
■ Gene-expression microarrays, commonly called
gene chips, make it possible to simultaneously mea-
sure the rate at which a cell or tissue is express-
ing—translating into a protein—each of its thou-
sands of genes. One can use these comprehensive
snapshots of biological activity to infer regulatory
pathways in cells; identify novel targets for drug de-
sign; and improve the diagnosis, prognosis, and
treatment planning for those suffering from dis-
ease. However, the amount of data this new tech-
nology produces is more than one can manually
analyze. Hence, the need for automated analysis of
microarray data offers an opportunity for machine
learning to have a significant impact on biology
and medicine. This article describes microarray
technology, the data it produces, and the types of
machine learning tasks that naturally arise with
these data. It also reviews some of the recent promi-
nent applications of machine learning to gene-chip
data, points to related tasks where machine learn-
ing might have a further impact on biology and
medicine, and describes additional types of inter-
esting data that recent advances in biotechnology
allow biomedical researchers to collect.

Almost every cell in the body of an organ-
ism has the same deoxyribonucleic acid
(DNA). Genes are portions of this DNA

that code for proteins or (less commonly) other
large biomolecules. As Hunter  covers in his in-
troductory article in this special issue (and, for
completeness, we review in the next section of
this article), a gene is expressed through a two-
step process in which the gene’s DNA is first

transcribed into ribonucleic acid (RNA), which
is then translated into the corresponding pro-
tein. A novel technology of gene-expression
microarrays—whose development started in
the second half of the 1990s and is having a
revolutionary impact on molecular biology—
allows one to monitor the DNA-to-RNA por-
tion of this fundamental biological process.

Why should this new development in biol-
ogy interest researchers in machine learning
and other areas of AI? Although the ability to
measure transcription of a single gene is not
new, the ability to measure at once the tran-
scription of all the genes in an organism is
new. Consequently, the amount of data that
biologists need to examine is overwhelming.
Many of the data sets we describe in this article
consist of roughly 100 samples, where each
sample contains about 10,000 genes measured
on a gene-expression microarray. Suppose 50
of these patients have one disease, and the oth-
er 50 have a different disease. Finding some
combination of genes whose expression levels
can distinguish these two groups of patients is
a daunting task for a human but a relatively
natural one for a machine learning algorithm.
Of course, this example also illustrates a chal-
lenge that microarray data pose for machine
learning algorithms—the dimensionality of
the data is high compared to the typical num-
ber of data points.

The preceding paragraph gives one natural
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ganism. The mechanism by which proteins are
produced from their corresponding genes is a
two-step process (figure 1). The first step is the
transcription of a gene from DNA into a tem-
porary molecule known as RNA. During the
second step—translation—cellular machinery
builds a protein using the RNA message as a
blueprint. Although there are exceptions to
this process, these steps (along with DNA repli-
cation) are known as the central dogma of mo-
lecular biology.

One property that DNA and RNA have in
common is that each is a chain of chemicals
known as bases.4 In the case of DNA, these
bases are adenine, cytosine, guanine, and
thymine, commonly referred to as A, C, G, and
T, respectively. RNA has the same set of four
bases, except that instead of thymine, RNA has
uracil—commonly referred to as U.

Another property that DNA and RNA have
in common is called complementarity. Each base
only binds well with its complement: A with T
(or U) and G with C. As a result of complemen-
tarity, a strand of either DNA or RNA has a
strong affinity for what is known as its reverse
complement, which is a strand of either DNA or
RNA that has bases exactly complementary to
the original strand, as figure 2 illustrates. (Just
like in English text, there is a directionality for
reading a strand of DNA or RNA. Hence in fig-
ure 2, the DNA would be read from left to right,
whereas the RNA would be read from right to
left, which is why reverse is in the phrase reverse
complement.)

example of how one can apply machine learn-
ing to microarray data. There are many other
tasks that arise in analyzing microarray data
and correspondingly many ways in which ma-
chine learning is applicable. We present a
number of such tasks, with an effort to describe
each task concisely and give concrete examples
of how researchers have addressed such tasks,
together with brief summaries of their results.1

Before discussing these particular tasks and ap-
proaches, we summarize the relevant biology
and biotechnology. This article closes with fu-
ture research directions, including the analysis
of several new types of high-throughput bio-
logical data, similar to microarray data, that are
becoming available based on other advances in
biotechnology.

Some Relevant 
Introductory Biology

The method by which the genes of an organ-
ism are expressed is through the production of
proteins,2 the building blocks of life. This
process of gene expression occurs in all organ-
isms, from bacteria to plants to humans. Each
gene encodes a specific protein,3 and at each
point in the life of a given cell, various proteins
are being produced. It is through turning on
and off the production of specific proteins that
an organism responds to environmental and
biological situations, such as stress, and differ-
ent developmental stages, such as cell division.

Genes are contained in the DNA of the or-
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Figure 1. The Central Dogma of Molecular Biology. 
When a gene is expressed, it is first transcribed into an RNA sequence, and the RNA is then translated into a protein, a sequence of amino
acids. DNA is also replicated when a cell divides, but this article only focuses on the DNA-to-RNA-to-protein process.



Complementarity is central to the double-
stranded structure of DNA and the process of
DNA replication. It is also vital to transcrip-
tion. In addition to its role in these natural
processes, molecular biologists have, for de-
cades, taken advantage of complementarity to
detect specific sequences of bases within
strands of DNA and RNA. One does this detec-
tion by first synthesizing a probe, a piece of
DNA that is the reverse complement of a se-
quence one wants to detect and then introduc-
ing this probe to a solution containing the ge-
netic material (DNA or RNA) to be searched.5

This solution of genetic material is called the
sample. In theory, the probe will bind to the
sample if and only if the probe finds its com-
plement in the sample (but as we later discuss
in some detail, this does not always happen in
practice, and this imperfect process provides
an excellent opportunity for machine learn-
ing). The act of binding between probe and
sample is called hybridization. Prior to the ex-
periment, one labels the probes using a fluores-
cent tag. After the hybridization experiment,
one can easily scan to see if the probe has hy-
bridized to its reverse complement in the sam-
ple. In this way, the molecular biologist can de-
termine the presence or absence of the se-
quence of interest in the sample.

What Are Gene Chips?
More recently, DNA probe technology has
been adapted for detection of not just one se-
quence but tens of thousands simultaneously.
This is done by synthesizing a large number of
different probes and either carefully placing
each probe at a specific position on a glass slide
(so-called spotted arrays) or by attaching the
probes to specific positions on some surface.
Figure 3 illustrates attaching the probes, which
has become the predominant approach as the
technology has matured. Such a device is
called a microarray or gene chip.6

Utilization of these chips involves labeling
the sample rather than the probe, spreading
thousands of copies of this labeled sample a-
cross the chip and washing away any copies of

the sample that do not remain bound to some
probe. Because the probes are attached at spe-
cific locations on the chip, if the labeled sam-
ple is detected at any position on the chip, one
can determine which probe has hybridized to
its complement. 

The most common use of gene chips is to
measure the expression level of various genes in
an organism, and in this article we focus on
that task (however, the reader should be aware
that novel uses of microarrays will be continu-
ally devised, offering new opportunities for
machine learning). An expression level mea-
sures the rate at which a particular gene is be-
ing transcribed, which is used as a proxy mea-
sure for the amount of corresponding protein
that is being produced within an organism’s
cells at a given time.

Ideally, biologists would measure the protein
production rate directly, but doing so is cur-
rently very difficult and impractical on a large
scale. One instead measures the expression lev-
el of various genes by estimating the amount of
RNA for that gene that is currently present in
the cell. Because the cell degrades RNA very
quickly, this level will accurately reflect the rate
at which the cell is producing the correspond-
ing protein. To find the expression level of a
group of genes, one labels the RNA from a cell
or a group of cells and spreads the RNA across
a chip that contains probes for the genes of in-
terest. A single gene chip can hold enough
probes to monitor tens of thousands of genes.

Data Collection and 
Preprocessing

When one runs a microarray experiment, an
optical scanner records the fluorescence-intensity
values—the level of fluorescence at each spot on
the gene chip. (Machine learning might also be
able to improve this image-processing step, but
we do not address that task in this article.) In
the case of gene-expression arrays, typically
many experiments measure the same set of
genes under various circumstances (for exam-
ple, when the  conditions are normal, when the
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DNA GTAAGGCCCTCGTTGAGTCGTATT 
RNA CAUUCCGGGAGCAACUCAGCAUAA 

Figure 2. Complementary Binding between DNA and RNA Sequences.



table 1, at least one published project that views
microarray data according to that scenario.

To this point, we have presented the process
of measuring gene-expression levels as simply
creating one probe for each gene and then
computing how much RNA is being made by
measuring the fluorescence level of the probe-
sample hybrid. Not surprisingly, there are com-
plications, and the remainder of this section
summarizes the major ones.

Probes on gene chips (figure 3) are typically
on the order of 25 bases long because synthesiz-
ing longer probes is not practical. Genes are on
the order of a 1000 bases long, and although it
might be possible to find a unique 25-base-long
probe to represent each gene, most probes do
not hybridize to their corresponding sample as
well as one would like. For example, a given
probe might partially hybridize to other sam-
ples, even if the match is not perfect, or the sam-
ple might fold up and hybridize to itself. For
these reasons, microarrays typically use about a
dozen or so probes for each gene, and an algo-
rithm combines the measured fluorescence lev-
els for each probe in this set to estimate the ex-
pression level for the associated gene.

cell is heated up or cooled down, or when some
drug is added) or at various time points (such as
5, 10, and 15 minutes after adding an antibiot-
ic; because the steps one needs to manually per-
form to produce an RNA sample, subminute
resolution is not currently feasible).

From the perspective of machine learning,
one can organize the measured expression val-
ues in several ways, as table 1 illustrates. Tables
1a and 1c show that one can view each gene as
an example; here the expression levels mea-
sured under various conditions constitute each
example’s features. Alternatively (table 1b and
1d), one can view each experiment as an exam-
ple; in this case, the features are the expression
values for all the genes on the microarray. In ei-
ther case, the examples can be unlabeled (tables
1a and 1b) or labeled (tables 1c and 1d) accord-
ing to some category of interest; for example,
some sets of measurements might come from
normal cells, and the others from cancerous
cells. As we discuss throughout this article, the
specific learning task of interest will dictate
which among these scenarios gives the most
appropriate perspective on the data. We de-
scribe, for each of the four scenarios shown in
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Figure 3. Hybridization of Sample to Probe.
Probes are typically on the order of 25 bases long, whereas samples are usually about 10 times as long, with a large variation as a result of
the process that breaks up long sequences of RNA into small samples (one way this is done is by sonication, the use of sound waves).
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Because of the nature of these experiments,
including the fact that microarrays are still a
nascent technology, the raw signal values typ-
ically contain a great deal of noise. Noise can be
introduced during the synthesis of probes, the
creation and labeling of samples, or the read-
ing of the fluorescent signals. Ideally, the data
illustrated by table 1 will include replicated ex-
periments. However, each gene-chip experi-
ment can cost several hundred dollars, so in

practice, one only replicates each experiment a
very small number of times (and, unfortunate-
ly, often no replicated experiments are done).

Currently, it is not possible to accurately esti-
mate the absolute expression level of a given
gene. One workaround is to compute the ratio
of fluorescence levels under some experimental
condition to those obtained under normal or
control conditions. For example, one might
compare gene expression under normal circum-
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A

Examples Features

Experiment 1 Experiment 2 … Experiment N

Gene 1 1083 1464 … 1115

Gene 2 1585 398 … 511

… … … … …

Gene M 170 302 … 751

B

Examples Features

Gene 1 Gene 2 … Gene M

Experiment 1 1083 1585 … 170

Experiment 2 1464 398 … 302

… … … … …

Experiment N 1115 511 … 751

C

Examples Features

Experiment 1 Experiment 2 … Experiment N Category

Gene 1 1083 1464 … 1115 Y

Gene 2 1585 398 … 511 X

… … … … … …

Gene M 170 302 … 751 X

D

Examples Features

Gene 1 Gene 2 … Gene M Category

Experiment 1 1083 1585 … 170 B

Experiment 2 1464 398 … 302 A

… … … … … …

Experiment N 1115 511 … 751 B

Table 1. Different Ways of Representing Microarray Expression Data for Machine Learning.
A. In this panel, each example contains the measured expression levels of a single gene under a variety of con-
ditions. B. In this panel, each example contains the measured expression levels of thousands of genes under one
condition. C, D. These panels illustrate that one can also associate categories with each example, such as the type
of cell from which the genes came (for example, normal versus diseased). A and B illustrate the structure of data
sets for unsupervised learning, and C and D illustrate the structure of data sets for supervised learning.



cess is not perfect (Breslauer et al. 1986). If one
did a better job of picking good probes, one
could not only use fewer probes for each gene
(and, hence, test for more genes for each mi-
croarray) but also get more accurate results.

Tobler et al. (2002) have used machine learn-
ing to address the task of choosing good
probes. It is easy to get training examples for
this task; simply place all possible probes for a
given set of genes (for example, every 24-base
subsequence of each gene) on a microarray and
see which probes produce strong fluorescence
levels when the corresponding gene’s RNA is in
the sample applied to the gene chip. Figure 4
shows a portion of the data that Tobler and col-
leagues used, and table 3 illustrates how they
cast probe selection as a machine learning task.

Tobler et al. (2002) used a microarray sup-
plied by NimbleGen Systems (Nuwaysir et al.
2002), a microarray company, containing all
possible probes from eight different bacterial
genes. They exposed that chip to a sample of
RNA known to contain all eight of those genes.
They then measured the fluorescence level at
each location on the chip. If the probes all hy-
bridized equally well, then there would be a
uniformly high signal across the entire chip.
However, as is clear in figure 4, this is not the
case. Instead, some probes hybridize well, and
others do not. They used 67 features (see table
4) to represent each probe and used several

stances to when the cell is heated to a higher
than normal temperature (so called heat shock);
experimenters might say, “when E. coli is heat-
ed, gene X is expressed at twice its normal rate.”
When dealing with such ratios, the problem of
noise is exacerbated, especially when the nu-
merator and denominator are small numbers.
Newton et al. (2001) have developed a Bayesian
method for more reliably estimating these ra-
tios. In some studies, the numbers in table 1 are
gene-expression ratios, hopefully corrected to
minimize the problems that arise from creating
ratios of small, noisy numbers.

Another approach is to partner each probe
with one or more mismatch probes; these are
probes that have different bases from the probe
of interest in one or more positions. Each gene’s
expression score is then a function of the fluo-
rescence levels of the dozen or so match and
mismatch probes (Li and Wong 2001).

Table 2 contains World Wide Web URLs for
some freely available, gene-expression data sets,
many of which we discuss further in this article.

Machine Learning to Aid the 
Design of Microarrays

As described in the previous section, one typi-
cally uses a dozen or so probes to represent one
gene because the probe-sample binding pro-
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URL (viable as of 2003) Brief Description

www.ebi.ac.uk/arrayexpress/ EBI microarray data repository

www.ncbi.nlm.nih.gov/geo/ NCBI microarray data repository

genome-www5.stanford.edu/MicroArray/SMD/ Stanford microarray database

rana.lbl.gov/EisenData.htm Eisen-lab’s yeast data (Spellman et al. 1998)

www.genome.wisc.edu/functional/microarray.htm University of Wisconsin E. coli Genome Project

llmpp.nih.gov/lymphoma/data.shtml Diffuse large B-cell lymphoma (Alizadeh et al.
2000)

llmpp.nih.gov/DLBCL/ Molecular profiling (Rosenwald et al. 2002)

www.rii.com/publications/2002/vantveer.htm Breast cancer prognosis (Van’t Veer et al. 2002)

www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi MIT Whitehead Center for Genome Research,
including data in Golub et al. (1999)

lambertlab.uams.edu/publicdata.htm Lambert Laboratory data for multiple myeloma

www.cs.wisc.edu/~dpage/kddcup2001/ KDD Cup 2001 data; Task 2 includes
correlations in genes’ expression levels

www.biostat.wisc.edu/~craven/kddcup/ KDD Cup 2002 data; Task 2 includes gene-
expression data

clinicalproteomics.steem.com/ Proteomics data (mass spectrometry of proteins)

snp.cshl.org/ Single nucleotide polymorphism data

Table 2. URLs for Some Publicly Available Microarray Data Sets.



well-known learning algorithms to learn how
to predict whether a candidate probe sequence
is likely to be a good one.

Tobler et al. (2002) found that of the 10
probes predicted by a trained neural network
to be the best for each gene, over 95 percent
satisfy their definition for being a good probe.
When randomly selecting probes, only 13 per-
cent satisfy their good-probe definition.

Machine Learning in Biological
Applications of Microarrays

In this section, we provide some examples of
the use of microarrays to address questions in
molecular biology, focusing on the role played
by machine learning. We cover both super-
vised and unsupervised learning as well as dis-
cuss some research where microarray data are
just one of several types of data given to ma-
chine learning algorithms. Most of these stud-
ies involve what are called model organisms
(bacteria, yeast, fruit flies, and so on), on which
it is much easier to perform carefully con-
trolled experiments. The subsequent section
mainly addresses the application of microar-
rays to human data.

Supervised Learning and 
Experimental Methodology
Supervised learning methods train on examples
whose categories are known to produce a mod-
el that can classify new examples that have not
been seen by the learner. Evaluation of this type
of learner is typically done through the use of a
method called N-fold cross-validation, a form of
hold-out testing. In hold-out testing, some (for
example, 90 percent) of the examples are used
as the training data for a learning algorithm,
and the remaining (“held aside”) examples are
used to estimate the future accuracy of the
learned model. In N-fold cross-validation, the
examples are divided into N subsets, and then
each subset is successively used as the held-
aside test set, and the other (N–1) subsets are
pooled to create the training set. The results of
all N test-set runs are averaged to find the total
accuracy. The typical value for N is 10. In fact,
the probe-selection project the previous section
describes is an application of supervised learn-
ing, and the described results are measured on
held-aside data. (In that project, there were
eight genes and eight times the learning algo-
rithms trained on seven genes, and the result-
ing models were tested on the held-out gene.)

Another application of supervised learning
(Brown et al. 2000) deals with the functional
classifications of genes. They use a representa-
tion of the data similar to the one pictured in

table 1c. Genes are the examples, and function-
al classifications are the classes. The features
are the gene-expression values under various
experimental conditions. Functional classifica-
tions are simply the classes of genes, defined by
the genes’ function, that have been described
by biologists over the years through various
methods. Given expression profiles, across
multiple experiments, of multiple genes whose
functional class is known, Brown et al. train a
learner to predict the functional classification
of genes whose functional class is not known—
see table 4. To do this training, they use a ma-
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Figure 4. The Result of an Actual Microarray Experiment Where All Possible
24-Base-Long Probes from Eight Bacterial Genes Are on the Chip. 

We show one quadrant of the chip. The darker the point, the greater the fluores-
cence was in the original sample. In the ideal case, all the points would have
equally strong fluorescence values; one can use these mappings from probe se-
quence to fluorescence value as training examples for a machine learning system.
These data were supplied through the courtesy of NimbleGen Systems, Inc.

Table 3. Probe-Quality Prediction.

Given A set of probes, each associated with a fluorescence value.
Tobler et al. (2002) represent each probe as a vector of 67 feature
values: the specific base at each of the 24 positions in the probe
sequence; the pair of adjacent bases at each of 23 positions in
the probe (for example, the first two bases in a probe might be
AG); the percentage of As, Cs, Gs, and Ts in the probe; and the
percentage of each of the 16 possible pairs of adjacent bases in
the probe.
They discretize the fluorescence values into three groups: (1)
good, (2) ambiguous, and (3) bad (they discard ambiguous
probes during training but group them with bad probes during
testing).

Do Learn to choose the best among the possible probes one could
use for a new gene.



chine learning technique known as a support
vector machine (SVM).

In its simplest form, an SVM is an algorithm
that attempts to find a linear separator between
the data points of two classes, as figure 5 illus-
trates. SVMs seek to maximize the margin, or sep-
aration between the two classes, to improve the
chance of accurate predictions on future data.
Maximizing the margin can be viewed as an op-
timization task solvable using linear or quadratic
programming techniques. Of course, in practice
there might be no good linear separator of the
data. SVMs based on kernel functions can effi-
ciently produce separators that are nonlinear.

Often, kernel functions improve the accura-
cy of SVMs; however, Brown and colleagues
empirically found that for their gene-expres-
sion data, simple linear SVMs produce more ac-
curate predictions. Linear SVMs also generalize
better than non–SVM supervised learning
methods on their data. For example, of the
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Table 4. Predicting a Gene’s Biological Function.

Given A set of genes represented similarly to table 1c. Each gene is an
example, whose features are the numeric expression levels
measured under multiple experimental circumstances. These
experimental conditions include stresses such as temperature
shock, change in pH, or the introduction of an antibiotic; other
experimental circumstances include different developmental
stages of the organism or time points in a series.
The category of each gene is simply that gene’s functional
category. One possible set of functional categories contains the
TCA cycle, respiration, cytoplasmic ribosome, proteasome,
histone, and helix-turn-helix (see Brown et al. [2000] for
explanations of these classes).

Do Learn to predict the functional category of additional genes
given a vector of expression levels under the given set of
experimental conditions.

Expression level at time 2
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TCA Cycle Genes

Figure 5. A Support Vector Machine for Differentiating Genes Involved in Respiration 
from Those Involved in the TCA Cycle by Maximizing the Margin, W.

This is done in the N-dimensional space defined by the expression levels of the genes across N experimental conditions. In this simple ex-
ample, there are only two experimental conditions: time 1 and time 2; so, N = 2. Normally, however, N would be much greater. For example,
in the paper by Brown et al. (2000), N = 79. The number of genes to categorize would also be much higher. In the Brown et al. paper, the
number of genes is 2,467. 



2,467 genes in the data set, the trained SVM
correctly identifies 116 of the 121 ribosomal
proteins and only produces 6 false positives.
The next-best supervised learner correctly
identifies the same number but produces eight
false positives.

Unsupervised Learning
Unsupervised learning is learning about a set of
examples from their features alone; no cate-
gories are specified for the examples. Examples
of this type are commonly called unlabeled ex-
amples. Thus, in the context of gene chips,
learning models of biological processes and re-
lationships among genes are based entirely on
their expression levels without being able to
improve models by checking the learners’ an-
swers against some sort of externally provided
ground truth.

Clustering Methods Many successful efforts
in unsupervised learning involve clustering al-
gorithms, including much of the work in the
algorithmic analysis of microarray data. Be-
cause of the nature of evolution, clustering of
biological data makes sense, and this task has a
long history in computational biology (in the
past, individual protein or DNA sequences
were most commonly clustered). Clustering al-
gorithms group, or cluster, examples based on
the similarity of their feature values, such as
gene-expression values. 

Eisen et al. (1998) describe one such meth-
od. Table 5 presents the problem that they ad-
dress.

For example, Eisen et al. clustered the ex-
pression patterns across a number of experi-
ments of all the genes of the yeast Saccha-
romyces cerevisiae (Spellman et al. 1998). Some
of these experiments measure the genetic re-
sponse to environmental stresses such as cold
shock. Others measure transcription during
various stages in the life cycle of the organism,
such as cell division. Each gene is an example,
and the measured expression levels of the gene
during each of the experiments are the features
(that is, the data are in the format of table 1a).
They use a standard statistical technique to de-
scribe the similarity between any two examples
in terms of these features and use that as their
distance metric. 

More specifically, Eisen et al. perform hierar-
chical clustering. Their algorithm clusters by re-
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Table 5. Clustering Genes Based on Their Expression Levels.

Given A set of genes in an organism represented similarly to table 1a.
Each gene is an example. An example’s features are the gene’s
numeric expression levels under various experimental
circumstances (environmental stresses, developmental stage,
and so on).

Do Cluster genes based on the similarity of their expression values.

Figure 6. The Graphic Output of a Cluster Analysis.
It is similar to the representation in table 1a, where integers are represented by gray-scale intensity. However, unlike table 1a, the genes
here are sorted by similarity (more similar genes, with respect to their vector of expression values, are grouped together). For a more realistic
diagram made from real data, see Eisen et al. (1998).

Gene Hierarchy

Experiments

G
en

es



the higher the expression level, the lighter the
point. The genes are ordered so that similar
genes, with regard to these experimentally de-
rived values, are grouped together visually. The
result is an intuitive visual guide for the re-
searcher to quickly discern the blocks of similar
genes with regard to a set of experiments.

Because of their flexibility and intuitive na-
ture, clustering methods have proven popular
among biologists. In many laboratories that
conduct microarray experiments, clustering of
genes in microarray experiments is now a stan-
dard practice. Clustering of experiments is also
a common practice (table 6). For example,
Thomas et al. (2001) ran microarrays on RNA
from mice subjected to a variety of toxic com-
pounds, with one microarray for each com-
pound. They hierarchically clustered the mi-
croarray experiments and found that the
clusters correspond closely to the different tox-
icological classes of the compounds (Thomas et
al. also report some supervised learning exper-
iments).

Bayesian Networks Another unsupervised
learning algorithm used for the analysis of mi-
croarray data is known as the Bayesian net-
work, or Bayes’s net. A Bayes’s net is a directed
acyclic graph that specifies a joint-probability
distribution over its variables. Arcs between
nodes specify dependencies among variables,
and the absence of arcs can be used to infer
conditional independencies; figure 7 contains
a simple example. By capturing conditional in-
dependence where it exists, a Bayes’s net can
provide a much more compact representation
of the joint-probability distribution than a full
joint table. Every node in a Bayes’s net has an
associated conditional probability table that
specifies the probability distribution for that
variable (A) given the values of its parents (val-
ues of the set of nodes with arcs going to A, de-
noted by Pa(A)). The probability distribution
specified by a Bayes’s net over variables
X1,…,Xp is defined as

Friedman and Halpern (1999) were the first
to use this technique in the area of microarray
expression data. Using the same S. cerevisiae da-
ta as were used by Eisen et al. for clustering,
Friedman et al. show that using statistical
methods, a Bayes’s network representing the
observed relationships between the expression
levels of different genes can be learned auto-
matically from the expression levels of the
genes across a variety of experiments (table 7).

The application of learning Bayes’s nets to
gene-expression microarray data is receiving a
great deal of attention because the resulting

P X x X x P X x Pa Xp p i i
i

1 1 1= … =( ) = = ( )( )∏,

peatedly pairing the two most similar exam-
ples, removing those two from the data set,
and adding their average to the set of exam-
ples. Their method pairs examples and can
then later pair these “average” examples, pro-
ducing a hierarchy of clusters.

Figure 6 shows a hypothetical output of such
a hierarchical clustering algorithm. The x-axis
spans the experimental conditions, whereas the
y-axis spans the genes. The measured expres-
sion level of the gene during that experiment
relative to that of the organism under normal
conditions dictates the shading of the graph;
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Gene A
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Gene D

A    P(B)
T    0.9
F    0.1

A    P(C)
T    0.8
F    0.1

P(A)
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B  C   P(D)

T  T    0.9

T  F    0.2

F  T    0.3

F  F    0.1

Figure 7. A Simple Bayesian Network.
This illustrative example of a Bayes’s network describes the relationships between
four hypothetical genes. Each of the probabilities P(X) refers to the probability
that the gene X is expressed. Note that the conditional probabilities rely only on
the parent variables (that is, other gene’s expression levels). For simplicity, in this
figure, we consider genes to be either expressed or not expressed. In a richer mod-
el, the variables could correspond to a numeric expression level.

Table 6. Clustering Experimental Conditions Based on 
Gene-Expression Levels They Produce.

Given A set of microarray experiments represented similarly to table
1b. Each experiment is an example. For example, in Thomas et
al. (2001), each experiment involves subjecting mice to one
toxic compound. An example’s features are the numeric
expression levels of the microarray’s genes.

Do Cluster experimental conditions based on the similarity of the
gene-expression vectors they produce.



Bayes’s nets potentially provide insight into
the interaction networks within cells that reg-
ulate the expression of genes. Others have
since developed other algorithms to construct
Bayes’s network models from data and have al-
so had substantial success.

One might interpret the graph in figure 7 to
mean that gene A causes gene B and gene C to
be expressed, in turn influencing gene D. How-
ever, caution must be exercised in interpreting
arcs as specifying causality in such automati-
cally constructed models. The presence of an
arc merely represents correlation—that one
variable is a good predictor of another. This
correlation can arise because the parent node
influences the behavior of the child node, but
it can also arise because of a reverse influence
or an indirect chain of influence involving oth-
er features.

One method for addressing causality in
Bayes’s net learning is to use genetic mutants,
in which some gene is “knocked out.” Pe’er et
al. (2001) use this approach to model expres-
sion in S. cerevisiae (that is, bakers’ yeast). For
300 of the genes in S. cerevisiae, biologists have
created a knockout mutant, or a genetic mutant
lacking that gene. If the parent of a gene in the
Bayes’s net is knocked out, and the child’s sta-
tus remains unchanged, then it is unlikely that
the arc from parent to child captures causality.
A current limitation of this approach is that no
other organism has such an extensive set of
knockout mutants.

Another method for addressing the issue of
causality, explored by Ong, Glasner, and Page
(2002), is through the use of time-series data.
Time-series data are simply data from the same
organism at various time points. Ong et al. use
time-series data from the tryptophan regulon of
E. coli (Khodursky et al. 2000). A regulon is a set
of genes that are coregulated. The tryptophan
regulon regulates the metabolism of the amino
acid tryptophan in the cell. Ong et al. use these
data to infer a temporal direction for gene inter-
actions, thereby suggesting possible causal rela-
tions. To model this temporal directionality,
they use a representation known as a dynamic
Bayesian network. In a dynamic Bayesian net-
work, genes are each represented, not by only
one node, but by T nodes, where T is the num-
ber of time points. Each of these T nodes repre-
sents the gene’s expression level at a different
time point. This way, the algorithm can learn
relationships between genes at time t and at
time t + 1. It is also possible for the network to
identify feedback loops, cases where a gene ei-
ther directly or through some chain of influ-
ence actually influences its own regulation.
Feedback loops are common in gene regulation.

Using Additional Sources of Data A recent
trend in computational biology is to use more
than just microarray data as the source of input
to a learning algorithm. In this subsection, we
briefly describe a few such investigations.

Some recent approaches to clustering genes
rely not only on the expression data but also
on background knowledge about the problem
domain. Hanisch et al. (2002) present one such
approach. They add a term to their distance
metric that represents the distance between
two genes in a known biological-reaction net-
work. A biological-reaction network is a set of
proteins, various intermediates, and reactions
among them; together these chemicals carry
out some cooperative function, such as cell res-
piration or metabolism. They can function like
assembly lines where one protein turns chem-
ical X into chemical Y by adding or removing
atoms or changing its conformation; the next
protein turns chemical Y into chemical Z in a
similar fashion, and so on. One often depicts
the entities in such biological networks as
edges in a graph and the reactions among
them as vertexes. Biologists have discovered
many of these networks through other experi-
mental means, and some of these networks are
now well understood. Genes that are nearer to
one another in such a biological network can
be considered, for the purposes of clustering,
more similar than genes that are farther apart.

The BIOLINGUA system of Shrager, Langley,
and Pohorille (2002) also uses a network graph
describing a known biological pathway and
updates it using the results of microarray ex-
periments. Their algorithm adds and removes
links in the biological pathway based on each
link’s experimental support in the microarray
data, which is a form of theory revision, a small
subtopic within machine learning (see chapter
12 of Mitchell [1997]). The network structures
in BIOLINGUA are similar to a dynamic Bayes’s
network in that the links imply causality—not
just correlation—between the expression of
one particular gene and another. Shrager et al.
achieve this perspective through a combina-
tion of domain knowledge and their use of
time-series data; if there is a causal connection
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Table 7. Learning Bayes’s Networks.

Given A set of genes in an organism represented similarly to table 1a.
Each of these genes is an example. Each example’s numeric
expression levels under various experimental circumstances
(environmental stresses, developmental stage, and so on) are its
features.

Do Learn a Bayesian network that captures the joint probability
distribution over the expression levels of these genes.



can be used to represent different types of data,
for example, sequence data and expression da-
ta. The approach of Segal et al. uses an expec-
tation-maximization algorithm to learn a PRM
that models both clusters of genes and, for
each such cluster, the likely transcription factor
binding sites in front of those genes in the
DNA.

Another excellent source of supplementary
material is the large amount of human-pro-
duced text about the genes on a microarray
(and their associated proteins) that is con-
tained in biomedical digital libraries and the
expert-produced annotations in biomedical
databases. Molla et al. (2002) investigate using
the text in the curated SWISSPROT protein data-
base (Bairoch and Apweiler 2000) as the fea-
tures characterizing each gene on an E. coli mi-
croarray. Using these text-based features, they
utilize a machine-learning algorithm to pro-
duce rules that “explain” which genes’ expres-
sion levels increase when E. coli is treated with
an antibiotic.

There is a wealth of data—known reaction
pathways, DNA sequences, genomic structure,
information gleaned from protein-DNA and
protein-protein binding experiments, carefully
annotated databases and the scientific litera-
ture, and so on—that one can use to supple-
ment table 1’s meager representation of mi-
croarray experimental data. Exploiting such
richness offers an exciting opportunity for ma-
chine learning.

Machine Learning in Medical
Applications of Microarrays

Having seen how both supervised and unsu-
pervised learning methods have proven useful
in the interpretation of microarray data in the
context of basic molecular biology, we next
turn to the application of microarrays in med-
icine. Microarrays are improving the diagnosis
of disease, facilitating more accurate prognosis
for particular patients, and guiding our under-
standing of the response of a disease to drugs
in ways that have already improved the process
of drug design. It is quite possible that these
technologies could someday even lead to med-
icines personalized at the genetic level (Man-
cinelli, Cronin, and Sadee 2000). In this sec-
tion, we attempt to provide a sense of the large
number of future opportunities for machine
learning as the medical applications of mi-
croarray technology expand.

Disease Diagnosis
A common issue in medicine is to distinguish
accurately between similar diseases to make an

between two events, they require that it can
only go in the forward temporal direction. One
way that their representation differs from
Bayesian approaches is that BIOLINGUA’s links
are qualitative rather than quantitative. Instead
of a joint statistical distribution on probabili-
ties between linked nodes, their algorithm uses
a qualitative representation that simply speci-
fies influences as either positive or negative.
Along with the causal links, their representa-
tion mirrors the type of network description
that biologists are familiar with, thereby mak-
ing the resulting model more useful.

Another source of data is the DNA sequence
itself. Over 60 organisms, including E. coli, fruit
fly, yeast, mouse, and humans, have already
been (nearly) completely sequenced; in other
words, the sequence of the entire string of the
millions to billions of bases constituting their
genomes is known. Many others, although not
complete, are in progress and have large
amounts of data available. The DNA sequence
surrounding a gene can have an impact on its
regulation and, through this regulation, its
function. Craven et al. (2000) use machine
learning to integrate E. coli DNA sequence data,
including geometric properties such as the
spacing between adjacent genes and the pre-
dicted DNA binding sites of important regula-
tory proteins, with microarray expression data
to predict operons. An operon is a set of genes
that are transcribed together. Operons provide
important clues to gene function because func-
tionally related genes often appear together in
the same operon.

DNA sequence information is also used in a
method that Segal et al. (2001) developed.
Their goal is to jointly model both gene-ex-
pression data and transcription factor binding
sites. Transcription factors are proteins that bind
to a subsequence of the DNA before a gene and
encourage the start of transcription. The subse-
quence to which a transcription factor binds is
called the transcription factor binding site. If two
genes have similar expression profiles, it is like-
ly that they are controlled by the same tran-
scription factor and therefore have similar
transcription factor binding sites in the se-
quence preceding them. To model both gene-
expression information and sequence informa-
tion jointly, Segal et al. use what are known as
probabilistic relational models (PRMs). A PRM
can be thought of as a Bayesian network whose
variables are fields in a relational database. The
strength of this representation is that PRMs can
be learned from a relational database with mul-
tiple relational tables, whereas learning algo-
rithms for ordinary Bayes’s nets require the da-
ta to be in a single table. The different tables
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accurate diagnosis of a patient. Molecular-level
classification using gene microarrays has al-
ready proven useful for this task. This tech-
nique has been used in two tasks that we dis-
cuss in the context of cancer diagnosis: (1) class
discovery and (2) class prediction. Class discov-
ery (table 8) is the task of identifying new class-
es of cancer; class prediction (table 9) is the task
of assigning a new tumor to a known class. Ac-
curate diagnosis is crucial for obtaining an ac-
curate prognosis as well as assigning appropri-
ate treatment for the disease.

Golub et al. (1999) use microarray technolo-
gy for class discovery and class prediction on
two types of closely related cancers: (1) acute
lymphoblastic leukemia (ALL) and (2) acute
myeloid leukemia (AML). The distinction be-
tween these two cancers has long been well es-
tablished, but no single test is sufficient to ac-
curately diagnose between them. Current
medical practice is to use a series of separate,
highly specialized tests. When combined, the
results of these tests are fairly accurate, but mis-
diagnoses do occur.

The Golub group uses microarrays to address
this diagnostic issue by analyzing samples from
patients’ tumors. Until this time, microarrays
had been used primarily on highly purified cell

lines grown in laboratories. When using mi-
croarrays to analyze samples taken directly
from patients, the “noise” because of the ge-
netic variation between the patients can ob-
scure the results. For this reason, when work-
ing with samples from patients, it is very
important to have a large number of patients
from which to sample so that the genetic vari-
ation unrelated to the disease does not obscure
the results.

One can use any of the many supervised
learning techniques to induce a diagnosis
model from the gene-expression data of a
number of patients and the associated disease.
Once an accurate predictive model is obtained,
new patients—and those who were previously
undiagnosable—can be classified. Using an en-
semble of 50 weighted voters (figure 8b) on this
AML/ALL diagnosis task, Golub et al. were able
to correctly classify 29 of the 34 samples in
their test set. Their ensemble rejects the other
five samples in the test set as “too close to call.” 

This same type of gene microarray data can
also be used in a class-discovery task. Com-
monly, one discovers classes by using an unsu-
pervised learning technique to cluster the ex-
amples. One then matches the clusters
produced with known disease types and con-
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Figure 8. Comprehensible Models for Disease Diagnosis.
A. A two-level decision tree for discriminating between Myeloma cells and normal cells, based on the gene-expression levels from those
cells. B. An ensemble of voting decision stumps (one-level decision trees) for the same task. In the case of unweighted voting, each decision
stump is given a single vote, and a simple majority vote is taken to distinguish Myeloma cells from normal cells. In the case of weighted
voting, some decision stumps have their votes counted more than others. One can choose from a variety of methods to determine how to
weight the votes. 



these cells, without first analyzing the learned
predictive model, can result in making deci-
sions using the wrong basis—such as the skill
of the person who performed the biopsy—in-
stead of the desired basis—the underlying tu-
mor biology. For this reason, those learning
techniques that create directly comprehensible
models (such as decision trees, figure 8a; en-
sembles of voters, figure 8b; and Bayesian net-
works) are, in these types of applications, pre-
ferred to those whose induced models cannot
be as easily comprehended by humans (such as
neural networks and support vector machines).

Although primarily used for diagnosis, mol-
ecular-level classification is not limited simply
to distinguishing among diseases. The meth-
ods of class prediction and class discovery can
also be used to predict a tumor’s site of origin,
stage, or grade.

Disease Prognosis
As we saw when discussing molecular-level
classification, one can use supervised learning
to more accurately diagnose a patient who
might have one of a set of similar diseases.
These same types of techniques can also be
used to predict the future course and outcome,
or prognosis, of a disease. Making an accurate
prognosis can be a complicated task for physi-
cians because it depends on a very large num-
ber of factors, some of which might not be
known by the physician at the time of diagno-
sis. By more accurately diagnosing the disorder
and, as we see later, predicting the response
that the disorder will have to particular drugs,
we can make a more accurate prognosis for a
patient. 

Microarray analysis is already being used to
predict the prognosis of patients with certain
types of cancer. Investigators have chosen to
study cancer as a model disease using gene- ex-
pression microarrays for a variety of reasons.
First, the prognosis for a patient with cancer is
highly dependent on whether the cancer has
metastasized. Second, it has been shown that
important components of the biology of a ma-
lignant cell are inherited from the type of cell
that initially gave rise to the cancer and the
life-cycle stage at which that cell was in during
at the time of its transformation; figure 9 illus-
trates this process. Finally, providing an accu-
rate prognosis to a patient is crucial in deciding
how aggressive a treatment should be used. Be-
cause of these reasons, researchers typically uti-
lize supervised learning techniques to address
this problem (table 10).

One group to use this supervised learning
approach for prognosis prediction is Van’t Veer
et al. (2002). They utilize an ensemble of voters

siders any remaining clusters as new, unstudied
disease classes. The primary challenge in class
discovery is ensuring that the clustering is bio-
logically meaningful. Because unsupervised
learning is done without considering the cur-
rent disease classification of the example, it is
very possible that the clustering will be based
on the wrong variations among patients. For
example, when performing unsupervised
learning on a group of patients with similar
cancers, obtaining a clustering based on the
ethnicity of the patients could result. Although
this grouping might be optimal according to
the algorithm used, it offers no insight into the
diseases being studied. A second important
challenge when doing unsupervised learning,
which can also significantly affect the useful-
ness of the results obtained, is the granularity
at which the examples are clustered. Because
one can find an optimal clustering for any
specified number of clusters, it is important to
find a clustering that accurately captures the
level of differentiation sought—in this case,
the distinction among diseases.

Whenever gene-microarray technology is
used on patient samples, instead of on highly
purified laboratory samples, one must exercise
caution to validate the results obtained to en-
sure that the genes chosen as predictors are bi-
ologically relevant to the process being stud-
ied, which is especially relevant in solid-tumor
analysis. Because of the method in which they
are obtained, tumor-biopsy specimens can
have large variations in the amount of the sur-
rounding connective tissue that is obtained
along with the tumor cells.7 Applying class dis-
coveries or predictions made on the data from
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Table 9. Predicting Existing Disease Classes.

Given The same data as in table 8.

Do Learn a model that can accurately classify a new cell into its
appropriate disease classification.

Table 8. Discovering New Disease Classes.

Given A set of microarray experiments, each done with cells from a
different patient. These data are represented similarly to table
1d. The patients have a group of closely related diseases. Each
patient’s numeric expression levels from the microarray
experiment constitute the features of an example. The
corresponding disease classification for each patient is that
patient’s category.

Do Using clustering (ignoring the disease category), find those cells
that do not fit well in their current disease classification.
Assume these cells belong to new disease classifications.



to classify breast cancer patients into two
groups: (1) good prognosis (no metastasis with-
in five years after initial diagnosis) and (2) poor
prognosis (distant metastases found within five
years). To begin, they select those 231 genes
from the 25,000 genes on the microarray with
the highest degree of association with the dis-
ease outcome (calculated by correlation coeffi-
cient over the full set of 78 examples). They
then rank these genes by their correlation co-
efficients. They repeat “leave-one-out” cross-
validation over all 78 examples using various
ensemble sizes. They found that an ensemble
size of 70 genes gives the best cross-validated
accuracy (83 percent). 

Their methodology contains two errors from
the perspective of current machine learning
practice. First, they chose the 231 features us-
ing the entire set of 78 examples, which consti-
tutes “information leakage” because all 78 of
the examples—including those that will later
appear in test sets during the cross-valida-
tion—are used to guide the selection of these
231 features. Second, they report the best en-
semble size by seeing which size works best in
a cross-validation experiment. This again con-
stitutes information leakage because they opti-
mized one of the parameters of the learning
system—namely, the size of the ensemble—us-
ing examples that will appear in the test sets.
These two errors mean that their estimated ac-
curacy is likely to be an overestimation because
they “overfit” their test data. A better method-
ology is to separately select parameters for each
fold during their N-fold cross-validation exper-
iments. Recognizing these issues after publica-
tion, Van’t Veer et al. reported a modified ver-
sion of their algorithm in the online
supplement to their article to address these two
concerns; their changes reduced the cross-vali-
dated accuracy from 83 percent to 73 percent
(and one might still question whether their re-

vised approach leads to an overestimate of fu-
ture accuracy).

Although prognosis prediction is commonly
thought of as a supervised learning task, valu-
able information about a disease can also be
gained through unsupervised learning. Al-
izadeh et al. (2000) utilized unsupervised learn-
ing techniques to cluster patients with diffuse
large B-cell lymphoma into two clusters. They
discovered that the average 5-year survival for
the patients in 1 cluster was 76 percent com-
pared to 16 percent in the other cluster (aver-
age 5-year survival for all patients was 52 per-
cent). These results illustrate that the clusters
found through unsupervised learning can be
biologically and medically relevant. However,
before (solely) employing clustering algo-
rithms, users of machine learning should con-
sider whether their task can be cast in the form

Articles

SPRING 2004    37

Table 10. Predicting the Prognosis for Cancer Patients.

Given A set of microarray experiments, each done with cells from a
different patient. These data are represented similarly to table
1d. All these patients have the same type of cancer but are in
different stages of progression. Each patient is an example, and
the numeric expression levels for all the genes on the
microarray are the features. The true prognosis of that patient is
that patient’s category. (Note: Because the true prognosis of a
patient might not be known for years, collecting labeled
examples can be a challenging task. The fact that the gene-
expression measurement technology is rapidly changing also
complicates the creation of good training sets for prognosis
tasks.)
Possible categories include whether or not a cancer is likely to
metastasize and what the prognosis of that patient is (for
example, will the patient survive for at least five years). One
could also formulate this as a real-valued prediction task, such
as years until recurrence of the cancer.

Do Learn a model that accurately predicts which category new
patients belong to.
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Figure 9. Transformation: The Development of Cancerous Cells from Normal Cells.
In the first step of this transformation, DNA damage causes normal cells to keep multiplying uncontrollably, forming a benign tumor. If
further DNA damage occurs, these cells convert from benign to cancerous. The final stage of this progression is the cells’ metastasis, which
is the process whereby the cancer gains the ability to spread to other locations within the body.



individual person’s response to a particular
drug, the goal of molecular-level profiling is to
find genetic variations among individual dis-
eased cells that predict that cell’s response to a
particular drug. Analyzing specific cells is im-
portant for predicting drug response be-
cause—as the result of the highly variable na-
ture of cancer—significant variation exists
among tumors of the same type of cancer, just
as significant variation exists between organ-
isms of the same species.

Molecular-level profiling has been found to
be effective in treating certain types of cancers.
A recent example is Rosenwald et al.’s (2002)
lymphoma/leukemia project. This study inves-
tigated large-B-cell lymphoma, a type of can-
cer curable by chemotherapy in only 35 to 40
percent of patients. It is thought that large-B-
cell lymphoma is not a single disease but actu-
ally a class that contains several different dis-
eases that, although morphologically the
same, differ in response to certain types of
therapy.

By analyzing gene-expression profiles of
cells from different large–B-cell lymphoma tu-
mors, Rosenwald et al. developed a method to

of the more directed supervised learning,
where training examples are labeled with re-
spect to an important property of interest.

Response to Drugs Drugs are typically small
molecules that bind to a particular protein in
the body and act to inhibit or activate its activ-
ity; figure 10 contains an example. Currently,
pharmaceutical companies are limited to de-
signing drugs that have a high level of success
and a low level of side effects when given to
the “average” person. However, the way that
an individual responds to a particular drug is
very complex and is influenced by his/her
unique genetic makeup, as figure 11 summa-
rizes. Thus, there are millions of cases annually
of adverse reactions to drugs and far more cases
where drugs are ineffective.8 The field of phar-
macogenomics addresses this tight interrela-
tion between an individual’s genetic makeup
and his/her response to a particular drug—see
table 11 to see how microarrays can play a role.

An area related to pharmacogenomics is
molecular-level profiling. The main difference
between these two fields is that although phar-
macogenomics deals with finding genetic vari-
ations among individual people that predict an
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Figure 10. A Drug Binding to a Protein.
Inhibitor Drug U-89360E (shown as a stick model in dark gray) bound to protein HIV-1 Protease mutant G48H (shown as a space-filling
model in lighter gray). We generated this image from data publicly available at the Protein Data Bank (www.rcsb.org/pdb/).



predict the survival rates of diffuse large–B-cell
lymphoma based on this microarray data. Us-
ing training data from 160 patents whose out-
comes on anthracycline-based chemotherapy
are known, they predicted which of 80 held-
out test-set patients would respond well to this
type of chemotherapy. The actual five-year sur-
vival rate among those who were predicted to
respond was 60 percent. Those who were pre-
dicted not to respond had an actual 5-year sur-
vival rate of only 39 percent.

Currently, this investigation into large–B-
cell lymphoma has yielded prognosis informa-
tion only. However, this type of insight into
how the genetic variations between cells can
affect their response to particular drugs will
eventually suggest new drugs to treat the types
of cells that currently do not respond to che-
motherapy and can also lead to the deeper un-
derstanding of a disease’s mechanism. 

As we gain a deeper insight into the diseases
that we study, the lines among molecular-level
classification, pharmacogenomics, and molec-
ular-level profiling will blur. More accurate
subtyping of a single disease can ultimately
lead to it being considered as two separate dis-
eases. A deeper understanding of the underly-
ing mechanisms of diseases can lead to the dis-
covery that two previously distinct diseases are
different manifestations of the same underly-
ing disease. Personalized medicine could even-
tually lead not just to classifying patients
based on the drug that will work best for them
but to designing a drug specifically tailored to
a patient’s exact disorder and genetic makeup.

New Data Types from 
High-Throughput 

Biotechnology Tools
In this section, we briefly discuss three other
novel types of high-throughput, molecular-lev-
el biological data to which machine learning is
applicable. (High-throughput techniques are
those that permit scientists to make thousands
of measurements from a biological sample in
about the time and effort it traditionally took
to make at most a handful of measurements.)
Data sets arising from these additional tech-
niques are similar to gene microarrays in that
they have a similar tabular representation and
high dimensionality.

Single-Nucleotide 
Polymorphisms (SNPs)
Genome researchers have learned that much of
the variation between individuals is the result
of a number of discrete, single-base changes in

the human genome. Since that discovery, there
has been intense effort to catalog as many of
these discrete genetic differences as possible.
These single positions of variation in DNA are
called single-nucleotide polymorphisms (SNPs)
and are illustrated in figure 12. Although it is
currently infeasible to obtain the sequence of
all the DNA of a patient, it is feasible to quickly
measure that patient’s SNP pattern, the particu-
lar DNA bases at a large number of these SNP
positions.

Machine learning can be applied to SNP data
in a manner similar to its application to mi-
croarray data. For example, given an SNP data
file as in table 12, one can utilize supervised
learning to identify differences in SNP patterns
between people who respond well to a particu-
lar drug versus those who respond poorly. If
the data points are classified instead by dis-
eased versus healthy, one can use supervised
learning to identify SNP patterns predictive of
disease. If the highly predictive SNPs appear
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Figure 11. The Major Factors That Affect a Person’s Response to a Drug.

Given A set of microarray experiments, each done with cells from a
patient infected with a given disease. These data are represented
similarly to table 1d. Each microarray experiment is an example,
with each gene’s numeric expression level during that
experiment serving as a feature. (One might want to augment
the gene-expression features with additional features such as the
age, gender, and race of each patient.) The drug-response
classification of each patient is that example’s category. Typical
categories are good response (that is, improved health), bad
response (that is, bad side-effects), and no response.

Do Build a model that accurately predicts the drug response of new
patients.

Table 11. Predicting the Drug Response of Different 
Patients with a Given Disease.



Proteomics
Gene microarrays measure the degree to which
every gene is being transcribed. This measure is
a useful surrogate for gene expression (that is,
the complete process of transcription followed
by translation), particularly because protein
levels are more difficult to measure than RNA
levels. Nevertheless, increased transcription
does not always mean increased protein pro-
duction. Therefore, it is desirable to instead
measure protein directly; this process is called
proteomics in contrast to genomics, which is the
rubric under which gene microarrays fall. An
organism’s proteome is its full complement of
proteins.

Mass spectrometry makes it possible to detect
the presence of various proteins in a sample.
The details of mass spectrometry are beyond
the scope of this article; however, figure 13 pro-
vides a sense of this type of data. To convert
such an example into a feature vector, it is
common to perform some type of “peak pick-
ing.” The result of picking peaks in mass-spec-
trometry data is a feature vector of x-y pairs,
where each entry corresponds to a mass-to-
charge ratio (the x axis) and the associated peak
height (the y axis).

Mass-spectrometry data present at least
three major challenges. First, in raw form, the
peaks typically correspond to pieces of pro-
teins—peptides—rather than entire proteins.
One can either work with these features or pre-
process the data by attempting to map from a
set of peaks to a (smaller) set of proteins. Sec-
ond, currently, mass spectrometry is extremely
poor at giving quantitative values; peak
heights are not calibrated from one sample to
another. Hence, although the normalized peak
height at a particular mass-to-charge ratio can
be much greater in example 1 than example 2,
the amount of protein at that ratio actually
might be greater in example 2. Therefore, often

within genes, these genes can be important for
conferring disease resistance or susceptibility,
or the proteins they encode can be potential
drug targets.

One challenge of SNP data is that it is col-
lected in unphased form. For example, suppose
that instead of coming from two different peo-
ple, the two DNA strands in figure 12 refer to
the two copies of chromosome 1 in a single
person (humans haves two copies of each chro-
mosome). Current SNP technology would re-
turn the first row of table 12; it would not pro-
vide any information about which SNP
variants are on which chromosome. Should
this “phase” information be necessary for the
particular prediction task, the machine learn-
ing algorithm will be unsuccessful.
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Figure 12. Single-Nucleotide Polymorphism. 
The differences between the genomes of two individuals are generally discrete, single-base changes. Shown is a simplified example of what
the corresponding genomes of two people might look like. The differences are highlighted—all other DNA bases are identical between the
two sequences.

SNP 1 SNP 2 … SNP M Response

Person 1 C  T A  G … T  T Positive

Person 2 C C A  A … C  T Negative

… … … … … …

Person N T  T A  G … C  C Positive

Table 12. A Sample Single-Nucleotide Polymorphism Data File.
Because humans have paired chromosomes, one needs to record the base on each
chromosome at an SNP position (notice that each of the two chromosomes con-
tains a pair of DNA strands—the famous double-helix—but because of the com-
plementarity of these paired strands, there is no need to record all four bases at a
given SNP position). Although biologists have already identified over a million
SNP positions in the human genome, currently, a typical SNP data file will con-
tain only thousands of SNPs because of the cost of data gathering.



it is desirable to use binary features instead of
continuous ones—at a particular mass-to-
charge ratio, either there is a peak, or there is
not. The third major challenge of mass spec-
trometry data is that peaks from lower-concen-
tration proteins cannot be distinguished from
the background noise. 

Although this discussion has focused on
mass-spectrometry data because of its similari-
ties to gene-microarray data, the phrase pro-
teomics actually refers to a broader range of data
types. Most significantly, it also includes data
on protein-protein interactions. Such data also
pose interesting opportunities and challenges
for machine learning. KDD CUP 2001 (Cheng et
al. 2002) contained one challenging task in-
volving protein-protein interaction data.

Metabolomics
It is tempting to believe that with data about
DNA (SNPs), RNA (microarrays), and proteins
(mass spectrometry), one has access to all the
important aspects of cell behavior. However, in
fact, many other aspects remain unmeasured
with these high-throughput techniques. These
aspects include posttranslational modifications
to proteins (for example, phosphorylation),

cell structure, and signaling among cells. For
most such aspects, there currently exist no
high-throughput measurement techniques.
Nevertheless, some insight into these other as-
pects of cell behavior can be obtained by exam-
ining the various small molecules (that is,
those with low molecular weight) in the cell.
Such molecules are often important input and
output of metabolic pathways in the cell. High-
throughput techniques for measuring these
molecules exist. The area of studying data on
these molecules is called metabolomics (Oliver
et al. 1998). High-throughput metabolomics
data can be represented naturally in feature
vectors in a manner similar to gene-microarray
data and mass-spectrometry data. In metabo-
lomics data, the features correspond to small
molecules, and each feature takes a value that
expresses the quantity of that molecule in a
given type of cell.

Systems Biology
Additional forms of high-throughput biologi-
cal data are likely to become available in the fu-
ture. Much of the motivation for these devel-
opments is a shift within biology toward a
systems approach, commonly referred to as
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Figure 13. Sample Mass-Spectrometry Output. 
Different protein fragments appear at different mass-charge values on the horizontal axis. The vertical axis reflects
the amount of the protein fragment in the sample. The plotted peak heights are typically normalized relative to
the highest intensity. 



some aspect of a disease by differentiating at
the molecular level among individuals in a
population—either patients or cells. The differ-
ence among these applications concerns what
is being predicted. In disease classification, one
focuses on distinguishing among cells with dif-
ferent, but possibly related, diseases. In disease
prognosis, one is predicting long-range results.
In pharmacogenomics and molecular profil-
ing, one uses molecular-level measurements to
differentiate among patients or cells with the
same disease based on their reaction to partic-
ular drugs.

As our vast amount of genomic and similar
types of data continues to grow, the role of
computational techniques, especially machine
learning, will grow with it. These algorithms
will enable us to handle the task of analyzing
these data to yield valuable insight into the bi-
ological systems that surround us and the dis-
eases that affect us. 
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Notes
1. While this article was in production, an especially
relevant special issue of the journal Machine Learning
was published (“Machine Learning in the Genomics
Era,” Volume 52, Numbers 1–2, 2003). Interested
readers can find additional concrete examples in that
special issue’s eight articles.

2. Some organisms produce what are known as small
RNA (sRNA) molecules. This RNA that is not translat-
ed into protein. These RNA molecules play roles in
the cell different from what is shown in figure 1.
Rather, the RNA molecule itself takes on a shape suit-
able to perform some function in the cell.

3. This is not strictly true. Because of a process in
higher organisms called alternate splicing, a single
gene can encode multiple proteins. However, for the
purposes of gene detection by microarrays, each part
of such genes (called exons) can be detected separate-
ly. We do not discuss the detection of splice variants
in this article.

4. Although it is often useful to think of DNA and
RNA as chains of bases, technically, they are chains
of sugars. In the case of DNA, the sugar is deoxyri-
bose, and in the case of RNA, it is ribose; hence, the
full names: deoxyribonucleic acid (DNA) and ribonu-
cleic acid (RNA). The bases are actually attached to
the sugars.

5. One could also make probes from RNA, but they
tend to degrade much faster.

6. The word chip might be confusing to those famil-

systems biology. As Hood and Galas (2003, p.
447) note, whereas in the past biologists could
study a “complex system only one gene or one
protein at a time,” the “systems approach per-
mits the study of all elements in a system in re-
sponse to genetic (digital) or environmental
perturbations.” They go on to state,

The study of cellular and organismal biol-
ogy using the systems approach is at its
very beginning. It will require integrated
teams of scientists from across disci-
plines—biologists, chemists, computer sci-
entists, engineers, mathematicians and
physicists. New methods for acquiring and
analyzing high-throughput biological data
are needed (Hood and Galas 2003, p. 448).

Constructing models of biological pathways
or even an entire cell—an in silico cell—is a goal
of systems biology. Perhaps the preeminent ex-
ample to date of the systems approach is a
gene-regulatory model that Davidson et al.
(2002) developed for embryonic development
in the sea urchin. Nevertheless, this model was
developed over years using data collected with-
out the benefit of high-throughput techniques.
Machine learning has the potential to be a ma-
jor player in systems biology because learning
algorithms can be used to construct or modify
models based on the vast amounts of data gen-
erated by high-throughput techniques.

Conclusion
Machine learning has much to offer to the rev-
olutionary new technology of gene microar-
rays. From microarray design itself to basic bi-
ology to medicine, researchers have  utilized
machine learning to make gene chips more
practical and useful.

Gene chips have already changed the field of
biology. Data that might have taken years to
collect now take a week. Biologists are aided
greatly by the supervised and unsupervised
learning methods that many are using to make
sense of the large amount of data now avail-
able to them, and additional challenging
learning tasks will continue to arise as the field
further matures. As a result, we have seen a
rapid increase in the rate at which biologists
are able to understand the molecular processes
that underlie and govern the function of bio-
logical systems.

Although their impact will progress more
slowly in medicine than in molecular biology,
microarray technology, coupled with machine
learning, is also being used for a variety of im-
portant medical applications: diagnosis, prog-
nosis, and drug response. These applications
are similar in that they all deal with predicting
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iar with integrated circuits. Microarrays can be about
the size of a computer chip, and some approaches for
creating them do use the masking technology used
for etching integrated circuits. However, a single
gene chip is typically only used once, unlike a com-
puter chip. It might be better to conceptually view a
gene chip as holding thousands of miniature test
tubes. (One should also not confuse gene chips with
DNA computing, where one uses DNA to solve com-
putational tasks such as the traveling salesman prob-
lem. In this article, we address using computer sci-
ence to solve biomedical tasks, rather than using
molecular biology processes to solve computational
tasks.)

7. This problem is specific to the collection of speci-
mens from solid tumors and is not the case when
dealing with cancers of the blood. For this reason,
higher accuracies are generally found when using
machine learning on cancers of the blood than on
solid tumor cancers.

8. In 1994, there were over 2.2 million serious cases
of adverse drug reactions and over 100,000 deaths in
the United States (Lazarou, Pomeranz, and Corey
1998).
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