
■ Within computational biology, algorithms are
constructed with the aim of extracting knowledge
from biological data, in particular, data generated
by the large genome projects, where gene and pro-
tein sequences are produced in high volume. In
this article, we explore new ways of representing
protein-sequence information, using machine
learning strategies, where the primary goal is the
discovery of novel powerful representations for use
in AI techniques. In the case of proteins and the 20
different amino acids they typically contain, it is
also a secondary goal to discover how the current
selection of amino acids—which now are common
in proteins—might have emerged from simpler se-
lections, or alphabets, in use earlier during the evo-
lution of living organisms.

Proteins typically contain 20 different
amino acids, which have been selected
during evolution from a much larger pool

of possibilities that exists in Nature. Protein se-
quences are constructed from this alphabet of
20 amino acids, and most proteins with a se-
quence length of 200 amino acids or more con-
tain all 20, albeit with large differences in fre-
quency. Some amino acids are very common,
but others are rare. The human genome en-
codes at least 100,000 to 200,000 different pro-
tein sequences, with lengths ranging from
small peptides with 5 to 10 amino acids to
large proteins with several thousand amino
acids.

A key problem when constructing computa-
tional methods for analysis of protein data is
how to represent the sequence information
(Baldi and Brunak 2001). The literature con-
tains many different examples of how to deal
with the fact that the 20 amino acids are relat-

ed to one another in terms of biochemical
properties—very much in analogy to natural
language alphabets where two vowels might be
more “similar” than any vowel-consonant
pair, for example, when constructing speech-
synthesis algorithms.

In this article, we do not want to cover all at-
tempts to represent protein sequences compu-
tationally but restrict the review to recent de-
velopments in the area of amino acid
subalphabets, where the idea is to discover
groups of amino acids that can be lumped to-
gether, thus giving rise to alphabets with fewer
than 20 symbols. These subalphabets can then
be used to rewrite or reencode the original pro-
tein sequence, hopefully giving rise to better
performance of an AI algorithm designed to
detect a particular functional feature when re-
ceiving the simplified input. The idea is com-
pletely general, and similar approaches might
be relevant in other symbol-sequence data do-
mains, for example, in natural language pro-
cessing.

It should be mentioned that alphabet ex-
pansion in some cases can also be advanta-
geous, that is, to rewrite sequences in expand-
ed, longer alphabets covering more than one
symbol, thus encoding significant correlations
between individual symbols directly into the
rewritten sequence. For example, deoxyri-
bonucleic acid (DNA) sequences contain four
different nucleotides (ACGT), but a rewrite as
dinucleotides (AA, AC, AG, ...), or trinu-
cleotides (AAA, AAC, AAG, ...) might lead to a
DNA representation where functional patterns
are easier to detect by machine learning algo-
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bedded as sequence correlations. This contex-
tual aspect is again similar to natural language,
where the pronunciation of the four As in the
sentence Mary had a little lamb requires three
different phonemes because the contexts of
the As are different (Sejnowski and Rosenberg
1987).

Amino acids in proteins also do not con-
tribute to the function or structure of proteins
independently. The amino acid alanine, for ex-
ample, is found in many different types of pro-
tein structure depending on the surrounding
amino acids, and in this sense, amino acid se-
quences should be read in the same way that
natural language sequences are read, where the
short- and long-range symbol correlations are
essential for the pronunciation. In proteins,
relevant correlations can be long range because
the sequence typically folds back on itself and
is stabilized by intrachain bonds between seg-
ments far apart in the sequence.

Protein structure, which is essential for func-
tion, can be described at different levels than
the complete, all-atom representation of x, y, z
coordinates with more topology-oriented de-
scriptions, such as protein secondary structure,
where each amino acid typically is being put in-
to one of the mutually exclusive conformation-
al categories (from a small number of possible
conformational states). The most common clas-
sification is that of α-helix, β-sheet, and coil,
which is the structural level we use here in the
search for novel amino acid subalphabets.

Merged amino acid subalphabets are of sig-
nificant interest both in the context of evolu-
tion and in protein-structure prediction. Re-
cently, several subalphabets have been
suggested (Wang and Wang 1999); however,
they all have a detrimental effect on the ability
to predict structural features. The strategy for
their selection has been to reduce the loss
rather than to optimize the gain in terms of
predictive performance.

In this article, we introduce a new computa-
tional approach for evaluating subalphabets by
searching directly for sequence reencodings
that improve protein secondary-structure pre-
diction. In contrast to reduced alphabets that
only support the conformation of a single-pro-
tein domain (Riddle et al. 1997), the clusters of
merged amino acids found here are likely to
represent substitutions that might preserve
structure for proteins in general.

Using this approach, we have discovered
protein alphabets composed of 13 to 19 groups
that indeed increase the predictability of sec-
ondary structure from sequence.

In the paper by Wang and Wang (1999), the
search for, and ranking of, subalphabets was

rithms. For example, this is the case when de-
tecting the small part of the DNA that actually
encodes proteins by artificial neural networks
(Hebsgaard et al. 1996). The protein-encoding
part of the DNA in the human genome is a few
percent of the total DNA in the chromosomes;
therefore, the problem is  to detect protein-en-
coding segments in a “sea” of noncoding DNA.
This task is made easier when the sequences are
also analyzed as dinucleotides (16-symbol al-
phabet) and trinucleotides (64-symbol alpha-
bet) (Hebsgaard et al. 1996).

In proteins, the common 20-letter amino
acid alphabet contains groups of amino acids
with similar biochemical properties, which can
be merged for improved computational analy-
sis. Thus, we have subalphabets with less than
20 symbols. However, one should be careful
when merging individual amino acids solely
based on their biochemical properties because
many functional patterns in proteins are em-

Knowledge 
Representation in

Bioinformatics

Knowledge representations are key for the construction and perfor-
mance of all AI methods, irrespective of the application domain. In
bioinformatics, the knowledge representation issue is of significant
importance, and there are many different types of data that should
be represented in ways such that algorithms will be able to extract
and integrate knowledge from the plethora of data generated by
novel high-throughput techniques in biology. A large part of the
data in the life science area is essentially digital because biomole-
cules often consist of a limited set of chemical building blocks. This
is the case for deoxyribonucleic acid (DNA) and protein, where 4
nucleotides and 20 amino acids, respectively, make up the “alpha-
bet” from which these essential molecules are constructed. Bioin-
formatics algorithms are typically designed to scan these symbol
sequences and detect local or global functional patterns as well as
structural aspects related to the function of a molecule, for exam-
ple, a protein. It is clear that the chemical alphabets in biology are
products of three to four billion years of evolution and that the al-
phabets have evolved in constrained ways where a balance has
been obtained between the capacity for encoding chemical func-
tion, the complexity of sequence decoding, and energetic cost con-
siderations.
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based on the 190 amino acid substitution
scores in the Miyazawa and Jernigan (1996) ma-
trix (MJ matrix). The difference in the current
approach is that subalphabets are evaluated on
the basis of actual, contextual sequence data
and not just on the basis of pairwise amino acid
interaction scores, which cannot take com-
monly occurring sequence correlations into ac-
count. Such correlations are of obvious, struc-
tural importance: Parallel and antiparallel
β-sheets (Wouters and Curmi 1995) and α-he-
lixes (Peterson et al. 1999; Wan and Milner-
White 1999; Wintjens, Wodak, and Rooman
1998) are supported by hydrogen bonds and re-
quire local sequence periodicities of two and
four, respectively. Other correlations at larger
sequence separations are also highly significant
for attaining a specific structure.

In the computational approach presented
here, we use a large set of 650 high-quality,
nonsequence similar chains comprising
130,356 amino acids selected from the PROTEIN

DATA BANK, containing experimentally solved
protein structures. A given subalphabet is eval-
uated by measuring how well the structure can
be predicted from the recoded version of the
original sequence. This evaluation is per-
formed by predicting the secondary structure
from the subalphabet representation of the se-
quence, where the prediction is performed by
a conventional neural network prediction set-
up (Bohr et al. 1988; Jones 1999; Qian and Se-
jnowski 1988; Rost and Sander 1993). A good
amino acid grouping will therefore relate se-
quence to secondary structure, based on the as-
sumption that the sequence uniquely deter-
mines the structure. This grouping scheme uses
the protein data set as the evaluation measure,
as opposed to the Wang and Wang scheme.

Using this approach, we generate good sub-
alphabets through an iterative, one-path re-
duction, where we examine the prediction
quality by successively merging two groups
(which initially consist of individual amino
acids) but keeping the best-scoring groupings
joined. Thus, we start from 20 groups and eval-
uate the 190 possible subalphabets with 19
groups. By selecting the best-fit subalphabet,
we repeat the procedure, this time going from
19 to 18 groups (171 comparisons), eventually
performing 1329 evaluations to achieve a final
subalphabet of only 2 groups.

Structure-Preserving 
Reduced Alphabets

The number of possible subalphabets, Nn,
grows quite dramatically with the alphabet
size, n:

where  fn(l) is the number of subalphabets with
l groups. For n = 20, this gives N20 = 5 • 1013

subalphabets. The number of subalphabets
composed of, say, 8 groups, f20(8) = 15 • 1012, is
also very large, and a sampling strategy is
therefore needed, as indicated earlier. In table
1, we have listed the alphabet size n versus the
number of possible subalphabets Nn.

The prediction performance is estimated
from a 10-fold cross-validation. The neural net-
work was trained using standard backpropaga-
tion (Hertz, Krogh, and Palmer 1991) with one
hidden layer (45 neurons), learning rate � =
0.001, entropic error function, tanh(x) as trans-
fer function, and balanced training. To keep
the computation time down, the setup has
been kept simple; that is, evolutionary infor-
mation, structure-to-structure networks, and
ensemble predictions were not incorporated as
done for today’s best-performing secondary-
structure prediction schemes (Jones 1999; Rost,
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2 2
3 5
4 15
5 52
6 203
7 877
8 4 140
9 21 147

10 115 975
11 678 570
12 4 213 597
13 27 644 437
14 190 899 322
15 1 382 958 545
16 10 480 142 147
17 82 864 869 804
18 682 076 806 159
19 5 832 742 205 057
20 51 724 158 235 372

Alphabet size n Possible subalphabets Nn

Table 1. The Number of Possible Subalphabets for a 
Given Alphabet Size.



timal subalphabets, starting from the 20 amino
acids going down to 2 groups. Surprisingly, we
were able to find several subalphabets that in-
creased the predictability of the secondary
structure from the recoded sequence. In fact,
all the optimal clusters in the range from 13 to
19 groups found using this greedy procedure
increase the predictability. The path of mergers
gives us a ranking of contextual, structural sim-
ilarity between the amino acids based on the
groups they form. In particular, we find that
the aromatic group (Phe-Tyr-Trp), the aliphatic
sheet amino acids (Val-Ile), the basic amino
acids (Lys-Arg), and Met-Leu are merged very
early in the procedure.

Interestingly, below 13 clusters, the cost of
merging two groups increases quite abruptly at
certain subalphabet sizes. When going below
eight groups, and again when going below five
groups, a fivefold and twofold increase in cost
is implied, respectively. These two jumps indi-
cate thresholds where a subalphabet no longer
can represent and encode structurally impor-
tant aspects in a large, diverse set of proteins.
The first jump is found when merging Pro and
Gly, two structurally unique amino acids, Pro
for its rigidity, Gly for its flexibility. The second
jump occurs when the group of predominantly
small polar amino acids (DSNTHC) is joined
with the group containing large polar amino
acids (EKRQ). Group sizes of eight and five
were also found by Wang and Wang (1999) to
exhibit special characteristics, in agreement
with our finding that eight groups are just
about adequate to represent the most impor-
tant structural properties.

One might ask what amino acid will be able
to best represent the merged cluster of amino
acids? A representative amino acid for each
cluster (underlined in figure 1) was identified
using the neural network trained on the com-
plete 20-letter alphabet (the original PDB se-
quences). This network was used to decide
which of the amino acids in a cluster would be
the representative one according to how well it
mapped the sequence to the structure relation-
ship. Our five-letter alphabet

(PG)(EKRQ)(DSNTHC)(IVWYF)(ALM)

has only one representative amino acid in
common with the cluster found by Riddle et al.
(1997) and confirmed by Wang and Wang

(PG)(SKNRQ)(DE)(IVLMCWYF)(ATH)

but the representatives are all very similar. Ala
and Met are similar hydrophobic amino acids,
Gly and Pro both influence structure a lot and
have their separate group, Glu and Ser are both
positive polar amino acids, and Lys and Arg are
similar basic amino acids. We therefore pro-
pose the PRISM alphabet as an improved set of
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(P)(G)(E)(KRQ)(D)(S)(N)(T)(H)(C)(IV)(WYF)(A)(LM)

Figure 1. Reduction Tree.
By starting from the 20-letter amino acid alphabet (20 groups), the stepwise re-
duction by joining the highest-scoring pair and reestimating the new set of pairs
is shown going down to 2 groups.

Sander, and Schneider 1994). The prediction
performance is evaluated using the generalized
correlation coefficient (Baldi et al. 2000) joint-
ly for helix, sheet, and coil

where N is the total number of observations, K
is the number of classes, zij is the number of
observations assigned to be in class i and pre-
dicted to be in class j, and

is the expected number of observations as-
signed as i and predicted as j. The GC is iden-
tical to the Matthews (1975) correlation coef-
ficient for two categories, but in contrast to
Matthews, it is additive when more categories
are used.

Using the secondary-structure predictability
as the merging principle, we found the reduc-
tion tree shown in figure 1. It shows all the op-
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representatives, which also reflects structural
and contextual importance. This is in contrast
to the GKEIA alphabet, which is solely based
on the 190 amino acid interaction energies in
the MJ matrix.

Some proteins have a more biased composi-
tion than others. One might ask whether the
variability of amino acids used in a given pro-
tein influences the sequence-specific perfor-
mance in terms of prediction accuracy? When
the sequence-specific performance for the opti-
mal subalphabet of 13 groups (measured by
GC) was plotted against the amino acid distri-
bution entropy, Σl pl log2(pl), it was clearly
demonstrated that lower-complexity se-
quences with bias in the composition were not
easier to predict (data not shown). This obser-
vation again indicates that the reduced alpha-
bets found here reflect a clustering that is of
general nature and not a reduction that is op-
timized for a small subset of the sequence
space.

The Impact of 
Sequence Correlations

A comparison of the alphabets found by Wang
and Wang (using the MJ matrix) to the alpha-
bets found here should show explicitly how
protein structure and sequence context change
the outcome. In figure 2a, we compare the 10
highest-scoring five-group Wang and Wang
subalphabets and the Wang and Wang mis-
match score Mab to the structural predictability
scores used in our evaluation. It is clear that we
have found a five-group alphabet that better
preserves structural information when com-
pared to any of the highest-scoring Wang and
Wang alphabets. Otherwise, there is a high de-
gree of agreement in the ranking; in fact, only
one subalphabet receives a significantly differ-
ent ranking.

Where does the MJ matrix fail to preserve
structural information? To compare amino
acids in the MJ matrix, we calculated the root
mean square distance between all pairs of
amino acid contact energy vectors, which esti-
mates whether two amino acids have similar
interactions with all the other amino acids, in-
stead of just strong mutual contact energies.
We refer to this transformed matrix as the
MJRMS (MJ root mean square) matrix.

Using a numeric evaluation of all subalpha-
bets of 19 groups, we have produced an analo-
gous structure-preserving amino acid–group-
ing matrix (SPAA matrix).

The scatter plot in figure 3 shows that the
two matrixes are quite different. For example,
the two extreme pairwise values in the MJRMS
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Figure 2. Comparison of Different Subalphabets.
A. A comparison of the Wang and Wang mismatch measure Mab for protein sub-
alphabet evaluation and our structural predictability measure (generalized corre-
lation coefficient GC [figure 1]) used in this work. B. The predictive test perfor-
mance (generalized correlation coefficient GC) for various alphabets on the
independent Pfam-A data of protein families. The figure shows that the SPAA al-
phabets preserve the sequence-structure relationship better than any of the Wang
and Wang alphabets. 

Data-Set Preparation
The 650 protein chains extracted from PDB were selected to have
low sequence similarity (25 percent or less); a minimum length of
30 amino acids; no transmembrane segments; and, for X-ray data,
a resolution better than 2.5  °A. The Pfam-A data set consisting of
protein families was selected, running each family’s profile hidden
Markov model (Bateman et al. 1999) against each protein in the
650-protein data set and removing families with alignment E-val-
ues below 100. Furthermore, only families containing X-ray struc-
tures with a resolution better than 2.5 °A were accepted. All members
in a family were assigned the consensus secondary-structure field
from the Pfam alignment. This field contains the DSSP consensus
assignment of the PDB entries present in the family. The 90 select-
ed families were given equal weighting in the final result.



acids is based on their size (large/long or
small/short), as discussed earlier. This cluster-
ing makes a lot of sense when compared to
work showing which amino acids are involved
in specific types of interactions with side-chain
hydrogen bonds stabilizing secondary struc-
ture (α-helixes and �-sheets) (Bordo and Argos
1994). The amino acid counts for each type of
interaction group the amino acids in similar
ways, as found in our work, that is, mixing
acidic and basic amino acids and separating
large and small amino acids.

We have furthermore tested the reduced al-
phabets on a set of 90 unrelated Pfam protein
families (Bateman et al. 1999) (figure 2b). The
aim was to validate and select structure-pre-
serving reduced alphabets that are applicable
to proteins in general instead of those just be-
ing optimal for individual families. The test
families used were all unrelated to the data set
of 650 proteins used for neural network train-
ing, and they had, in addition, a manually
aligned core (seed) alignment (Pfam-A) and a

matrix (Phe/Leu and Lys/Leu) have similar
scores in the SPAA matrix. The differences can
also be illustrated in the form of unrooted trees
(figure 4), where a comparison to the equiva-
lent BLOSUM62 (Henikoff and Henikoff 1992)
grouping is also shown. For the MJRMS matrix,
Pro, Gly, and Ala fall into the hydrophilic
group even though they are nonpolar, which
has also been observed by Chan (1999). A more
peculiar feature of the MJ matrix is that Pro
and Gly, structurally two very special amino
acids, are not identified as such. Pro and Gly
have individual, distant branches in the BLO-
SUM62 matrix, and by the SPAA matrix, they
are even placed in a separate cluster.

Incorporating sequence correlations into a
protein subalphabet evaluation is impossible
when the approach is based on a simple ma-
trix. In the structural amino acid grouping pre-
sented here, position-specific interactions
greatly influence the predictability; for exam-
ple, instead of separating amino acids that are
acidic and basic, the separation of polar amino
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Figure 3. Comparison of Substitution Matrixes.
The scatter plot compares all values in the MJRMS matrix (Wang and Wang 1999) with the structural amino acid–grouping matrix presented
in this article. The amino acid pairs most far away from the diagonal highlight differences between contact versus structural comparison of
the amino acids. Pro and Gly are structurally unique amino acids, which makes them stand out, but Lys has a unique contact energy motif. 



resolution better than 2.5 °A. The result of this
validation shows that the SPAA alphabets are
better at preserving structural information
across families than are the Wang and Wang al-
phabets. The four-letter SPAA alphabet is even
slightly better in terms of predictive perfor-
mance than the best of the Wang and Wang
five-letter alphabets. Furthermore, the two-let-
ter SPAA alphabet is seen to surpass one of the
(nonoptimal) Wang and Wang five-letter al-
phabets, which has merged polar amino acids
(SR) with nonpolar amino acids (FWY). This
fact limits the ability of this particular alphabet
to preserve structure considerably, again un-
derscoring the importance of the hydrophobic
aspect. In figure 2a, the GCs obtained are lower
than in figure 2b, which is caused by the vari-
ation in structure within each Pfam family.

When restricting the validation to those family
members with known PDB structure, the GC
levels are essentially the same as those reported
earlier (data not shown).

Other amino acid-grouping methodologies
have been tried on the MJ matrix (Cieplak et al.
2001). These clustering methods basically re-
flect the clusters seen in the unrooted MJRMS
tree (figure 4) and therefore completely neglect
the structural importance of Pro and Gly.

In conclusion, we believe that the structure-
preserving amino acid groupings found here
are more likely to be relevant in relation to pro-
tein folding and that they indeed offer a differ-
ent perspective than groupings based on indi-
vidual contact energies between amino acids.
Special amino acids might very well be re-
quired in the active site to maintain functional

Articles

SPRING 2004    103

a

b

c

Figure 4. Comparison of the MJRMS (top), SPAA (bottom left), and BLOSUM62 (bottom right) Matrixes by Unrooted Trees. 
The MJ matrix has been transformed according to the root mean square between the amino acid contact energy vectors to show the sim-
ilarity between amino acids based on all interactions instead of just their pairwise contact energies. To produce the structural amino
acid–grouping matrix, we have evaluated all subalphabets with 19 groups in the manner described earlier. This gives a GC for each subal-
phabet, which describes how predictable the protein secondary structure is from that subalphabet. The unrooted trees shown here were
built by the neighbor-joining algorithm from the Phylip package (Felsenstein 1989). The MJRMS matrix is derived from the MJ matrix by
calculating the root mean square between amino acid vectors:

MJ i j MJ i k MJ j kRMS k
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