
■ Much of the economic value of electronic com-
merce comes from the automation of interactions
between businesses and individuals. Game theory
is a useful set of tools that can be used by designers
of electronic-commerce applications in analyzing
and engineering of automated agents and commu-
nication protocols. The central theoretical concept
used in game theory is the Nash equilibrium. In
this article, I show how the outcomes supported by
a Nash equilibrium can positively be enlarged
using automated negotiations.

The last decade witnessed a phenomenal
growth in the number of individuals and
firms connected by the internet, which

has already fundamentally changed the way
many individuals and organizations think
about and perform their work. Electronic com-
merce—the conduct of business activities elec-
tronically by digital media—is now part of
everyday business. In addition, despite the
sharp falls in the share prices of many “dot-
coms” since early 2000, electronic commerce is
still likely to have a major and lasting effect on
most forms of economic activities.

Advances in web-based technologies further
support the growth of electronic commerce. In
particular, automation and delegation tech-
nologies—known variously as intelligent, or
smart, agents—are likely to have a considerable
effect on the future of electronic commerce.
Automated agents are increasingly being used
for scheduling tasks, resource allocation, auto-
mated negotiations, and online auctions. This
trend is supported by growing standardization
of communication infrastructures over which
different organizations can interact and safely
carry out transactions.

Much of the economic value of electronic
commerce arises from this kind of automation.
Automated electronic commerce creates new
economic value not only by making business

processes easier but also by opening up new
possibilities for market interactions.

Automated agents that carry out one-to-one
negotiations are of particular importance.
One-to-one negotiations lie at the heart of
many electronic-commerce applications. De-
signing efficient protocols that facilitate such
negotiations can thus have a major impact on
the development of electronic commerce. In
particular, such protocols can be used for auto-
mated negotiations, opening the floodgate for
a huge number of applications that benefit
consumers and providers of services, such as
electricity and telecoms.

Automated negotiations can be used in
many electronic-commerce applications. For
example, software programs can be used to
obtain cheaper prices for utilities such as basic
telephone services. A simple program can be
installed to monitor and direct long distance
calls. The user dials the country code, and as
he/she continues to dial the telephone number,
the program contacts various long distance
providers and negotiates the best deal for its
user. The program can be set up to inform the
user about the price before the call is connect-
ed; for example, the best rate for this call is nine
cents a minute with no minimum charge. If
you are happy with this price and would like to
continue with your call, please press 1.

Similarly, programs can be installed to mon-
itor the consumption of household electricity.
Because the software knows the pattern of elec-
tricity demand in the household, it is able to
negotiate meaningfully with the various elec-
tricity providers at regular intervals. A number
of experiments with this type of technology
have been taking place in Scandinavia and the
United States.

Automated negotiation technology can also
be used to reduce negotiation overheads with-
in large organizations. The interactions of the

Articles

FALL 2002 101

Strategic Design of
Mobile Agents

Nir Vulkan

Copyright © 2002, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2002 / $2.00

AI Magazine Volume 23 Number 3 (2002) (© AAAI)

a game and the agents themselves as players.
There are two significant points about game
theory as a way of analyzing interactions
between self-interested agents:

First, it provides a uniform language with
which to describe the interactions of self-inter-
est agents.

Second, it defines the “solutions” or “equi-
libria” of games.

In analyzing games, the actions and deci-
sions available to players are referred to as their
strategies. For example, a bidder in a sealed-bid
auction submits a single bid that must be a
nonnegative number; so, the set of positive
real numbers are his/her possible strategies.
Once all players have selected their strategies,
the game is played, and an outcome is realized.

The main solution concept used in game
theory is the Nash equilibrium. A Nash equilib-
rium is a combination of strategies, one for
each player, which has the property that given
the choice of strategies of the other players,
none of the players wants unilaterally to
change his/her strategy. In other words, each of
the players chooses his/her optimal strategy
given the choices of the other players, which is
essentially a notion of stability. It is not always
optimal, in the sense that there could be other
combinations of strategies, which leads to a
higher outcome to some or even all players.
The prisoner’s dilemma is a good example.

The notion of equilibrium is central to game
theory. The rationale for using it in economic
situations can roughly be described as follows:
Because economic actors are assumed to be
rational, they will continue to change their
behavior as long as it is beneficial. Only in
equilibrium can no one have an incentive to
change; so, this equilibrium is likely to resem-
ble actual behavior, at least in the long run.

The argument for looking at Nash equilibria
is even more appealing in automated negotia-
tions between software agents: Technically
speaking, an agent is a preprogrammed algo-
rithm acting on real-time data. As such, it cor-
responds exactly to the game-theoretic notion
of what a strategy is. More precisely, a strategy
in game theory is a mapping from all possible
histories and information sets to actions. Once
a player picks a strategy, he/she knows what to
do at any given set of circumstances.

This suggests that game-theory strategies
might not describe very well how people
behave in many cases. Casual observation
makes it clear that people tend to make deci-
sions on the go or as events unfold (we’ll cross
this bridge when we come to it). This type of
behavior can be suboptimal in many cases, but
nevertheless it is what people do. Designers of

various departments within large organiza-
tions are often best described in terms of self-
interest. Of course, they all work for the same
organizations, but they might be pursuing con-
flicting goals. The legal department might have
different requirements than the sales depart-
ment, and the technical people might impose
their own constraints. Software can be used to
replace much of the small-print repeated-type
negotiation within the organization. These
negotiations are dominantly one to one (the
legal department must agree with the technical
department; for example, there are no outside
options here). The advance decision environ-
ment for process task (ADEPT) system is a good
example of such an application (see Vulkan
and Jennings [2000] and the references therein
for more details).

Along the same lines, software can be used
to facilitate negotiations between individuals
and organizations. The KASBAH system, which
was tested at the media lab at the Massachu-
setts Institute of Technology in October 1996,
is a good example. Around 200 people (largely
from technological industries) were given
books, souvenirs, and play money to partici-
pate in a full-day marketplace where trading
took place with automated agents. Although
users retained some control over the negotia-
tion strategies used by their agents, the actual
negotiations were fully automated (see Chavez
and Maes [1996] for further details). More gen-
erally, programs that know the preferences of
their users and that are equipped with some
degree of negotiation skills, can buy, sell, or
schedule meetings on behalf of their users.

Finally, the internet itself is being used as a
huge marketplace for computations. The Pop-
corn Project at the Computer Science Depart-
ment of the Hebrew University in Jerusalem
provides an infrastructure for globally distrib-
uted computation over the whole internet.1 It
provides any programmer connected to the
internet with a single huge virtual parallel
computer composed of all processors on the
internet that care to participate at any given
moment. Negotiations can take place either
manually or automatically (that is, between
software programs), so that owners of under-
used computers can actually make money by
subletting their central processing units to
those who need them.

Game Theory and
Automated Negotiations

Because the outcomes of interactions between
self-interested agents depend on the behavior
of all agents, the situation can be described as

Articles

102 AI MAGAZINE

automated electronic commerce, in contrast,
instruct their programs in advance how to act
to whatever happens. A software agent (or any
real-time algorithm for that matter) is a “time-
consistent” description of decision making.
Hence, game theory is probably more suitable
for the study of automated interactions than it
is for the study of the interactions between
humans (a point recognized by Rosenschein
and Zlotkin [1994], who pioneered the use of
game theory for automated interactions).

What does this mean for actual behavior in
automated negotiations? Once the equilibrium
is identified, there is no need in principle for
agents to actually carry out the negotiations
process! Optimal strategies can be used directly
by agents, thus bypassing the actual trial-and-
error process of getting to equilibrium. As long
as the outcome constitutes an equilibrium of
the underlying game (as specified by the rules
or the communication protocol), then this will
be optimal for all agents. However, if the game
has more than one equilibrium, then agents
will need to somehow coordinate their actions
to a single equilibrium. Once again, this is eas-
ier to do in an automated system because the
protocol itself can choose the equilibrium to be
played: Because it is an equilibrium, it will be
in the best interest of agents to follow the pro-
tocol’s recommendation.

Still, software agents differ from their
human counterparts in several important
respects, and the current challenge for
researchers in this field is to find out which of
the insights offered by game theory can be use-
ful for the design of automated agents and the
environments where they interact. To do this,
existing models have to be adapted to the
specifics of such problems.

There is already some literature on extend-
ing game-theoretic models to deal with specific
requirements arising from electronic-com-
merce applications (see, for example, Vulkan
[1999] for a general discussion). New technolo-
gies are emerging based on game-theoretic
analysis of such automated interactions. One
such example is the one-to-one negotiations
between automated agents facing strict dead-
lines (which are private information), by
which they must reach an agreement. The
large literature on bargaining does not offer
much insight into this problem. This problem
was addressed by Sandholm and Vulkan
(1999), who found a simple and efficient
mechanism that resolves these negotiations in
such a way that it becomes optimal for self-
interested agents to truthfully report their
deadline. In a somewhat different context,
Sandholm and Lesser (1996) devised a technol-

ogy known as level-commitment contracts. This
technology allows agents to specify penalties
for unilateral “decommitting” from agree-
ments, expanding the set of possible agree-
ments and, hence, increasing the efficiency of
such negotiations.

Even in these situations already studied by
economists, automated negotiations can lead
to different outcomes. One reason is the fact
that agents, and especially mobile agents (that
is, agents that migrate between hosts), will
need to be checked by the host to ensure that
the agent’s code is harmless (that is, it is not a
virus) and is compatible with the communica-
tion protocol. For example, an agent bidding
in an English auction can safely reveal its code
to the host, encrypting only its user’s reserva-
tion price:

Begin strategy:
If ((current bid) < (encrypted reservation price)

and (auction continues))
then (bid = current bid + constant)
End strategy

If agents are designed to always interact under
the same conditions and always on the same
host, then no such checks are required. In fact,
in many existing agent-based applications,
users receive their agents directly from the host
(normally in the form of a JAVA script) and key
in the relevant information. However, the cur-
rent trend is toward applications that allow for
participation of any agents compatible with
the communication protocol. In this frame-
work, users choose or design agents to interact
on their behalf on a number of potential hosts
and in varying circumstances. In other words,
users will not know in advance exactly when
and where agents are matched. A computer-
ized agent in such a setting is likely to use a
case base memory that will allow them to pur-
sue (possibly) different strategies in different
cases. Specifically, agents can credibly demon-
strate to one another how their behavior
depends (or not) on the identity of the host:

Begin strategy:
If (host 1) then (encrypted)
else if (host 2) then (encrypted)
…
else if (host n) then (encrypted)
End strategy

or

Begin strategy:
If (hosts 1, 2, .., n – 1) then (encrypted)
else if (host n) then (encrypted)
End strategy

and so on.
In the next two sections, which are based on

Vulkan (2001), I consider the implications on

Articles

FALL 2002 103

off cooperating (in game theory terminology,
penalties are sufficiently high to ensure that
the cooperative strategy is its own best
response).

If codes cannot be revealed, agents will always
be greedy when matched on a host that does not
reward cooperation. However, if codes are
revealed, and if on average, cooperation with
cooperators is beneficial, then agents can in
equilibrium choose not to distinguish between
hosts and to always cooperate with each other.
The intuition for this result is that the choice of
host-based strategy is used as a coordination
device by signaling the willingness to play a par-
ticular continuation equilibrium.

A Detailed Example
Tables 1 and 2 show the payoffs for the two
agents, as a function of the state (the host), ω:

That is, in ω1, if both agents cooperate, then
they each receive a payoff of 4. If one of the
agents cooperates and the other is being
greedy, then the first agent receives a payoff of
0, and the greedy agent receives a payoff of 2.
The numeric value is, of course, not impor-
tant—what is important is that each agent
prefers a payoff of 4 to a payoff of, say, 2. Still,
by picking specific values, it becomes possible
to illustrate the strategic value of code revela-
tion.

Let g denote the greedy strategy and c the
cooperative strategy. In the game specified by
ω2, the strategy g strictly dominates c (that is,
an agent is better off being greedy whatever the
strategy used by its opponent). The game has,
therefore, a unique Nash equilibrium, where
both players play g. In ω1, the situation is
reversed, and (c, c) is the only Nash equilibri-
um. We assume that agents are assigned to ω1-
type hosts with probability 3/8 and to ω2-type
hosts with probability 5/8. We now consider a
metagame that consists of the following four
stages:

Stage 1: Users choose agents.
Stage 2: Agents are assigned to a host,

according to the previous probabilities.
Stage 3: Each agent observes the nonen-

crypted part of its opponent strategy.
Stage 4: Agents simultaneously choose

bandwidth-consumption patterns.
This four-stage metagame allows us to simul-

taneously consider the choices of agents and
strategies. Thus, users have a richer set of
metagame strategies to choose from. For exam-
ple, a user can choose an agent that distin-
guishes between the states ω1 and ω2 and that,
if matched with a state-distinguishing agent,
plays g in ω1 and c in ω2 and that plays c in ω1

the set of possible equilibrium contracts that
agents might be able to credibly reveal parts of
their behavioral strategy to each other. I show
that the set of outcomes supported by these
type of interactions is typically larger than
when codes cannot be revealed. Moreover, I
show that if agents can choose whether to
reveal their code, then this will occur in equi-
librium only if the outcome is welfare improv-
ing compared to the equilibrium outcomes of
the game where code revelation is not possible.
I provide a simple two-agent example that
demonstrates how agents can coordinate on
actions that otherwise would have strictly been
dominated.

To demonstrate this point, consider the fol-
lowing stylized example: There are several
providers of bandwidth. Agents representing
bandwidth consumers (for example, internet
service providers) are randomly matched by
the market-clearing protocol used by the dou-
ble-auction server (as in Band-X or RateX-
change) to a provider. I reduce their choices of
consumption pattern to only two strategies: (1)
greedy and (2) cooperative. Unless hosts have
specific mechanisms in place to induce cooper-
ation, agents are locked in a version of the pris-
oners’ dilemma, where the greedy consump-
tion pattern is dominant. That is, the agents
would be better off if they all cooperate, but
self-interest prevents them from doing so: Giv-
en that the others cooperate, the agent is better
off being greedy. However, some hosts penalize
greedy bandwidth-consuming agents to re-
solve this dilemma. Sufficiently high penalties
are imposed on agents that are greedy, so that
if the others cooperate, the agent is also better

Articles

104 AI MAGAZINE

Coop Greedy
Coop 4, 4 0, 2
Greedy 2, 0 –2, –2

Coop Greedy
Coop 4, 4 0, 5
Greedy 2, 5 1.5, 1.5

Table 1. ω1: Penalizing Host.

Table 2. ω2: Nonpenalizing Host.

and g in ω2 if matched with a nondistinguish-
ing agent. By analyzing the equilibria of this
four-stage game, we gain insight into what is
an optimizing agent in a multihost setting.

It turns out (Vulkan 2001) that the meta-
game has two equilibria: First, there is an equi-
librium where agents optimize in each state.
Specifically, agents do distinguish between
states and (both) play c in ω1 and g in ω2. Sec-
ond, and far less obvious, there exists an addi-
tional equilibrium to the metagame where
players choose agents that cannot distinguish
between states and cooperate with each other
on either type of host. In other words, even
though agents can, at no costs, distinguish
between states, they (more specifically, their
designers) choose not to, so that they can
always cooperate with each other. However,
the mechanics of this equilibrium are such that
it crucially depends on agents’ ability to credi-
bly reveal the case base part of their code (more
formally, agents’ behavior in equilibrium
depends on their behavior off equilibrium,
that is, what they were to do if their opponent
deviated from its equilibrium strategy). If we
remove this ability, agents will have incentives
to only pretend (that is, to claim) to not be able
to distinguish between states but actually
become informed about the state and then
play g in ω2.

The first equilibrium is essentially a combi-
nation of the two Nash equilibria of each of the
two games specified by the hosts, ω1 and ω2.
The second equilibrium, however, does not
correspond to the equilibria of the underlying
games; in fact, the agents play a strategy (c in
ω1) that is clearly not rational (recall that the
strategy c is dominated by the strategy g in ω1).
The following section generalizes the relation-
ship between the set equilibria of metagames,
that is, where users pick agents and strategies,
and the equilibria of the underlying games.

We can already, however, use the previous
example to give the intuition behind the main
result. Suppose that users can choose whether
their agents reveal their nonencrypted code.
That is, the game has an additional stage, 2.5,
where agents choose whether to reveal their
type. If users pick agents that do not reveal
their code, then it will not be possible, in equi-
librium, to always cooperate: Because agents
cannot signal that they cannot distinguish
between states, they will distinguish (and, con-
sequently, play c in ω1 and g in ω2). If, however,
users do pick agents that reveal their code,
then this in itself is a credible signal and a coor-
dination device to always cooperate (because
they are both better off cooperating). In the
following section, I generalize this intuition.

The Model
Let ωi denote the game specified by the commu-
nication protocol used by host i. Let Ω = {ω1, ω2,
…., ωN} denote the set of games (states). Let Aj
be the set of actions for agent j = 1, 2. We assume
that these sets are constant over all states in Ω
(that is, all games have the same set of strate-
gies). Nature chooses an element in Ω according
to a probability measure ρ, where ρ is common
knowledge. Players choose, in the first stage of
the game, a partition of Ω. Formally, P = {P1, P2,
…, Pk} is a partition of Ω if (1) Pi ≠ ∅ (all i), (2)
Pi ∩ Pj = ∅ (all i ≠ j), and (3) for all ω ∈ Ω there
exist Pi with ω ∈ Pi. Let P denote the set of all
possible partitions of Ω. Pi denotes player’s i par-
tition. Once nature chooses the state, both play-
ers receive a (perfect) signal. Player i belief is
determined by ρ conditional on Pi.

Formally we define the following four-, or
five-, stage game, Γ

Stage 1: Users choose agents.
Stage 2: Nature chooses ω (agents are as-

signed to a host), according to ρ.
(Stage 2.5: Agents choose whether to make

their partition public.)
Stage 3: Agents observe public partitions.
Stage 4: Agents choose actions, and payoffs

are distributed.
An agent in this context is identical to the

game-theoretic notion of strategy in the stage
game. If we do not include stage 2.5, then an
agent for player i is a pair si = (Pi, zi), where zi:
Pi × P → Ai. If stage 2.5 is included, then an
agent is also a pair si = (Pi, zi) but with the dif-
ference that now zi: P

i × {Reveal, Not-reveal} × {P
∪ (P–i Not-reveal)} → Ai.

Expected payoffs are defined in the follow-
ing way: Fix the partitions of both players, P1

and P2. Denote by

(1)

player i’s payoff when the pair of actions (a1,
a2) is chosen in state ωk. Expected payoff in Γ
for player i is given by

(2)

for I = 1, 2.
We are now able to prove the following

results for the stage game G, which includes
stage 2.5:

Proposition 1

For any sequential equilibrium s of Γ,
where both players choose not to reveal
their code, it must follow that s(ωi) is a
Nash equilibrium of the game ωi for I = 1,
…, n (Vulkan 2001).

π ω ωω
i i

k

n

k ks s u z P z Pi
1 2

1
1

1
2

2, ,() ≡ ()() ()()()
=

∑

ui
i a aω

1 2,()

Articles

FALL 2002 105

Rules of Encounter. Cambridge, Mass.: MIT
Press.

Sandholm, T. W., and Lesser, V. R. 1996.
Advantages of a Level-Commitment Con-
tracting Protocol. In Proceedings of the
Thirteenth National Conference on Artifi-
cial Intelligence, 126–133. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Sandholm T. W., and Vulkan, N. 1999. Bar-
gaining with Deadlines. In Proceedings of
the Sixteenth National Conference on Arti-
ficial Intelligence. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Vulkan N. 2001. Equilibria in Automated
Interactions. Games and Economic Behavior
1–2:339–348.

Vulkan N. 1999. Economic Implications of
Agent Technology and E-Commerce. The
Economic Journal, 109(453): F67-F90.

Vulkan, N., and Jennings, N. R. 2000. Effi-
cient Mechanisms for the Supply of Ser-
vices in Multi-Agent Environments. Deci-
sion Support Systems 28:5–19.

Nir Vulkan is an assistant
professor in economics at
the Said Business School,
Oxford University. He is
also the management fel-
low in Worcester College.
He specializes in applying
ideas from game theory to

electronic commerce. Vulkan has extensive
commercial experience and is involved
with a number of electronic-commerce
startup companies. He has developed sever-
al electronic-commerce technologies that
are used in B2B and B2C electronic markets
and holds two patents in this area. Vulkan
also has a long-term consulting relation-
ship with the Electronic-Services Division
at Hewlett Packard. He holds a BSC in
mathematics and computer science from
Tel-Aviv University and a Ph.D. in game
theory from University College London
(UCL). His e-mail address is nir.vulkan@sbs.
ox.ac.uk.

pay, there are potentially substantial
gains from reversely engineering these
agents. For this reason, anonymous
and synchronizing technologies are
being developed to ensure secure trans-
actions between automated agents. In
this article, I showed that parts of the
agents’ strategies that can credibly be
revealed can also be used by agents to
increase the utility of their users.
Specifically, agents can, by credibly
revealing how their behavior is condi-
tioned on features such as the identity
of the host, increase the set of equilib-
rium outcomes. The choice to reveal
these behavioral strategies can be inter-
preted as a signal to continue with a
welfare-improving continuation equi-
librium.

Automated interactions between
software agents provide a new frame-
work to investigate the intuitions of
game theory. In particular, it is interest-
ing to compare the equilibrium out-
comes of automated interactions with
those of humans. One important differ-
ence is that an agent can credibly
demonstrate that it is, in some sense,
ignorant. For example, in repeated
interactions, Moderer and Tenennholtz
(1999) study the equilibrium behavior
of software agents capable of demon-
strating that they cannot remember
previous rounds (that is, cannot condi-
tion on outcomes of previous rounds).
Moreover, these types of code revela-
tions are likely to be supported because
hosts will need to check compatibility
with the communication protocol.
This article shows that this, in fact,
might have a positive effect on overall
payoffs to all participants.

Note
1. See www.cs.huji.ac.il/~popcorn/index.
html for details.

References
Chavez A., and Maes, P. 1996. KASBAH: An
Agent Marketplace for Buying and Selling
Goods. In Proceedings of the First Interna-
tional Conference on the Practical Applica-
tion of Intelligent Agents and Multiagent
Systems, April, London, United Kingdom.

Monderer D., and Tenennholtz, M. 1999.
Distributed Games. Games and Economic
Behavior 28:55–72.

Rosenschein, J. S., and Zlotkin, G. 1994.

Proposition 1 formalizes the intu-
ition that if users pick agents that do
not reveal their codes, then optimally
designed agents will behave optimally
at each state. In other words, on every
site, agents will play the Nash equilib-
rium of the game specified by the rules
of this site. If, however, agents do
reveal (part of) their codes, then as we
saw in the previous section, other
equilibria are also possible. To charac-
terize these additional equilibria, we
introduce the following notations.

Let Sk be the set of equilibria of the
game ωk, k = 1, … n. Let S be the set of
all combinations of these equilibria
over all states in Ω (that is, |S|=|S1| × |S2|
× … × |Sn|). Proposition 1 states that a
sequential equilibrium of Γ, where
players choose agents that do not
reveal their code, must correspond to
an element of S. We now characterize
a sufficient condition for a sequential
equilibrium of Γ, which does not cor-
respond to any element of S.

Proposition 2

Let s be a Nash equilibrium of the
game with fixed partitions, P1 and
P2. Then if π1(s) ≥ π1(s’) for all s’ ∈
S, then there exists a sequential
equilibrium of Γ where, on the
equilibrium path, players choose
agents with partition P1 and P2,
which then reveal their code, and
continue with s (Vulkan 2001).

The important condition is π1(s) ≥
π1(s’) for all s’ ∈ S; that is, both agents
must be better off in s compared to any
equilibrium in S. In economic termi-
nology, we say that s is a Pareto improve-
ment over all the equilibria in S (that is,
the equilibria that consist of the Nash
equilibria of the underlying games).
Combining propositions 1 and 2, we
obtain an interesting positive result: By
revealing their codes, agents can never
become worst off (proposition 1), but
can, and in equilibrium will, become
better off compared to a situation
where codes cannot be revealed.

Conclusions
Security is one of the most important
issues in the design of agent-based
electronic-commerce systems. Because
agents carry information about their
users preferences and willingness to

Articles

106 AI MAGAZINE

