
■ We propose the use of application semantics to en-
hance the process of semantic reconciliation. Ap-
plication semantics involves those elements of
business reasoning that affect the way concepts are
presented to users: their layout, and so on. In par-
ticular, we pursue in this article the notion of
precedence, in which temporal constraints deter-
mine the order in which concepts are presented to
the user. Existing matching algorithms use either
syntactic means (such as term matching and do-
main matching) or model semantic means, the use
of structural information that is provided by the
specific data model to enhance the matching
process. The novelty of our approach lies in
proposing a class of matching techniques that
takes advantage of ontological structures and ap-
plication semantics. As an example, the use of
precedence to reflect business rules has not been
applied elsewhere, to the best of our knowledge.
We have tested the process for a variety of web sites
in domains such as car rentals and airline reserva-
tions, and we share our experiences with prece-
dence and its limitations.

The ambiguous interpretation of concepts
describing the meaning of data in data
sources (for example, database schemata,

extensible markup language [XML] document-
type definitions [DTDs], Resource Description
Framework [RDF] schemata, and hypertext
markup language [HTML] form tags) is com-
monly known as semantic heterogeneity. Seman-
tic heterogeneity, a well-known obstacle to da-
ta source integration, is resolved through a
process of semantic reconciliation, which match-
es concepts from heterogeneous data sources.
Traditionally, the complexity of semantic rec-
onciliation required that it be performed by a
human observer (a designer, a database admin-

istrator [DBA], or a user) (Hull 1997). However,
manual reconciliation (with or without com-
puter-aided tools) tends to be slow and ineffi-
cient in dynamic environments and, for obvi-
ous reasons, does not scale. Therefore, the
introduction of the semantic web vision and
the shift towards machine-understandable web
resources has made clear the importance of au-
tomatic semantic reconciliation.

As an example, consider the web search, an in-
formation-seeking process conducted through
an interactive interface. This interface may be as
simple as a single input field (as in the case of a
general-purpose search engine). Web interfaces
may also be highly elaborate: consider a car
rental or airline reservation interface contain-
ing multiple web pages, with numerous input
fields, that are sometimes content dependent
(for example, when a rented car is to be re-
turned at the point of origin, no input field is
required for the return location). A web search
typically involves scanning and comparing
web resources, either directly or by means of
some information portal—a process hampered
by their heterogeneity. Following the semantic
web vision, semantic reconciliation should be
inherent in the design of smart software agents
for information seeking. Such agents can fill
web forms and rewrite user queries by perform-
ing semantic reconciliation among different
HTML forms.

To date, many algorithms have been pro-
posed to support either semiautomatic or fully
automatic matching of heterogeneous con-
cepts in data sources. Existing matching algo-
rithms make comparisons based on measures
that are either syntactic in nature (such as term
matching and domain matching) or based on
model semantics. By model semantics, we

Articles

SPRING 2005 21Copyright © 2005, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2005 / $2.00

Automatic Ontology
Matching Using

Application Semantics
Avigdor Gal, Giovanni Modica, Hasan Jamil, and Ami Eyal

AI Magazine Volume 26 Number 1 (2005) (© AAAI)

able data model to assist in the semantic recon-
ciliation process.

The use of application semantics entails two
immediate problems. First, it is likely that the
data model does not support the application se-
mantics features (or else they would have been
used as data model semantics means). There-
fore, there is the issue of formal representation
of application semantics. Second, the lack of
data model support means that algorithms that
utilize application semantics are much harder
to devise, having no underlying data model
features upon which to be based.

To answer the first requirement of a rich data
model for formal representation of application
semantics, we choose to use ontologies. On-
tologies are used as an interface conceptualiza-
tion tool for representing model and applica-
tion-level semantics to improve the quality of
the matching process. Four ontological con-
structs are used in this work, namely terms, val-
ues, composition, and precedence. Terms, val-
ues, and composition are borrowed from Bunge
(1977, 1979). Precedence, a unique feature of
our model, represents the sequence in which
terms are laid out within forms, imitating tem-
poral constraints embedded in business rules.

In the general area of data integration, using
a full-fledged ontology that is manually crafted
to represent a domain of discourse with clear
semantics and detached from a specific applica-
tion is a rare privilege. More often than not, se-
mantics is hidden in the application code, and
only hints to it are divulged through interfaces
and database schemata. Since our ontologies
correspond directly to the semantics of the ap-
plication, we propose (untraditionally) to ab-
stract away ontologies from interfaces, thus ex-
posing latent semantics. Therefore, compo-
sition can be extracted from the structure of a
form, and precedence can be extracted from
the ordering of elements in a form.

Given two ontologies (in the sense given
above), algorithms to match terminologies in
two web resources are needed. We propose syn-
tactical comparison, based on terms and val-
ues, enhanced by basic information retrieval
(IR) techniques for string matching. We also
discuss what is needed to generate an algo-
rithm that utilizes application semantics and
discuss the difficulties in crafting such an algo-
rithm, relating to the second problem present-
ed above.

The novelty of our approach lies in the intro-
duction of a sophisticated matching technique
that takes advantage of ontological constructs
and application semantics. In particular, the
use of precedence to reflect business rules has
not been applied elsewhere, to the best of our

mean the use of structural information that is
provided by the specific data model to enhance
the matching process. For example, XML pro-
vides a hierarchical structure that can be ex-
ploited in identifying links among concepts
and thus allow a smooth web search.

In this article, we propose the use of applica-
tion semantics to enhance the process of se-
mantic reconciliation. Application semantics
involves those elements of business reasoning
that affect the way concepts are presented to
users, such as layout. In particular, we pursue in
this article the notion of precedence, in which
temporal constraints determine the order in
which concepts are presented to the user.

All matching techniques aim at revealing la-
tent semantics in data model descriptions and
utilizing it to enhance semantic reconciliation.
To illustrate the differences among syntactic
measures and data model semantics on the one
hand and application semantics on the other
hand, consider a specific data model, XML,
providing a domain description. Many match-
ing techniques advocate the comparison of lin-
guistic similarity, based on the assumption that
within a single domain of discourse, terminol-
ogy tends to be homogeneous. Linguistic simi-
larity is based on terms that appear in the XML
file. XML also has a hierarchical structure, al-
lowing nesting of terms within other terms.
This is a data model–specific feature (that does
not exist in a relational model, for example),
and may drive another approach towards
matching. The underlying assumption here is
that hierarchy is a feature designers of all appli-
cations can use to model the domain of dis-
course better and thus can be used to identify
similarities.

We aim at moving beyond the data model,
and to do so one has to analyze the domain of
discourse (or several similar domains) to iden-
tify basic business rules and how they affect da-
ta modeling. As an example, say the XML file
describes a car rental application. Analyzing
this domain (and other similar domains, such
as airline reservation systems) reveals temporal
constraints that control the reservation pro-
cess. For example, pickup location always pre-
cedes drop-off locations (both because renters
typically drop off their rental at the same loca-
tion and because the pickup location enforces
constraints on the rest of the reservation, such
as the availability of car types). Equipped with
this observation, one can interpret the ordering
within the XML file as a representative of such
temporal constraints. To summarize, applica-
tion semantics analysis starts at the application
(and not at the data model as in the other ap-
proaches) and then is projected into the avail-

Articles

22 AI MAGAZINE

knowledge. We have tested the process for a va-
riety of web sites in domains such as car rentals
and airline reservations and evaluated the per-
formance of our algorithms. We highlight the
benefits and limits of using the precedence
construct as a guideline for future research into
application semantics.

To support our research into application se-
mantics, we developed OntoBuilder,1 a tool
that extracts ontologies from web applications
and maps ontologies to answer user queries
against data sources in the same domain. The
input to the system is an HTML page represent-
ing the web site main page. Using OntoBuilder,
HTML pages are parsed using a library for
HTML/XML documents to identify form ele-
ments and their labels and to generate an on-
tology. Ontologies are then matched to pro-
duce a mapping using the algorithms presented
in the “Ontology Matching” section. Onto-
Builder supports an array of matching and
filtering algorithms, and is extensible. It was
developed using Java.

Research Background
and Related Work

The study builds upon two existing bodies of
research, namely heterogeneous databases and
ontology design. Each is elaborated below.

Heterogeneous Databases
The evolution of organizational computing,
from “islands of automation” into enterprise-
level systems, has created the need to homoge-
nize databases with heterogeneous schemata
(referred to as heterogeneous databases). More
than ever before, companies are seeking inte-
grated data that go well beyond a single organi-
zational unit. In addition, a high percentage of
organizational data is supplied by external re-
sources (for example, the web and extranets).
Data integration is thus becoming increasingly
important for decision support in enterprises.
The growing importance of data integration al-
so implies that databases with heterogeneous
schemata face an ever-greater risk that their da-
ta integration process will not effectively man-
age semantic differences.

Current research into heterogeneous databas-
es is largely geared toward manual (or semiman-
ual semiautomatic at best) semantic resolution
(such as Kahng and McLeod [1996] and Gal
[1999]), which may not effectively scale in com-
putational environments with dynamically
changing schemata that require a rapid re-
sponse. In addition, schema descriptions differ
significantly among different domains. It is of-
ten said that the next great challenge in the se-

mantic matching arena is the creation of a gen-
eralized set of automatic matching algorithms.
Accordingly, the goal of this research is to pro-
pose the use of application semantics for auto-
matic matching.

Over the past two decades, researchers in
both academia and industry have advanced
many ideas for reducing semantic mismatch
problems, with the goal of lessening the need
for manual intervention in the matching pro-
cess. A useful classification of the various solu-
tions proposed can be found in Rahm and
Bernstein (2001). Of the categories presented
there, we focus on those that deal with the al-
gorithmic aspect of the problem.

The proposed solutions can be grouped into
four main approaches. The first approach rec-
ommends adoption of information-retrieval
techniques. Such techniques apply approxi-
mate, distance-based matching techniques,
thus overcoming the inadequacy of exact,
“keyword-based” matching. This approach is
based on the presumption that attribute names
can be mapped using similarity techniques. At-
tribute names are rarely, however, given in ex-
plicit forms that yield good matchings. Further-
more, they need to be complemented by either
a lengthier textual description or an explicit
thesaurus, which mandates greater human in-
tervention in the process. Protègè utilizes this
method (among others) in the PROMPT algo-
rithm, a semiautomatic matching algorithm
that guides experts through ontology matching
and alignment (Noy and Musen 2000).

A second approach involves the adoption of
machine-learning algorithms that match at-
tributes based on the similarity between their
associated values. Most efforts in that direction
(for example, Glue [Doan et al. 2002] and Au-
toplex [Berlin and Motro 2001]) adopt some
form of a Bayesian classifier. In these cases,
mappings are based on classifications with the
greatest posterior probability, given data sam-
ples. Machine learning was recognized as play-
ing an important role in reasoning about map-
pings in the work by Madhavan et al. (2002).

Third, several researchers have suggested the
use of graph theory techniques to identify sim-
ilarities among schemata, in which attributes
are represented in the form of either a tree or a
graph. To give but one example, the TreeMatch
algorithm (Madhavan et al. 2002) utilizes XML
DTD’s tree structure in evaluating the similarity
of leaf nodes by estimating the similarity of
their ancestors.

In a fourth approach, matching techniques
from the first three groups are combined. Here,
a weighted sum of the output of algorithms in
these three categories is used to determine the

Articles

SPRING 2005 23

tion tool for the quality of algorithms that were
designed for that purpose.

Ontological Constructs
The methodology for the process of schema
matching is based on ontological analysis of ap-
plication classes and the generation of appro-
priate ontological constructs that may assist in
the matching process. We base the ontological
analysis on the work of Bunge (1977, 1979). We
adopt a conceptual modeling approach rather
than a knowledge representation approach (in
the AI sense). While the latter requires a com-
plete reflection of the modeled reality for an
unspecified intelligent task to be performed by
a computerized system in the future (Borgida
1990), the former requires a minimal set of
structures to perform a given task (a web search
in this case). Therefore, we build ontologies
from a given application (such as web forms)
rather than with the assistance of a domain ex-
pert.

To exemplify the methodology, we focus on
ontological constructs in the general task of the
web search. We recognize the limited capabili-
ties of HTML (and for that matter, also XML) in
representing rich ontological constructs, and
therefore we have eliminated many important
constructs (for example, the class structure)
simply because they cannot be realistically ex-
tracted from the content of web pages. There-
fore, the ontological analysis of this class of ap-
plications yielded a subset of the ontological
constructs provided by Bunge and added a new
construct, which we term precedence, for posing
temporal constraints.

Terms: We extract a set of terms2 from a web
page, each of which is associated with one or
more form entries. Each form entry has a label
that appears on the form interface and internal
entry names that are not presented by the
browser but are still available in HTML. The la-
bel provides the user with a description of the
entry content. The latter is utilized for match-
ing parameters in the data transfer process and
therefore resembles the naming conventions
for database schemata, including the use of ab-
breviations and acronyms. A term is a combi-
nation of both the label and the name. For ex-
ample, Airport Location Code (PICKUP_LOCATION_
CODE) is a term in the Avis reservation page,
where Airport Location Code is the label and
PICKUP_LOCATION_CODE is the entry name.

Values: Based on Bunge (1977), an attribute is
a mapping of terms and value-sets into specific
statements. Therefore, we can consider a com-
bination of a term and its associated data entry
(value) to be an attribute. In certain cases, the

similarity of any two schema elements. Cupid
(Madhavan, Bernstein, and Rahm 2001) and
OntoBuilder are two models that support this
hybrid approach. OntoBuilder, however, is the
only framework, to the best of our knowledge,
in which application semantics is used as a tool
in matching heterogeneous schemata.

Ontology Design
The second body of literature we draw upon fo-
cuses on ontology design. An ontology is “a
specification of a conceptualization” (Gruber
1993), in which conceptualization is an ab-
stract view of the world represented as a set of
objects. The term has been used in different re-
search areas, including philosophy (where it
was coined), artificial intelligence, information
sciences, knowledge representation, object
modeling, and most recently, e-commerce ap-
plications. For our purposes, an ontology can
be described as a set of terms (vocabulary) asso-
ciated with certain semantics and relation-
ships. Typically, ontologies are represented us-
ing a description logic (Donini et al. 1996), in
which subsumption typifies the semantic rela-
tionship between terms, or frame logic (Kifer,
Lausen, and Wu 1995), in which a deductive
inference system provides access to semistruc-
tured data.

The realm of information science has pro-
duced an extensive body of literature and prac-
tice in ontology construction (for example, Vic-
kery [1966]). Other undertakings, such as the
DOGMA project (Spyns, Meersman, and Jarrar
2002), provide an engineering approach to on-
tology management. Finally, researchers in the
field of knowledge representation have studied
ontology interoperability, resulting in systems
such as Chimaera (McGuinness et al. 2000) and
Protègè (Noy and Musen 2000).

The body of research aimed at matching
schemata by using ontologies has focused on
interactive methods requiring human inter-
vention, massive at times. In this work, we pro-
pose a fully automatic process that is a more
scalable approach to semantic reconciliation.
Our approach is based on analyzing model-de-
pendent and application-level semantics to
identify useful ontological constructs, followed
by the design of algorithms to utilize these con-
structs in automatic schema matching. It is
worth noting that automation carries with it a
level of uncertainty as “the syntactic represen-
tation of schemas and data do not completely
convey the semantics of different databases”
(Miller, Haas, and Hernández 2000). In another
paper (Gal et al. 2004), we have formally mod-
eled the uncertainty inherent in an automatic
semantic reconciliation and offered an evalua-

Articles

24 AI MAGAZINE

value-set that is associated with a term is con-
strained using drop lists, check boxes, and ra-
dio buttons. For example, the entry labeled
Pick-Up Date is associated with two value-sets:
{Day, 1, 2, ..., 31} and {January, February, ..., De-
cember}. Clearly, the former is associated with
the date of the month (and the value Day was
added to ensure the user understands the
meaning of this field) and the latter with the
month (here, there is no need in adding a
Month value, since the domain elements speak
for themselves).

Composition: We differentiate atomic terms
from composite terms. A composite term is
composed of other terms (either atomic or
composite). In the Avis reservation web page,
all of the terms mentioned above are grouped
under Rental Pick-Up & Return Information. It is
worth noting that some of these terms are, in
themselves, composite terms. For example,
Pick-Up Time is a group of three entries, one for
the hour, another for the minutes, and the
third for either AM or PM.

Precedence: The last construct we consider is
the precedence relationship among terms. In
any interactive process, the order in which data
are provided may be important. In particular,
data given at an earlier stage may restrict the
availability of options for a later entry. For ex-
ample, the Avis web site determines which car
groups are available for a given session using
the information given regarding the pickup lo-
cation and time. Therefore, once those entries
are filled in, the information is sent back to the
server and the next form is brought up. Such
precedence relationships can usually be iden-
tified by the activation of a script, such as (but
not limited to) the one associated with a SUB-
MIT button. It is worth noting that the prece-
dence construct rarely appears as part of basic
ontology constructs. This can be attributed to
the view of ontologies as static entities whose
existence is independent of temporal con-
straints. We anticipate that contemporary ap-
plications, such as the one presented in this ar-
ticle, will need to embed temporal reasoning in
ontology construction.

The main difference between the first three
constructs on the one hand, and the third con-
struct on the other, is that the equivalence of
the construct in the data model is given explic-
itly in the former but is only implicit in the lat-
ter. In our example, terms are explicitly avail-
able as labels and entry names, and values are
explicitly available as value-sets. Composition is
explicitly available in XML definitions through
its hierarchical structure.3 The precedence con-
struct, on the other hand, is only implicitly giv-
en, through the process of form submission.

It is worth noting that the recognition of
useful ontological constructs is independent of
the algorithms that are utilized to perform the
reconciliation process. In the ensuing discus-
sion, we shall demonstrate the usefulness of
precedence in identifying correct mappings,
yet discuss the difficulty of generating a good
matching algorithm that avoids false positives
and false negatives in the process.

Ontology Matching
In the matching process, a mapping is deter-
mined between two ontologies. To illustrate
the complexity of the process, consider first the
following example.

Example 1 (Ontology Matching)

Consider the Delta and American Airlines reser-
vation systems (see figure 1). The left screen of-
figure 1 presents a form that contains two time
fields, one for departure and the other for re-
turn. Due to bad design (or designer’s error), the
departure time entry is named dept_time_1
while return time is named dept_time_2. Both
terms carry an identical label, Time, since the
context can be easily determined (by a human
observer of course) from the positioning of the
time entry with respect to the date entry. For
the American Airlines reservation system (the
right screen of figure 1), the two time fields of
the latter were not labeled at all (counting on
the proximity matching capabilities of an intel-
ligent human being), and therefore were as-
signed, using composition by multiple term as-
sociation, with the label Departure Date and
Return Date. The fields were assigned the names
departureTime and returnTime. Term matching
would incur problems in differentiating the
four terms (note that “dept” and “departure” do
not match, either as words or as substrings).

We denote by web resource dictionary the set
of terms extracted from a web resource (typical-
ly composed of several web pages within a sin-
gle web site). Let V = {v1, v2, … vn} and U = {u1,
u2, …, um} be two web resource dictionaries.
The general matching process is conducted in
two steps. First, pairwise matching yields a sim-
ilarity measure for all pairs, and next a subset of
the pairwise matching (dubbed a mapping) is
selected as the “best” mapping between the
two ontologies. Such a mapping may utilize
some variation of a weighted bipartite graph
matching (Galil 1986) if the required mapping
is of a 1:1 nature. For a matching process that
yields 1:n mappings, a simpler algorithm may
be applied, in which a term in one dictionary is
mapped into a term in another dictionary to
which its similarity is maximized. Such an al-
gorithm enables duplicate entries in one dictio-
nary, yet does not allow the partition of a single
value to several values.

Articles

SPRING 2005 25

We have applied two separate methods for
term matching based on string comparison—
word matching and string matching—as fol-
lows.

Word Matching. Two terms are matched and
the number of common words is identified. The
similarity of two terms t1 and t2 using word
matching (dubbed µ(W, vi, uj)) is defined as the
ratio between the number of common words in
t1 and t2 and the total number of unique words
in terms t1 and t2, providing a symmetric mea-
sure of the similarity of these two terms. The
more common words the terms share, the more
similar they are considered to be. For example,
consider the terms t1 = Pickup Location and t2 =
Pick-up location code. The revised terms after pre-
processing are t1 = pickup location and t2 = pickup
location code. The terms’ similarity, using word
matching, is computed as

Two words w1 � t1 and w2 � t2 are consid-
ered to be common if they are spelled the same,
sound the same (soundex), or are considered
synonyms, using a publicly available thesaurus
such as WordNet.4 Mismatched terms can be
presented to the user for manual matching.
Every manual match identified by the user is ac-
cepted as a synonym and expands and enriches
the thesaurus.

String Matching. We find the maximum com-
mon substring between two terms whose words
have been concatenated by removing white

µt t
W pickup location

pickup location code1 2

2
66,

,

, ,
%= ()

() =

The process of ontology matching is formal-
ized and discussed in depth in Gal et al. (2004).
In particular, we have shown there that the
specific methodology described herein is well
suited to identifying the exact mapping (as per-
ceived by a human observer) as the mapping
with the highest sum (or average) of similarity
measures of the selected term pairs.

The following sections focus on three meth-
ods for pairwise matching, namely term, value,
and precedence matching. We omit the discus-
sion of composition matching for the sake of
brevity. A detailed algorithm is available in
Modica (2002).

Syntactic Matching
In this section we present two syntactic meth-
ods for pairwise matching. We start the section
with a discussion of term matching, then fol-
low it with a discussion of value matching.

Term Matching
Term matching compares labels (verbal descrip-
tions of a form entry) and names (the entry
names as being sent to the server) to identify
syntactically similar terms. To achieve better
performance, terms are preprocessed using sev-
eral techniques originating in IR research, in-
cluding capitalization-based separation, ignor-
able character removal, dehyphenation, and
stop-term removal.

Articles

26 AI MAGAZINE

Figure 1. Delta Versus AA.

spaces. The similarity of two terms using string
matching (dubbed µ(S, vi, uj)) is computed as
the length of the maximum common substring
as a percentage of the length of the longest of
the two terms. As an example, consider the
terms airline information and flight airline info,
which after concatenating and removing white
spaces become airlineinformation and flightair-
lineinfo, respectively. The maximum common
substring is airlineinfo, and the effectiveness of
the match is length(airlineinfo) / length(airlinein-
formation) = 11/18 = 61 percent.

We define a threshold (tT) to identify a rea-
sonable match. Any match with less than tT is
discarded. This threshold can be adjusted by the
user.

For each pair, we compute four figures, two
for labels, µ(W, L, vi, uj) and µ(S, L, vi, uj), and
two for names, µ(W, N, vi, uj) and µ(S, N, vi, uj).
We combine the figures into one figure, repre-
senting the strength of the match. Therefore,
the similarity measure of a term vi with a term
uj is computed as the weighted average

(1)
where �W,L, �S,L, �W,N, and �S,N are positive
weights such that �W,L + �W,N + �S,N = 1.

Experiments. We have conducted experiments
to evaluate the performance of the term algo-
rithm using two metrics, namely precision and
relative precision. Let V and U be web resource
dictionaries. U partitions V into two subsets V1
and V2, such that V1 is the set of all matchable
terms and V2 contains all those terms that can-
not be matched with any term in U. Let M be a
set of cardinality m, representing the set of all
attributes in V that were matched by the algo-
rithm. Precision (P) is the fraction of all found
matches that are correct. It is computed as

µ

ω µ ω µ

ω µ ω µ

v u
T

W L
v u
W L S L

v u
S L

W N
v u
W N S N

v u
S N

i j

i j i j

i j i j

,

,
,
, ,

,
,

,
,
, ,

,
,

= +

+ +

Relative precision is concerned with the abil-
ity of an algorithm to avoid false positives. Let
t be a threshold. V1(t) is the set of all matchable
terms among those terms for which the algo-
rithm has given a similarity measure higher
then t. Relative precision (RP) is computed to be

The higher RP gets, the more efficient is the al-
gorithm (at a given threshold) in avoiding false
positives. It is worth noting that for t = 0, V1(t)
= V1, and RP (0) becomes recall, which is com-
puted (using our terminology) as

Figure 2 illustrates the performance of the
term algorithm. Its performance varies from
precision of 0.35 to 0.7. Its relative precision
varies from 0.7 to 0.9. These results are good
and can be attributed to the descriptive nature
of labels in web forms. However, even at its
peak, the term algorithm identifies 0.1 of the
matches incorrectly. Example 1 has illustrated
one such case that serves as a motivation to the
presentation of the precedence construct. In
Example 1, the term algorithm prefers match-
ing both Time(dept_time_1) and Time(dept_time_
2) of Delta with Return Date(returnTime) of
American Airlines.

Value Matching
Value matching utilizes domain constraints to
compute the similarity measure among terms.
Whenever constrained value-sets are present,
we can enhance our knowledge of the domain,
since such constraints become valuable when
comparing two terms that do not exactly

V M

V
1

1

∩

RP t
V M t

V t
() =

()
()

1

1

∩

P
V M

m
= 1 ∩

Articles

SPRING 2005 27

Figure 2. Precision and Relative Precision Versus Threshold.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

P

0

0.
05 0.

1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85

Threshold

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

R
P

0

0.
05 0.

1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85

Threshold

Term ValueTerm ValueA B

({00, 30} versus {00, 15, 30, 45}), and the value
{AM} (identical in both schemata). There is a per-
fect match in the hour domain, yet the minutes
domains share two values (00 and 30) out of
four (00, 15, 30, and 45). Thus, the similarity is
calculated as 2/4 = 50 percent. The power of val-
ue matching can be further highlighted using
the case of Dropoff Date in Alamo and Return
Date in Avis. These two terms have associated
value sets {(Select), 1, 2, ..., 31} and {(Day), 1, 2,
..., 31} respectively, and thus their content-
based similarity is 31/33 = 94 percent, which
improves significantly over their term similarity
(1(date) / 3(dropoff, date, return) = 33 percent).

The domain recognition component can
overcome differences of representation within
the same domain. For example, we can apply
transformations, such as converting a 24-hour
representation into one of 12 hours. Thus, a
domain {10:00, 11:00, 12:00, 13:00} in a 24-
hour representation can be transformed into
three domains {1, 10, 11, 12}, {00}, and {AM, PM}
in a 12-hour representation.

Figure 2 illustrates the performance of the
value algorithm, as a function of the threshold.
The reasonable performance of the value algo-
rithm is evident. What is not evident from this
graph is that the value algorithm’s performance
varies much more than that of other algo-
rithms. Clearly, for ontologies with many dif-
ferent data types, the value algorithm has good
prediction capabilities (better than the term al-
gorithm), while for onotologies in which many
terms share the same domain, the value algo-
rithm will find it much harder to predict cor-
rect mappings. The analysis of relative precision
in figure 2b shows a repetition of the patterns
in figure 2a. An interesting phenomenon is the
ability of the value algorithm to outperform
the term algorithm for a 0 threshold, with an
average relative precision of 90 percent. This
analysis can also serve in identifying optimal
thresholds for various algorithms (in order to
minimize false positives). Therefore, the value
algorithm performs best at 0 threshold, while
the term algorithm performs well in [0.3, 0.5].

Returning to example 1, it is worth noting
that value matching cannot differentiate the
four possible combinations, since they share
the same time domain. Therefore, other alter-
natives that better exploit the application se-
mantics should be considered.

Precedence Matching
Let ui and uj be atomic terms in a web resource
dictionary. If one of the following two condi-
tions is satisfied, ui precedes uj: (1) ui and uj are
associated with the same web page and ui phys-

match through their labels. For example, the
label corresponding to Avis’s Return Date in
Alamo’s web site is Dropoff Date. The labels only
partially match, and the words Return and
Dropoff do not appear to be synonymic in gen-
eral-purpose thesauri (dropoff is not even con-
sidered a word in English, according to the Ox-
ford English Dictionary). Nevertheless, our
matching algorithm matches these terms using
their value-sets, since the term Dropoff Date has
a value-set of {(Select), 1, 2, ..., 31} and the Re-
turn Date of Avis is associated with the value-set
{Day, 1, 2, ..., 31}.

It is our belief that designers would prefer
constraining field domains as much as possible
to minimize the effort of writing exception
modules. Therefore, it is less likely (although
known to happen occasionally) that a field
with a drop-down list in one form will be de-
signed as a text field in another form. In the
case of a small-size domain, alternative designs
may exist (for example, AM/PM may be repre-
sented as either a drop-down list or radio but-
tons). Since the extraction algorithm represents
domains in a unified abstract manner, the end
result is independent of the specific form of
presentation.

Fields with select, radio, and check box op-
tions are processed using their value-sets.
Therefore, different design methods act as no
barrier in extracting the actual value sets. Value
sets are preprocessed to result in generic do-
mains. By recognizing separators in well-
known data types, such as “/,” “-,” and “.” in
date structures, “:” in time structures, “()” in
telephone numbers, “@” in e-mail addresses,
and “http://” in URLs, domains can be parti-
tioned into basic components, creating a com-
pound term. The name of each new subterm is
constructed as a concatenation of the existing
name and the recognized domain type (for ex-
ample, day). For example, the term Pickup Date
(pick_date), which is recognized as a date field
based on its domain entries, is further decom-
posed into three subterms: Pickup Date (pick
_date_day), Pickup Date (pick_date_month), and
Pickup Date (pick_date_year). It is worth noting
that such preprocessing also affects term
matching by generating additional terms and
therefore is performed prior to term matching.

Similarity is calculated as the ratio between
the number of common values in the two value
sets and the total number of unique values in
them. For example, suppose that t1 = Return time
and t2 = Dropoff time with values {10:00AM,
10:30AM, 11:00AM} and {10:00AM, 10:15AM,
10:30AM, 10:45AM, 11:00AM}, respectively. Pre-
processing separates the domains into hour val-
ues ({10, 11} versus {10, 11}), minutes values

Articles

28 AI MAGAZINE

ically precedes uj in the page; and (2) ui and uj
are associated with two separate web pages, Ui
and Uj, respectively, and Ui is presented to the
user before Uj.

Evaluating the first condition is easily
achieved when the page is extracted into a doc-
ument object model (DOM) tree, a W3C stan-
dard that can be used in a fairly straightforward
manner to identify form elements, labels, and
input elements. The properties of the prece-
dence relation are summarized in the following
proposition.

Proposition 1
The precedence relation is irreflexive, antisym-
metric, and transitive.

The precedence relationship, as presented in
this article, serves as an estimation of the actual
time constraints of a business process. For ex-
ample, car rental companies would be likely to
inquire about pickup information before return
information. As yet another example, consider
the advance search web pages of Lycos and Ya-
hoo. The term algorithm has had difficulties in
matching member name (m_u) with yahoo i_d
(login), giving it a score of 0.01. Instead, it pre-
ferred matching member name (m_u) with list
my new yahoo mail address free (mail directory),
with a much higher score of 0.2. Precedence,
on the other hand, indicates that login infor-
mation precedes other terms in this category of
web forms, putting it at the very beginning of
the form.

Nevertheless, not all terms share precedence
relationships. For example, there is no reason
why either shipping address or invoice address
should take precedence in a purchase order. To
evaluate the difficulty of crafting a good match-
ing algorithm, utilizing precedence, we have
tested a simple algorithm using a technique we
term graph pivoting. Given an atomic term vi in
a web resource dictionary V, we can compute
the following two sets:

precede(vi) = {vj � V|vj precedes vi}

succeed(vi) = {vi � V|vi precedes vj}

It is worth noting that, following proposi-
tion 1, precede(vi) � succeed(vi) = �. Given two
terms, v and u, from two web resource dictio-
naries V and U, respectively, we consider u and
v to be pivots within their own ontologies.
Therefore, we compute the similarity measure
of matching precede(v) with precede(u), and suc-
ceed(v) with succeed(u). This computation is
based on the syntactic similarity measures of
the term and value algorithms. Presumably,
terms will tend to match better if both those
that precede them and those that succeed them
do so. Our experiments show that the perfor-
mance of this algorithm measures significantly
lower in precision than the term algorithm (on-

ly 30–50 percent). The algorithm produces
many false positive errors, suggesting that such
an algorithm is put to better use in refuting
possible matches than in supporting them.

Concluding Remarks
In this article, we have proposed the use of ap-
plication semantics to enhance the process of
ontology matching. Application semantics in-
volves those elements of business reasoning
that affect the way in which concepts are pre-
sented to users, for example through their lay-
out. In particular, we have introduced the
precedence ontological construct, in which
temporal constraints determine the sequence
of concepts presented to the user. While the ar-
ticle has suggested the extraction of ontologies
from HTML forms, we consider the use of on-
tologies to be essential for the broad area of
web search. Current search engines (in particu-
lar Google) have applied IR techniques in
matching documents with user queries. We be-
lieve that the addition of structures such as
precedence to search engines, whenever suit-
able, would enhance the precision of the search
process. We leave this as an open research ques-
tion. In particular, we will explore the use of
additional ontology structures to improve the
effectiveness of the matching process.

It is our conjecture that using application se-
mantics as a means for semantic reconciliation
can be generalized beyond its application to
HTML web forms. For example, the relational
model has little ability to represent application
semantic means such as precedence. However,
many relational databases are interfaced nowa-
days through the use of HTML forms, for which
precedence (and other application semantics)
can increase the success of semantic reconcili-
ation. Also, analysis of typical queries for a giv-
en application reveals information regarding
the typical use of concepts, which can be fur-
ther utilized in the semantic reconciliation
process. We plan on investigating the methods
illustrated above in future research.

While precedence has proven itself in certain
instances, a good algorithm is still needed to
extract this knowledge and put it to use, as our
experiments show. The conceptual framework
we provide, however, opens the door to more
application-semantic concepts to be intro-
duced and used in the ontology matching
process.

We aim at continually improving the pro-
posed algorithms. For example, the use of a lin-
ear algorithm for finding the maximal sub-
strings and superstrings of two given strings
was suggested in the context of bioinformatics

Articles

SPRING 2005 29

Berlin, J.; and Motro, A. 2001. Autoplex: Automated
Discovery of Content for Virtual Databases. In Coop-
erative Information Systems: Ninth International Confer-
ence, CoopIS 2001, volume 2172 of Lecture Notes in
Computer Science, 108–122. Berlin: Springer-Verlag.

Borgida, A. 1990. Knowledge Representation, Seman-
tic Data Modeling: What’s the Difference? In Pro-
ceedings of the Ninth International Conference on
Entity-Relationship Approach (ER’90), 1– 2. Lau-
sanne, Switzerland: ER Institute.

Bunge, M. 1977. Treatise on Basic Philosophy: Ontology
I: The Furniture of the World. Volume 3. New York: D.
Reidel Publishing.

Bunge, M. 1979. Treatise on Basic Philosophy: Ontology
II: A World of Systems. Volume 4. New York: D. Reidel
Publishing.

Doan, A.; Madhavan, J.; Domingos, P.; and Halevy, A.
2002. Learning to Map between Ontologies on the
Semantic Web. In Proceedings of the Eleventh Inter-
national Conference on the World Wide Web, 662–
673. New York: Association for Computing Machin-
ery.

Donini, F. M.; Lenzerini, M.; Nardi, D.; and Schaerf,
A. 1996. Reasoning in Description Logic. In Princi-
ples on Knowledge Representation, Studies in Logic,
Languages and Information, ed. G. Brewka, 193–238.
Stanford, CA: CSLI Publications.

Gal, A. 1999. Semantic Interoperability in Informa-
tion Services: Experiencing with CoopWARE. SIG-
MOD Record 28(1): 68–75.

Gal, A.; Anaby-Tavor, A.; Trombetta, A.; and Montesi,
D. 2004. A Framework for Modeling and Evaluating
Automatic Semantic Reconciliation. VLDB Journal
13(4).

Galil, Z. 1986. Efficient Algorithms for Finding Max-
imum Matching in Graphs. ACM Computing Surveys
18(1)(March): 23–38.

Gruber, T. R. 1993. A Translation Approach to Porta-
ble Ontology Specifications. Knowledge Acquisition
5(2): 199–220.

Hull, R. 1997. Managing Semantic Heterogeneity in
Databases: A Theoretical Perspective. In Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), 51–61.
New York: Association for Computing Machinery.

Kahng, J.; and McLeod, D. 1996. Dynamic Classi-
fication Ontologies for Discovery in Cooperative Fed-
erated Databases. In Proceedings of the First Interna-
tional Foundation on Cooperative Information
Systems (IFCIS) International Conference on Cooper-
ative Information Systems (CoopIS’96), 26–35. Brus-
sels, Belgium: IFCIS.

Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical Foun-
dation of Object-Oriented and Frame-Based Lan-
guages. Journal of the ACM 42(4): 741–843.

Madhavan, J.; Bernstein, P. A.; Domingos, P.; and
Halevy, A. Y. 2002. Representing and Reasoning
about Mappings between Domain Models. In Pro-
ceedings of the Eighteenth National Conference on
Artificial Intelligence and Fourteenth Conference on
Innovative Applications of Artificial Intelligence
(AAAI/IAAI), 80–86. Menlo Park, CA: AAAI Press.

Madhavan, J.; Bernstein, P.A.; and Rahm, E. 2001.

(Ruzzo and Tompa 1999). Embedding a varia-
tion of this algorithm in our system may re-
duce the complexity of string matching. Final-
ly, we intend to research in depth the problem
of complex query rewriting in a heterogeneous
schemata setting, using data-type identifica-
tion and domain normalization. The method
proposed in this work serves as a promising
starting point, yet a more thorough methodol-
ogy is yet to be developed.

Research complementing the present article
provides sufficient conditions for matching al-
gorithms to identify exact mappings, as con-
ceived by an expert. This work is reported in
Anaby-Tavor, Gal, and Trombetta (2003) and
Gal et al. (2004).

Acknowledgements
Our thanks is given to Louiqa Raschid and An-
Hai Doan for useful discussions. This research
was partially supported by the Fund for the
Promotion of Research at the Technion (191-
496) and by the Fund of the Vice President for
Research at the Technion (191-507). Giovanni
Modica and Hasan Jamil’s research was partial-
ly supported by National Science Foundation
EPSCoR Grants (EPS0082979 and EPS-
0132618), a USDA-ARS Cooperative Agreement
grant (CRIS-6406-21220-005-15S), and a South-
west Mississippi Resource Conservation and
Development Grant (01050412). Avigdor Gal’s
research was partially supported by the IBM
Faculty Award (2002). We thank Ido Peled,
Haggai Roitman, and the class of “Information
Systems and Knowledge Engineering Seminar,”
fall semester, 2002, for their assistance in col-
lecting and analyzing the data.

Notes
1. Available at http://ie.technion.ac.il/OntoBuilder.

2. The choice of words to describe ontological con-
structs in Bunge’s work had to be general enough to
cover any application. We feel that the use of thing,
which may be reasonable in a general framework,
can be misleading in this context. Therefore, we have
decided to replace it with the more concrete descrip-
tion of term.

3. Forms are given in HTML, which does not have a
composition construct per se. Yet, our methodology
transforms the HTML code into an XML definition,
to be utilized in the reconciliation process.

4. http://www.cogsci.princeton.edu/˜wn/.

References
Anaby-Tavor, A.; Gal, A.; and Trombetta, A. 2003.
Evaluating Matching Algorithms: The Monotonicity
Principle. Paper presented at the IJCAI-03 Workshop
on Information Integration on the Web, Acapulco,
Mexico, August 9–10 (www.isi.edu/info-agents/work-
shops/ijcai03/proceedings.htm).

Articles

30 AI MAGAZINE

Now available from AAAI Press!
www.aaai.org/Press/Journals/JAIR

Generic Schema Matching with Cupid. In Proceedings
of the International Conference on Very Large Data Bases
(VLDB), 49–58. San Francisco: Morgan Kaufmann
Publishers.

McGuinness, D. L.; Fikes, R.; Rice, J.; and S. Wilder, S.
2000. An Environment for Merging and Testing Large
Ontologies. In Proceedings of the Seventh International
Conference on Principles of Knowledge Representation
and Reasoning (KR2000). San Francisco: Morgan Kauf-
mann Publishers.

Miller, R. J.; Haas, L. M.; and Hernández, M. A. 2000.
Schema Mapping as Query Discovery. In Proceedings
of the International Conference on Very Large Data Bases
(VLDB), ed. A. El Abbadi, M. L. Brodie, S. Chakravar-
thy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y.
Whang, 77–88. San Francisco: Morgan Kaufmann
Publishers.

Modica, G. 2002. A Framework for Automatic Ontol-
ogy Generation from Autonomous Web Applica-
tions. Master’s thesis, Mississippi State University,
Mississipi State, MS.

Noy, N. F.; and Musen, M. A.. 2000. PROMPT: Algo-
rithm and Tool for Automated Ontology Merging
and Alignment. In Proceedings of the Seventeenth Na-
tional Conference on Artificial Intelligence (AAAI-2000),
450–455. Menlo Park, CA: AAAI Press.

Rahm, E. and Bernstein, P. A. 2001. A Survey of Ap-
proaches to Automatic Schema Matching. VLDB
Journal 10(4): 334–350, 2001.

Ruzzo, W. L.; and Tompa, M. 1999. A Linear Time Al-
gorithm for Finding All Maximal Scoring Subse-
quences. In Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology,
ed. T. Lengauer, R. Schneider, P. Bork, D. L. Brutlag, J.
I. Glasgow, H.-W. Mewes, and R. Zimmer, 234–241.
Menlo Park, CA: AAAI Press.

Spyns, P.; Meersman, R.; and Jarrar, M. 2002. Data
Modeling Versus Ontology Engineering. SIGMOD
Record, 31(4) 12–17.

Vickery, B. C. 1966. Faceted Classification Schemes.
Technical Report, Graduate School of Library Service,
Rutgers, The State University, New Brunswick, NJ.

Avigdor Gal is a senior lecturer at
the Technion—Israel Institute of
Technology. He obtained his D.Sc.
at the Technion. The focus of his
work is on data integration and
schema matching in databases and
web environment. His e-mail ad-
dress is avigal@ie.technion.ac.il.

Ami Eyal is a master’s degree can-
didate at the Faculty of Industrial
Engineering and Management,
Technion—Israel Institute of Tech-
nology. He earned his B.Sc. in 1999
in industrial engineering and man-
agement from the Technion. Eyal’s
research is in the area of knowl-
edge and information systems en-

gineering. Research interests include effective meth-
ods for data integration and schema matching. His e-
mail address is eyalami@tx.technion.ac.il.

Giovanni Modica is a computer
scientist with experience both in
academics and industry. His main
areas of interest are databases, data
integration, and business intelli-
gence. For the last couple of years
he has specialized in CRM systems,
working as a team leader and devel-
oper for projects in different indus-

tries. Modica has an M.Sc. degree from the Computer
Science Department at Mississippi State University.
His e-mail address is modicag@hotmail. com.

Hasan Jamil is a member of the
faculty in the Department of Com-
puter Science, Wayne State Univer-
sity. He earned his Ph.D. degree in
computer science from Concordia
University, Canada, and his M.S.
and B.S. degrees in applied physics
and electronics from the Universi-
ty of Dhaka, Bangladesh. He was

also a member of the computer science faculty at
Concordia University, Macquarie University, and
Mississippi State University before joining Wayne
State University in 2003. His current research inter-
ests are in the areas of databases, bioinformatics, and
knowledge representation. He is currently a member
of the editorial board of the ACM Applied Computing
Review, and the chair of the IFIP TC 5 Bioinformatics
Special Interest Group. He can be reached at jamil@
acm.org.

Articles

SPRING 2005 31

32 AI MAGAZINE

5th International Symposium on

Smart Graphics
August 22-24, 2005, near Munich, Germany

The fifth International Symposium on Smart Graphics will bring together
researchers from computer graphics, visualization, art & graphics de-
sign, cognitive psychology and artificial intelligence, all working on dif-
ferent aspects of computer-generated graphics. This year's meeting will
be held in the beautifully calm and serene atmosphere of the Frauen-
woerth cloister near Munich, Germany.

Advances and breakthroughs in computer graphics have made visual
media the basis of the modern user interface, and it is clear that graph-
ics will play a dominant role in the way people communicate and interact
with computers in the future. Indeed, as computers become more and
more pervasive, and display sizes both increase and decrease, new and
challenging problems arise for the effective use and generation of com-
puter graphics.

Recent advances in this field have allowed AI researchers to integrate
graphics in their systems, and on the other hand, many AI techniques
have matured to the point of being easily used by non specialists. These
very techniques are likely to be the vehicle by which both principles from
graphics design and the results of research into cognitive aspects of
visual representations will be integrated in next generation graphical
interfaces.

Important Dates:
April 24 Submission deadline
May 23 Notification of review results
May 31 Camera ready copy due
Aug 22-24 Smart Graphics Symposium

Organizing Committee:
Andreas Butz (University of Munich)
Brian Fisher (Univ. of British Columbia)
Antonio Krueger (University of Muenster)
Patrick Olivier (University of Newcastle)

Proceedings:
Published as Springer LNCS

Hosted by:
University of Munich

Symposium Venue:
Frauenwoerth Cloister on Frauenchiemsee
island near Munich, Germany

In cooperation with:
ACM (pending), AAAI, Eurographics
Association (EG)

Symposium website:

www.smartgraphics.org

Help us celebrate
AAAI’s Twenty-Fifth

Anniversary!

Join us at AAAI–05
in Pittsburgh

July 9–13, 2005

www.aaai.org/Conferences/National/2005/

