tender-aggressive dimension); lower and upper
labels represent, respectively, predominance in
one direction or the other (for example, very
calm is the lowest label in the calm-restless
dimension). These affective regions were man-
ually labeled. The user can bias the perfor-
mances synthesized by SAXEX by means of indi-
cating an affective label at the retrieval step.
For example, if the user declares that he/she
wants a calm and very tender performance,
SAXEX will first look for notes in the case mem-
ory that belong to calm and very tender affec-
tive regions (most preferred). If none is found,
it will look next for notes belonging to calm
and tender or very calm and very tender
regions (both as second choices because these
are the next-closest options). Obviously, the
selected notes will also have to be similar to the
input nonexpressive note, according to the cri-
teria based on the musical knowledge
explained previously. In the sound examples
(see footnote 2), we have included two perfor-
mances with different affective values.

Experimentation
We limited our experiments to monophonic
tenor saxophone interpretations of standard
jazz ballads (such as “All of Me,” “Autumn
Leaves,” and “Misty”). The expressive exam-
ples, as well as the flat performances for each
ballad, were recorded in the audio recording
studio of the Audiovisual Institute in Barcelona
by a tenor saxophone player.

We have performed two sets of experiments
combining the different jazz ballads that were
recorded. The first set of experiments consisted
of using the expressive examples from the first
phrases of a given ballad for generating the

value that was applied in at least half of the
selected expressive notes.

Third, is the minority rule (the dual of the first
criterion).

Fourth, the strict minority rule chooses the
value that was applied in, at most, one of the
selected expressive notes.

Fifth, continuity selects the values of the note
that comes from the same musical subphrase
as the previously selected note.

Sixth is discontinuity (the dual of the fifth cri-
terion).

If, after applying any of these criteria, more
than one note remains, a random choice takes
place.

From this description, it should be noticed
that the default strategy of the system is to
apply the fuzzy aggregation operator. Never-
theless, because the generation of expressive
performances is a creative process influenced
by the user’s personal preferences, the alterna-
tive reuse criterion can be used to tailor the sys-
tem according to such personal preferences.
For example, the strict minority and the dis-
continuity criteria would force the system to
produce expressive performances containing
less usual combinations of expressive effects.

The Revise Step
The user can listen to the obtained results and,
through an interactive revision window (figure
2), has the option to select any note and man-
ually modify its expressive values (decreasing
vibrato, increasing dynamics, and so on) if
he/she thinks that some of the solutions decid-
ed by the system should be corrected. Addi-
tionally, if several expressive versions of the
same piece have been generated, the user can
take the best partial solutions of each one of
them to obtain a combined best performance,
for example, by taking the first phrase of the
second version followed by the second phrase
of the first version, and so on.

The Retain Step
The performance resulting from the revision
step is automatically added to the case memo-
ry. This added performance is therefore avail-
able for retrieval when solving future prob-
lems. It is worth noticing that only positive
feedback is given to the system, that is, only
expressive performances that have been judged
as good ones or that have been improved at the
revision step, are retained. This step provides
the (knowledge-intensive) learning dimension
to the system.

The Use of Affective Labels
Music clearly evokes emotions. This phenome-
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expressive version of the remaining phrases.
This group of experiments revealed that SAXEX

clearly identified the relevant precedent cases
to be imitated, and appropriate expressive
transformations were applied.

The second set of experiments consisted of
using examples of expressive performances of
some pieces to generate expressive perfor-
mances of other pieces. This second group of
experiments revealed that SAXEX also identified
relevant precedent cases to imitate, and appro-
priate expressive transformations were applied.
One can notice, for example, very appropriate
crescendos in increasing melodic progressions,
low-frequency vibratos in long notes in sad
performances and higher-frequency vibratos in
joyful ones, accentuated legato in sad perfor-
mances and staccato in joyful ones, “swingy”
rhythmic variations, and attacks from a lower
pitch in the sad interpretations versus noisy
attacks in the joyful ones. These expressive
resources are often applied in the same way by
human performers. We also received additional
feedback from dozens of individuals, musi-
cians, and nonmusicians who accessed the
sound examples posted on the web and judged
the results as humanlike. Indeed, the “playing
style” of SAXEX very much resembles the style
of the human saxophonist that provided the
expressive examples. Readers are encouraged to
judge the quality of SAXEX performances by
accessing our demos (see footnote 2) and giv-
ing us additional feedback. 

Concluding Remarks
In the first part of this article, we presented a
survey of representative computer music sys-
tems that, to a greater or lesser extent, use AI
techniques.3 The survey covered the three
major types of systems: (1) compositional, (2)
improvisational, and (3) performance. In the
second part, we emphasized the importance of
dealing with the problem of generating expres-
sive performances and described SAXEX, a com-
puter system based on CBR techniques that is
capable of performing expressive, monophonic
music that resembles human performance.
CBR has proven to be a very powerful tech-
nique to directly use the interpretation knowl-
edge implicit in examples extracted from
recordings of human performers rather than
try to make this knowledge explicit. Although
at present our system is limited to the style of
jazz ballads, this is not a strong limitation
because with not much effort, our system
could generate expressive performances in oth-
er styles provided that we introduce the perti-
nent cases in the case base. As a matter of fact,

jazz ballads, because of their slow tempo and
the importance of the melody, are more sensi-
tive than other jazz styles to the inadequate use
of expressive resources. We believe that per-
forming expressively in styles such as be-bop,
or hard-bop, would actually be easier. It possi-
bly would also be easier to deal with popular or
folk music because it is generally structurally
simpler than jazz. The bigger problems would
be with classical music because it would not be
enough to have the appropriate example cases.
Indeed, we would also need to change the
background musical harmonization knowl-
edge of the system. 

Although at present SAXEX works with tenor
sax sound, it would not be difficult to change
to other instruments. We work with a sax
because it is a very rich instrument in terms of
expressiveness. Many other instruments would
actually be easier to deal with. Finally, the
problem of dealing with polyphonic music is
that of source separation, that is, isolating each
instrument (and, particularly, the soloist) from
the rest. This problem has not yet been solved.
Therefore, unless each instrument is recorded
in a different track, we cannot yet deal with
polyphonic music.

Our agenda for the near future includes,
among other minor improvements, develop-
ing a real-time version as well as adding impro-
visation capabilities because the current ver-
sion is restricted to perform the notes that are
written in the score; that is, it cannot change,
add, or remove notes. We believe that truly
humanlike performance has to cope, among
other things, with at least some basic improvi-
sation resources, such as not playing some
notes and adding ornamental notes. We intend
to build on existing work on improvisation, in
particular on the approach being developed
within our group by Grachten (2001) that is
based on a cognitive model for jazz improvisa-
tion (Pressing 1988).
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~arcos/noos/Demos/Example.html. Please make sure
your browser has a plug in to process wave sound
files.

3. Readers can also find information on AI and music
at the American Association of Artificial Intelligence
AI Topics web site www.aaai.org/AITopics/html/
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