
Competitions have a long history in artificial intelligence.
Events such as RoboCup, the Netflix Prize, the Trading
Agent Competition, the International Planning Compe-

tition, the General Game Playing Competition, the AAAI Com-
puter Poker Competition, and the DARPA Grand Challenge
have succeeded in raising awareness and stimulating research
about their respective topics. The empirical, problem-oriented
nature of these competitions can be an important counter-
weight to traditional research efforts, which often focus more
on theoretical results and algorithmic innovation. Competition
results provide a barometer for which approaches are popular,
effective, and scalable to challenging problems. The competitive
nature of the events provides an incentive to transform theo-
retical ideas into practical tools, enabling the field to reap the
benefits of its scientific progress.

The field of reinforcement learning (RL) (Kaelbling, Littman,
and Moore 1996; Sutton and Barto 1998), is ripe for such a trans-
formation. Broadly speaking, RL researchers aim to develop
online algorithms for optimizing behavior in sequential decision
problems (SDPs), wherein agents interact with typically
unknown environments and seek behavior that maximizes their
long-term reward. Many challenging and realistic domains can
be cast in this framework (for example, robot control, game
playing, and system optimization), so RL algorithms contribute
to the broad goals of artificial intelligence. In recent years, many
advances have been made in RL theory and algorithms, partic-
ularly in areas such as balancing exploration and exploitation,

Articles

SUMMER 2010 81Copyright © 2010, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

The Reinforcement
Learning Competitions

Shimon Whiteson, Brian Tanner,
and Adam White

n This article reports on the reinforcement
learning competitions, which have been held
annually since 2006. In these events,
researchers from around the world developed
reinforcement learning agents to compete in
domains of various complexity and difficulty.
We focus on the 2008 competition, which
employed fundamentally redesigned evaluation
frameworks that aimed systematically to
encourage the submission of robust learning
methods. We describe the unique challenges of
empirical evaluation in reinforcement learning
and briefly review the history of the previous
competitions and the evaluation frameworks
they employed. We describe the novel frame-
works developed for the 2008 competition as
well as the software infrastructure on which
they rely. Furthermore, we describe the six com-
petition domains, present selected competition
results, and discuss the implications of these
results. Finally, we summarize the 2009 com-
petition, which used the same evaluation
framework but different events, and outline
ideas for the future of the competition.

function approximation, policy search, hierarchi-
cal methods, model-based approaches, partial
observability, and multiagent systems. To improve
the RL community’s expertise in developing prac-
tical learning systems, researchers recently began
organizing reinforcement learning competitions.1

This article reports on these events, in which
researchers from around the world developed rein-
forcement learning agents to compete in domains
of various complexity and difficulty. We focus on
the 2008 competition, which employed funda-
mentally redesigned evaluation frameworks that
aimed systematically to encourage the submission
of robust learning methods.

This article is organized as follows. The next sec-
tion gives a brief background on reinforcement
learning. We then describe the challenges of
empirical evaluation in RL, and, after that, we
review the recent history of RL competitions. The
evaluation frameworks section introduces the eval-
uation frameworks developed for the 2008 compe-
tition, and the software infrastructure and logistics
section describes the competition’s software infra-
structure. We then describe the six competition
domains used in 2008, present selected competi-
tion results from 2008, and summarize the 2009
competition. Finally, we discusses the implications
of the competition results and outline ideas for the
future of the competition.

Reinforcement Learning
The field of reinforcement learning aims to devel-
op algorithms for solving sequential decision prob-
lems, in which an autonomous agent strives to
maximize a scalar reward signal by choosing
actions in response to observations at a series of
time steps. At each time step, the environment gen-

Articles

82 AI MAGAZINE

erates observations and rewards in response to the
actions emitted by the agent. The observations are
correlated with the true state of the system, which
evolves over time in response to the agent’s actions
according to a fixed transition function. The agent’s
behavior is determined by its policy, �, a mapping
from observations to actions. Figure 1 depicts the
interaction between the agent and its environ-
ment.

RL is distinct from traditional supervised
machine learning in two fundamental ways. First,
supervised learning is passive while RL is active. In
supervised learning, a learning algorithm is pre-
sented with a set of observation-response pairs,
and its objective is to learn an appropriate map-
ping from observations to responses. In reinforce-
ment learning, the agent must actively select
actions in response to observations from the envi-
ronment at each step. The correct answer is not
explicitly provided; instead, the agent receives a
reward for the specific action that was selected.
Second, RL has a temporal structure that is not
present in supervised learning. The agent strives to
maximize the expected sum of future rewards, as
opposed to greedily choosing the action with the
greatest immediate reward. Which action is most
desirable depends on the expected availability of
rewards in the future.

Evaluating Reinforcement
Learning Algorithms

The success and fairness of any competition
depends critically on how the performance of the
participants is evaluated. Developing an effective
framework for evaluations for the 2008 Reinforce-
ment Learning Competition was challenging
because we elected to focus on online performance,
that is, how much reward is collected as the agent
explores the environment and learns how to
behave. Consequently, it is not sufficient simply to
measure the quality of the final policy that is pro-
duced by a given RL agent.

Focusing on online performance has the advan-
tage of measuring an agent’s ability to balance
exploration (trying out novel behaviors) and
exploitation (using the best policy found so far),
which many researchers consider a central chal-
lenge of RL. However, the online nature of our
evaluation criteria introduces some challenges into
the competition process.

On one hand, we want to make the competition
environments available to the participants so that
they can experiment with them and improve their
agents before the end of the competition. On the
other hand, we want those environments to be
unfamiliar to the agents at the end of the compe-
tition, so we can evaluate their ability to explore
them efficiently and to learn online, not merely to

rt+1

ot+1

rt

ot

at

Agent

Environment

reward

observation

action

Figure 1. Interaction between an Agent and an Environment.

employ prelearned policies. In other words, we
need to give the participants an opportunity to
train, but still save some surprises for testing.

In traditional supervised learning, this issue is
typically resolved by using separate training data
and testing data. The training data is a fixed supply
of information that limits the learner’s experience
before being tested. The algorithm can later be
evaluated using the testing data. This process is
suitable for supervised learning because it is pas-
sive: the training and testing data are static obser-
vation-response pairs, which can be stored in a
data file. The active, temporal aspects of RL require
that the SDPs be represented as interactive com-
puter programs, called environment programs,
instead of fixed data sets.

Previous RL competitions, which we review in
the next section, have used various evaluation
frameworks to address these challenges. In the sub-
sequent section, we describe the fundamentally
redesigned evaluation frameworks used in the
2008 competition, which more systematically
address the difficulties described here.

RL Competition History
The process leading to the 2008 competition began
in 2004 with a workshop at the Neural Informa-
tion Processing Systems (NIPS) Conference called
“Reinforcement Learning Benchmarks and Bake-
Offs.” The goals of this workshop included assem-
bling a list of candidate benchmark problems,
brainstorming specifications for implementing
such problems, and planning a future benchmark-
ing event. In 2005, the first benchmarking event
occurred at another NIPS workshop, “Reinforce-
ment Learning Benchmarks and Bake-Offs II.” This
event, as well as all later events, relied on RL-Glue
(White 2006, Tanner and White 2009), a platform-
and language-independent interface for connect-
ing agent, environment, and experiment pro-
grams. The organizers selected six simple, well-
known RL problems: three with continuous
observations (Mountain Car, Puddle World, and
Cart-Pole) and three with discrete observations
(Blackjack, Sensor Network, and Taxi). The event
also involved two triathlons, in which a single
agent ran on all three continuous or discrete
domains.

Performance was measured online, that is, based
on the cumulative reward the agent received across
a fixed number of episodes. There was no separa-
tion between training and testing and no attempt
to restrict the agent’s prior knowledge of the
domain dynamics: the agents did not have to learn
during the competition.

A second benchmarking event occurred in 2006
with a workshop at the International Conference
on Machine Learning (ICML), called “Reinforce-

ment Learning and Benchmarking Event.” Like its
predecessor, this event featured several simple,
well-known problems (Mountain Car, Cart-Pole,
Blackjack, and Cat-Mouse). However, it also fea-
tured a new, large-scale problem: controlling a sim-
ulated octopus arm (Yekutieli et al. 2005). This
problem, which has high-dimensional continuous
observation and action spaces, was designed to
challenge RL researchers to demonstrate methods
that scale up to more challenging settings. Unlike
the previous event, evaluation was separated into
training and testing phases. Participants were
allowed unlimited runs on training SDPs but were
evaluated on a different, but qualitatively similar,
set of test SDPs. Only a final window of the testing
episodes was counted toward final scores, allowing
agents to learn without penalty in early episodes.
Hence, the event measured online performance
after a period of free exploration with the test
SDPs.

These workshops and benchmarking events led
to the “First Annual Reinforcement Learning Com-
petition,” held at NIPS at the end of 2006. Unlike
the previous benchmarking events, this event was
a real competition with official winners who were
awarded small prizes and invited to present their
approaches at the associated workshop. As in pre-
vious years, the event featured well-known bench-
mark problems or variations thereof: three with
discrete observations (Cat-Mouse, Garnet, and
Tetris) and three with continuous observations
(Cart-Pole, Nonstationary Mountain Car, and Pud-
dle World).

The competition featured the first attempts to
force participants to submit more general learning
algorithms through use of randomization and
nonstationary dynamics, that is, the transition
probabilities changed over time. For example, in
Cat-Mouse, the algorithms were tested on several
randomly generated maps. In Garnet, the transi-
tion function was randomly altered at regular
intervals. In Nonstationary Mountain Car, the
force of gravity was periodically changed. These
domain characteristics made it less feasible for
competitors to succeed using prelearned policies in
place of online learning algorithms. The competi-
tion also featured a pentathlon for which only two
of the five domains were available in advance for
training. This approach forced participants to sub-
mit general-purpose methods that could discover
good policies in arbitrary environments.

All of these events and the evaluation frame-
works they employed laid the foundation for the
2008 Reinforcement Learning Competition. The
next section describes the new evaluation frame-
works designed for this competition.

Articles

SUMMER 2010 83

Evaluation Frameworks
As we described earlier, the interactive nature of RL
creates new challenges for designing an evaluation
framework to measure the performance of learning
algorithms. The first challenge is the need for a plat-
form- and language-independent interface connect-
ing agent and environment programs. Fortunately,
this problem has already been addressed by RL-Glue
(White 2006, Tanner and White 2009), an open
source software project that has been used in every
benchmarking event since its first release in 2005.

The second challenge concerns the conflicting
goals of providing participants with SDPs to devel-
op and debug their learning algorithms but later
evaluating the online learning performance of
those same algorithms on unfamiliar SDPs. This
issue was not systematically addressed in earlier
events. Thus, a primary goal of the 2008 competi-
tion was to design fundamentally new evaluation
frameworks that would encourage the use of learn-
ing algorithms that continue to learn in the evalu-
ation phase instead of only reusing what was
learned from the training phase.

For the 2008 competition, we addressed this
problem using evaluation frameworks with sepa-
rate training and test phases containing different
sets of SDPs. We created multiple, related SDPs for
each domain and split them into training and test
sets. The training SDPs were released at the begin-
ning of the competition and participants were
invited to use them for unlimited training. How-
ever, final performance in the competition was
based solely on cumulative reward accrued on the
test SDPs, which were hidden from the participants
until the end of the competition. In this way, the
need for online learning was preserved because
agents were evaluated based on their interactions
with environment programs whose details they
had not seen before. At the same time, the oppor-
tunity to train on related problems gave partici-
pants enough prior knowledge to make learning
practical. This approach was employed in two dif-
ferent evaluation frameworks, the generalized

Articles

84 AI MAGAZINE

framework and the altered framework, which we
detail in the next two subsections.

We also employed a third evaluation framework
that takes a more direct approach to encouraging
online learning: eliminating the training phase
altogether. Since no training SDPs are released, par-
ticipants must develop general-purpose learning
algorithms that will learn online on previously
unseen SDPs during the test phase. The resulting
unknown framework is described a little later on.

The primary goal of these frameworks was to
encourage submission of robust learning methods.
A secondary goal was to motivate participants to
begin preparing their agents early and to continu-
ally improve those agents throughout the compe-
tition. To this end, we augmented the training and
testing phases with a third, intermediate proving
phase, inspired by a similar setup for the Netflix
Prize. As with the training and testing phases, the
proving phase has its own set of SDPs. However,
participants are allowed to conduct runs on these
SDPs only once per week. While the results do not
count toward the official final scores, they are post-
ed automatically to publicly accessible leaderboards
on the web.

Note that in none of the phases of any of these
frameworks was there any attempt to limit or even
measure the computational resources used by the
participants. Instead, the competition focused on
sample complexity, that is, how many interactions
with its environment an agent needs to find a good
policy. We made this choice for two reasons. First,
sample complexity is more important than com-
putational complexity in many real-world prob-
lems, since computational resources are getting
continually cheaper but interacting with a real
environment remains expensive and dangerous.
Second, it is more practical, as measuring or con-
trolling the computational resources used by par-
ticipants would require a significantly different
and more complicated software infrastructure.

The remainder of this section describes in more
detail the three frameworks used in the 2008 com-
petition. Table 1 summarizes the differences

Framework Training Phase Proving Phase Testing Phase 2008 Domains

Generalized Multiple SDPs,
each drawn

from G

Multiple SDPs,
each drawn

from G

Multiple SDPs,
each drawn

from G

Mountain Car,
Tetris, Helicopter

Hovering

Altered 1 SDP 1 SDP similar
to training

1 SDP similar to
training

Keepaway,
Real-Time Strategy

Unknown None Multiple
arbitrarily

different SDPs

Multiple
arbitrarily

different SDPs

Polyathlon

Table 1. The Three Evaluation Frameworks Used in the 2008 Competition.

between them and lists the domains used with
each framework. The domains are further
described later in this article.

Generalized Framework
As mentioned above, one way to encourage learn-
ing in the evaluation phase is to use different SDPs
for training, proving, and testing. To do so, we
need a way to generate sets of related SDPs. In the
generalized framework, we formally describe the
dimensions along which these SDPs can vary and
define a distribution over the resulting space
(Whiteson et al. 2009). The training, proving, and
testing SDPs are then formed by drawing inde-
pendent samples from this distribution. As a result,
the SDPs in each of the three phases are independ-
ent and identically distributed (IID).

Formally, a generalized domain G: � → [0, 1] is
simply a probability distribution over a set of SDPs
�. Given such a domain, we can form training,
proving, and test sets by sampling repeatedly from
G. The learner’s score on each set is thus an aver-
age across multiple runs, with each run conducted
on a different SDP from the set. Note that G is not
known to the participants. However, they can try
to estimate it from the SDPs in the training set. Fur-
thermore, on each proving or testing run, the
learner’s interactions with the environment pro-
vide information about the specific SDP, drawn
from G, that it faces.

To excel in a generalized domain, a learner must
be robust to the variation represented by G. Except
in degenerate cases, no fixed policy will perform
well across many SDPs. Consequently, for strong
performance, learning is required during testing.
No matter how much learning is done with the
training set, the agent must still learn on each SDP
in the test set in order to excel. By including the
variation that we deem important in G, we can
ensure that only appropriately robust learners will
perform well.

Altered Framework
An advantage of the generalized framework is that,
by formalizing the way that SDPs can vary, it is
possible to generate independent training, prov-
ing, and test sets. However, the generalized frame-
work is not always feasible because the competi-
tion designers must have a thorough under -
standing of the domain in order to choose G such
that the resulting SDPs are interesting. Further-
more, complex environment programs may be so
computationally intense that evaluating an agent
on a single SDP takes days or even weeks. There-
fore, it can be impractical for training, proving,
and test sets to each contain multiple SDPs, as in
the generalized framework.

When the generalized framework is impractical,
we employ the altered framework instead. Only

three SDPs are used in total: one each for training,
proving, and testing. These SDPs are not formally
sampled from a distribution, and in principle, they
can be arbitrarily different. In practice, the compe-
tition designers create qualitatively similar train-
ing, proving, and test SDPs with variation in the
specific details. These changes ensure that learning
during evaluation will be valuable to the agent’s
performance.

The altered framework was inspired by the Gen-
eral Game Playing Competition, in which a differ-
ent set of games is used for training and testing,
with no formal relationship between the two. Par-
ticipants cannot rely on any IID guarantees but
instead must reason about the factors that the
competition designers are likely to find important
and try to design appropriately robust learning
agents.

Since only three SDPs need to be generated, the
altered framework is more practical for the compe-
tition administrators for problems that run slowly
or are not well understood. In addition, since no
distribution needs to be chosen, the proving and
testing SDPs do not have to be finalized before
releasing the training SDP and can even be
designed based on feedback about competitors’
experience with the training SDP. Furthermore, the
altered framework is useful for domains where, for
technical reasons, it is not practical to hide the
source code from the competitors. If the general-
ized framework was used in such cases, competi-
tors could easily deduce G.

Unknown Framework
The unknown framework eliminates any promise
of similarity between the training and testing
SDPs, with the goal of encouraging the develop-
ment of truly general-purpose agents that can
learn with little prior knowledge about the
domains that they face. Therefore, the training
SDPs in the unknown framework serve simply as a
technical check so that participants can ensure
their algorithms will not crash during testing. This
directly contrasts with both the generalized and
altered frameworks, which encourage participants
to leverage knowledge gained in the training phase
to improve performance in the test phase.

In the proving and test phases, the agents face a
suite of SDPs that can be arbitrarily different from
each other. Unlike in the generalized framework,
these SDPs are not drawn from any fixed distribu-
tion. Unlike in the altered framework, there is no
assumption that the various SDPs will be qualita-
tively similar: participants should aggressively test
the generality of their agents. Since it is easy to
devise SDPs that are significantly different from
each other, this is a challenging framework for par-
ticipants.

To ensure it remained feasible, all SDPs in the

Articles

SUMMER 2010 85

unknown event of the 2008 competition had
observation and action spaces of known, fixed
dimensionality. These constraints made it practical
to program one agent that could learn on all SDPs.
Nonetheless, the transition and reward dynamics
of each domain varied widely, requiring agents to
be robust in order to perform well in testing.

Software Infrastructure
and Logistics

Various methods of distributing software and con-
ducting test runs have been used in previous
events, ranging from distributing source code and
letting participants submit data files with results to
giving participants accounts on a server and requir-
ing them to log in to conduct test runs. For the
2008 competition we developed a new infrastruc-
ture designed to meet several criteria.

The most important criterion is secrecy. The
evaluation frameworks described in an earlier sec-
tion of this article necessitate a software design in
which it is possible to keep some information, for
example, the nature of the SDPs in the testing set,
hidden from participants. Otherwise, there is no
way to ensure that agents are actually learning dur-
ing the test phase of the competition. It is also
important that participants cannot easily modify
the software to give themselves undeserved advan-
tages. The software infrastructure should also per-

mit large experiments to run within a reasonable
time. For example, an experiment of tens of mil-
lions of steps should be feasible to complete with-
in 24 hours. Furthermore, the infrastructure
should be minimally restrictive in terms of what
programming languages or software libraries can
be used and should scale well with the number of
competitors so that the competition organizers do
not need to buy new computers or hire additional
staff to manage the infrastructure.

For the 2008 competition, we elected to allow
participants to download the competition software
and run it on their own machines. The software
was designed automatically to report the results of
proving and test runs to a central competition
server, which automatically updates the leader-
boards and a database of test results. This approach
gives participants maximal flexibility when devel-
oping their agents, as they are free to use whatev-
er hardware or software libraries they have avail-
able. It also simplifies administration of the
competition, as no extra machines or user
accounts need to be managed.

We distributed the software in the form of com-
piled Java classes because they are portable to
almost every platform and can be bundled into
compressed packages called JAR files. Because the
software uses RL-Glue, participants could still cre-
ate their agents in the programming language of
their choice. Java also lets us leverage RL-Viz,2 an
extension to RL-Glue that adds visualization and

Articles

86 AI MAGAZINE

Inelastic Wall

Goal Position

Figure 2. The Mountain Car Domain.

In this domain, an underpowered car must drive out of a valley.

dynamic configuration options. There were two
main concerns about distributing Java classes.
First, not all competition domains were previously
available in Java. We addressed this problem by
translating as many of them to Java as possible.
Second, malicious participants might be able to
decompile the classes and thus examine or alter
the source code. Therefore, we ran a source code
obfuscator over the JAR files before distributing
them. We also considered digitally signing the JAR
files so we would know if they had been altered but
eventually decided it was unnecessary, though that
may change in future competitions. To add extra
security, our software deferred downloading the
proving and testing SDPs until they were required.
The files were downloaded, used, and deleted by
our automated testing software without every
being seen by the participants.

2008 Competition Domains
The 2008 competition featured six domains with
various characteristics and overall difficulty. Each
domain has at least one characteristic that is con-
sidered challenging for current RL methods. These
challenges include continuous and high-dimen-
sional observations, large numbers of available
actions, dangerous actions, partial observability,
and noisy observations and actions. In this section,
we briefly describe each domain and its salient
characteristics.

Mountain Car
In the Mountain Car problem (Boyan and Moore
1995, Sutton 1996, White 2006), depicted in figure
2, the agent must drive an underpowered car out of
a valley. Because the car’s engine is not powerful
enough to drive straight out of the valley, it must
instead drive back and forth to gain enough
momentum to drive down one side of the valley
and out the other side. The agent strives to reach
this goal in as few steps as possible, using only
three actions: forward, backward, and neutral.

The Mountain Car domain is one of the most
frequently used RL test beds because it has several
interesting aspects that are still relevant today.
Mountain Car is a classic example of a delayed
reward problem: the agent receives a constant neg-
ative reward on each time step. This reward
scheme makes it difficult for the agent to assign
credit accurately to individual actions over a long
trajectory. The reward scheme also produces an
interesting exploration problem. Because all
actions provide the same reward, the agent cannot
learn to improve its policy until the car reaches the
top of the hill for the first time. Random explo-
ration strategies require a significant amount of
time to reach the goal for the first time because the
base of the hill is an attractor. A long sequence of

mostly optimal actions is necessary to reach the
top of the hill.

The Mountain Car domain was generalized by
perturbing the observations and the outcomes of
actions. The Mountain Car SDPs featured scaled,
translated, and noisy observations and stochastic
actions.

Tetris
The Tetris domain (Bertsekas and Tsitsiklis 1996;
Demaine, Hohenberger, and Liben-Nowell 2003;
Szita and Lörincz 2006), depicted in figure 3, is
based on the popular falling-blocks puzzle game.
At each step a piece falls one grid position. The
agent may change the orientation or position of
the piece with six actions: rotate left, rotate right,
move left, move right, fall to bottom, and drop one
space (no action). The board is represented as a bit
map indicating which squares on the wall are
occupied. The agent receives a positive reward for
each line eliminated, with exponentially more
reward for multiple lines removed at a time. There
is no penalty for filling the screen (ending an
episode).

Articles

SUMMER 2010 87

Figure 3. The Tetris Domain, Based on
the Popular Falling Blocks Puzzle.

One of the most interesting aspects of Tetris, as
a research problem, is the detail of the observation
data. Humans can look at a Tetris image and quick-
ly abstract high-level information about the game
needed to strategize and plan. Tetris has an enor-
mous number of possible board configurations, so
some abstraction over the board image is required.
Most successful agents use hand-designed, expert
game features or function approximation.

The Tetris domain was generalized by parame-
terizing the width and height of the board and the
probability distribution used to generate new
blocks. The reward function was also parameter-
ized: SDPs provided different bonus points for
eliminating multiple rows at a time.

Helicopter Hovering
In the Helicopter Hovering domain (Bagnell and
Schneider 2001, Ng et al. 2004), the agent must
hover a simulated helicopter in three-dimensional
space for a fixed number of steps. The helicopter is
controlled through four continuous actions repre-
senting the pitch of the main and tail rotors. The
reward is a direct function of the stability of the
helicopter’s hovering regime. A crash, however,
incurs a large negative reward. The helicopter sim-
ulator is based on data collected during actual

flights of an XCell Tempest helicopter, shown in
figure 4.

Helicopter Hovering is challenging for several
reasons. First, the transition dynamics are
extremely complex. Second, both the observation
and action spaces are continuous and high dimen-
sional. The latter is particularly problematic as
some traditional RL algorithms, for example,
many value function–based methods (Sutton 1988),
require enumerating the action space in order to
select a maximizing action. Third, the domain
involves high risk, as bad policies can crash the
helicopter, incurring catastrophic negative reward.
As a result, exploration must be conducted with
extreme care.

The Helicopter Hovering domain was general-
ized by parameterizing the wind velocity and
adding noise to the helicopter model simulation.

Keepaway
Keepaway (Stone et al. 2005; Stone, Sutton, and
Kuhlmann 2005) is a simulated robot soccer
domain built on the RoboCup Soccer Server (Noda
et al. 1998), an open source software platform that
has served as the basis of multiple international
competitions and research challenges. The server
simulates a full 11 versus 11 soccer game, complete

Articles

88 AI MAGAZINE

Figure 4. An Autonomous XCell Tempest Helicopter from Stanford University.

with noisy sensors and actuators. In the keepaway
subgame, depicted in figure 5, three keepers try to
retain possession of the ball while two takers try to
get the ball. A keeper can choose either to pass the
ball to another keeper or to hold the ball. The
game ends if a taker intercepts the ball, touches the
keeper with the ball, or if the ball goes out of
bounds. The takers follow a simple policy: go
directly toward the keeper that currently holds the
ball. The learning agent controls only one of the
three keepers, while the others follow a hand-cod-
ed policy.

Keepaway soccer presents many challenges to RL
methods, including high-dimensional observa-
tions, noisy observations and actions, and variable
delays in the effects of actions.

The keepaway problem was altered by changing
the players’ movement speed and the size of the
field and adjusting the stochasticity of actions.
Compared to the proving version of keepaway, the
testing problem featured faster movement, a small-
er field, and less noise.

Real-Time Strategy
The real-time strategy (RTS) domain, shown in fig-
ure 6, is a two-player game where each player has
a single construction base and two types of units:
fighters and workers. The workers harvest and
transport resources that are needed for building.
The fighters defend the workers and the base and
can attack the opponent’s units. Each player can
spend harvested resources to create new units at
the construction base. The players are restricted by
a “fog of war,” wherein they can only observe parts
of the map that are occupied by their units. The
learning agent controls one player and aims to
destroy the base of the other player, who is con-
trolled by a fixed policy.

The dynamic size of the observation and action
spaces in RTS poses a new challenge to the RL com-
munity. The amount of information available to
the agent depends on the number and placement
of the units. For example, if the agent loses units in
combat, it will have fewer actions available to it
and less information on which to base its deci-
sions. RTS is interesting because participants can
employ learning at various levels of abstraction.
One could use learning to determine the best way
to search for mineral patches on a variety of game
boards or to prefer certain high-level game strate-
gies based on the opponent’s behavior.

The RTS domain was altered in several ways for
the testing phase of the competition. The size and
armor of the construction base was increased. The
attack strength, armor, walk speed, and cost of
fighters was increased. The attack strength, walk
speed, and carrying capacity of workers was also
increased. Finally, the opponent was made more
aggressive: it initially attacks the agent with all

available units and then resorts to a more defen-
sive strategy if the initial assault fails.

Polyathlon
In the Polyathlon domain, the agent faces a series
of SDPs with continuous observations and discrete
actions. The SDPs are each variations and embell-
ishments on well-known environments from the
RL literature. The winner of the Polyathlon is the
agent that ranks best across all problems, relative
to the other entrants.

The Polyathlon is an interesting domain because
it challenges competitors to develop general-pur-
pose learning algorithms that do not significantly
depend on prior knowledge. Any particular prob-
lem in the Polyathlon could feature large observa-
tion and action spaces, noisy dynamics or danger-
ous exploration. The Polyathlon is meant to
encourage interest in making current learning
methods more robust in practical settings and
developing general learning algorithms that make
fewer assumptions about the dynamics and struc-
ture of the world.

The Polyathlon was the only domain in the
unknown framework. The set of testing problems

Articles

SUMMER 2010 89

Keepers

Takers

Figure 5. The Keepaway Domain.

In this domain, three keepers try to keep a ball within a square boundary and
away from two takers for as long as possible.

included two multiarmed bandit problems (simple
and associative) (Bellman 1956), two two-dimen-
sional navigation domains (continuous grid
world), three Cat-Mouse domains, Mountain Car,
Pole Swing Up, and the Acrobot problem (DeJong
and Spong 1994).

2008 Selected Results
Twenty-one different teams participated in the
2008 competition. The competition ended with a
workshop at ICML in Helsinki, Finland, at which
the results were announced. In this section, we
highlight the results in two of the competition
domains: Helicopter Hovering and Tetris.

Helicopter Hovering
Helicopter Hovering was selected as a domain for
the 2008 competition primarily because the action
space is high-dimensional and continuous, charac-
teristics known to be challenging to many RL
methods. However, competition results indicate
that participants primarily focused on a different
aspect of the problem: the difficulty of exploring
safely. In Helicopter Hovering, the agent receives
small negative rewards at each time step based on
how much it deviates from a target equilibrium
position. In addition, if the helicopter deviates

from this equilibrium too much, it crashes and
receives a very large negative reward. Consequent-
ly, performing well in testing depends critically on
avoiding crashing at all costs, as a single crash
could devastate the total score of an otherwise
excellent agent.

Because the domain was generalized, some
exploration was necessary, since each test SDP was
different from those seen in training. However, it
was critical to explore conservatively to minimize
the risk of testing a policy that might crash. In
practice, this requires beginning with policies that
have proven robust on all the training SDPs.

Six teams successfully completed test runs in
Helicopter Hovering, but only two of these teams
managed to avoid ever crashing the helicopter. The
winning agent was submitted by Rogier Koppejan
from the University of Amsterdam. Another agent,
submitted by Jose Antonio Martin H. of the Com-
plutense University of Madrid, achieved almost
identical performance to Koppejan’s agent on most
SDPs. However, three episodes resulted in crashes,
relegating this agent to a fourth place finish.

Koppejan’s agent (Koppejan and Whiteson
2009) used evolutionary computation (Goldberg
1989) to train a multilayer feed-forward neural net-
work controller for the helicopter. Before the com-
petition, Koppejan evolved separate specialized

Articles

90 AI MAGAZINE

Workers

Resource Patches

Construction
Bases

Fighters

Figure 6. The Real-Time Strategy Domain.

In this domain, two players compete for resources and survival.

controllers for each training SDP. He then tested
each of these controllers on all the training SDPs to
ensure they were robust enough to avoid crashing.
During each test run, the agent spent initial
episodes trying out each of these specialized con-
trollers. Whichever controller performed best in
that test SDP was then used for the remainder of
the run.

Tetris
Tetris was the most popular and most competitive
event during the competition, with 13 teams
active during the proving phase and 8 teams com-
pleting testing runs. Two aspects of the domain
proved the most challenging in practice for the
participants.

The first challenging aspect is the difference in
reward structure for the various test SDPs. Some
SDPs gave much larger bonuses than others for
eliminating multiple rows at a time. Eliminating
multiple rows at a time introduces greater risk
because the agent must first build up several
uncompleted rows. Identifying this trade-off in each
test SDP and customizing the agent’s policy accord-
ingly proved challenging for the participants.

The second challenging aspect is the way the
agent’s observations are represented: as bit vectors
corresponding to spaces on the board and the cur-
rently falling piece. This representation is quite
detailed and thus difficult to use as a basis for
learning. Participants found that it was necessary
either to extract higher-level features manually or
to learn a more complex nonlinear function capa-
ble of abstracting information from the bit vector.

The winner of the Tetris domain was a team con-
sisting of Bruno Scherrer, Christophe Thiery, and
Amine Boumaza of the French National Institute
for Research in Computer Science and Control
(INRIA). They used an offline method to optimize
the weights of a linear controller based on logged
game data. They started with the same higher-level
features as those developed by Colin Fahey, an
amateur AI researcher who has studied Tetris exten-
sively.3 They also added three new features encod-
ing the depth of each hole in the wall, the number
of rows with holes, and a diversity feature that is
activated if the columns have very different
heights. Their agent was trained in an iterative fash-
ion, alternating between playing games to gather
data and optimizing offline using the collected
data. Data was collected from the training and
proving SDPs and a simulator learned from data.

The 2009 Reinforcement
Learning Competition

Due to the success of the 2008 competition, the
community decided to organize another competi-
tion for 2009. Since RL-Glue and the competition

software infrastructure ran smoothly in 2008,
these were retained in 2009 with only minor
updates. Furthermore, because the generalized,
altered, and unknown evaluation frameworks were
well received by 2008 participants, these were also
retained.

Three domains from the 2008 competition were
featured: Helicopter Hovering, Tetris, and Poly-
athlon. However, the organizers changed the way
in which the specific SDPs in each domain were
varied. Helicopter Hovering added new wind pat-
terns. Tetris added an adversarial component in
which the environment chooses the pieces that are
expected to minimize the agent’s score. Polyathlon
added two new underlying problem types: Cart-
Pole and continuous Cat-Mouse.

In addition, three new domains were intro-
duced: the classic Acrobot problem (DeJong and
Spong 1994); Octopus Arm (Yekutieli et al. 2005),
which earlier appeared in the 2006 benchmarking
event; and Infinite Mario, a new domain devel-
oped by Markus Persson4 based on the classic video
game. Acrobot replaced Mountain Car and served
as an introductory problem that was feasible even
for novices in the RL community. Octopus Arm
posed a new challenge because it has large, multi-
dimensional continuous observation (82 dimen-
sions) and action (32 dimensions) spaces. Infinite
Mario, like the Real-Time Strategy domain from
2008, has an object-oriented observation space
(Diuk, Cohen, and Littman 2008). The number of
observations and their structure change as new ele-
ments (enemies, platforms, pits, and so on) are
encountered by the agent. Acrobot and Infinite
Mario were generalized domains, while Octopus
Arm was an altered domain.

The competition results demonstrated that
changing the way SDPs are varied within a domain
is enough to create significant new challenges. For
example, a model-based approach that excelled in
the 2008 Helicopter Hovering domain (Koppejan
and Whiteson 2009) proved unreliable in 2009,
since the new wind patterns violated critical
assumptions in the model. However, the results
also illustrated how difficult it can be to design
appropriate changes to the SDPs. For example, in
the Octopus Arm, the location of the goal was
changed in the testing SDP in order to necessitate
online learning. However, because the new goal
was closer to the agent’s initial position, the design-
ers inadvertently made the problem easier and the
winning agent, by systematically exploring the
space, was able to reach the goal more quickly.

Discussion and Conclusions
The 2008 and 2009 competitions were dramatical-
ly different from previous events in terms of eval-
uation frameworks, domain difficulty, and soft-

Articles

SUMMER 2010 91

ware infrastructure. In this section, we weigh the
effects, both positive and negative, of these
changes, based on results of the competition itself
and feedback given by participants at the conclud-
ing workshops.

Overall, the new software infrastructure was well
received. The 2008 and 2009 competitions were
the first events in which competitors could graph-
ically visualize their agents’ performance, track the
performance of other teams on leaderboards, dis-
cuss competition details with organizers and other
competitors through online forums, and bench-
mark their agents from their own computers over
the Internet. Previous competitions used a manual
approach to team registration, problem distribu-
tion, and benchmarking.

The new evaluation frameworks also generated
positive feedback. In particular, the weekly proving
runs made it manageable to deal with the chal-
lenges of generalized, altered, and unknown
domains. Many teams made significant perform-
ance improvements during the proving phase. At
the same time, basing performance only on the
final test runs allowed last minute entrants to
remain competitive. However, some participants
disliked the proving runs and requested the option
to keep proving results private in future competi-
tions. The primary concern was competitive: par-
ticipants did not want other teams knowing how
strong their agent was. The team that won the
Tetris event in 2008 deliberately put its agent into
“suicide mode” near the end of each proving run
to mislead other participants about the quality of
the agent.

Tetris was the most popular domain of the 2008
Reinforcement Learning Competition. Several of
the agents submitted for testing were capable of
eliminating tens of millions of rows per game;
these agents may surpass human performance in
Tetris, especially considering the additional chal-
lenges introduced in the generalized version of the
problem. However, the Tetris results also demon-
strate how competitive spirit can conflict with the
goals of the competition and the field. For exam-
ple, despite generalization of the domain, none of
the top three agents used online learning, and the
winning entry relied on multiple heuristics that are
unlikely to be generally useful for learning. This
outcome suggests that Tetris should be more
broadly generalized in future competitions. It also
underscores the difficulty of selecting an appropri-
ate generalization when setting up a competition.

The Polyathlon was the most popular domain in
the 2009 Reinforcement Learning Competition.
The increased participation demonstrates that
many of the 2009 competitors were interested in
online learning approaches and evaluating the
practicality of algorithms from the literature. The
2008 Tetris participants, by contrast, used a com-

bination of simulation, batch algorithms, and
game heuristics to achieve impressive perform-
ance. The shift in interest toward the Polyathlon,
where preprocessing data from the proving SDPs is
ineffective, suggests that the competitions have
promoted the development of practical and robust
methods.

The 2008 competition generated substantially
more interest than in previous years, with more
than 200 teams registering and downloading the
competition software. However, only 21 teams
completed test runs. Similar participation occurred
in 2009. In the future, we hope to find ways to
increase the fraction of interested teams that ulti-
mately compete. Nonetheless, both the 2008 and
2009 competitions had higher levels of participa-
tion than previous events. In addition, the time
and effort invested in developing the competitions
will benefit the RL community for some time to
come. All of the source code is available as an open
source project,5 and even now undergraduate and
graduate classes in artificial intelligence and
machine learning are reusing these events for
teaching tools and class research projects. Given
this trend, and the improvements in software
infrastructure and evaluation frameworks, we
believe the competitions have been a useful step in
the progress of empirical RL.

Future Competitions
There are many ways in which the competition
could be improved or expanded in the future. As
the software infrastructure evolves, new challenges
can be addressed by the RL community. Since the
start of the 2008 competition, several research
groups have released the source code for new
agents to the RL community. These agents may be
the basis for the winning submission to a future
competition. RL-Glue, the software on which the
competition is based, has also grown to support
new languages including Lisp and Matlab, making
future competitions even more accessible to the
community.

Other changes might involve different evalua-
tion frameworks. For example, Nouri et al. (2009)
recently proposed an empirical evaluation
methodology that focuses on policy evaluation, an
important subproblem of reinforcement learning.
Rather than learning online, the agent receives a
data set gathered under some policy and is evalu-
ated based on its ability to estimate that policy’s
value function, that is, the expected cumulative
reward it will accrue from each state. While this
approach does not provide a way to evaluate full
reinforcement learning agents, it is easy to employ.
It avoids the interactive complications of rein-
forcement learning and allows evaluations to be
based on fixed data sets. Consequently, data need

Articles

92 AI MAGAZINE

not be tied to a simulator but can be drawn from a
real-world setting, such as physical robots, or even
contributed by an industrial sponsor.

Future competitions could also include new
domains. Since one goal of the competition is to
encourage researchers to develop more practical
methods, one obvious choice would be to select
increasingly difficult domains each year. The
domains themselves could be made more difficult,
or alternatively, the parameter space of the gener-
alized domains could be broadened. Doing so
would require future participants to devise meth-
ods that are robust with respect to more and more
dimensions of variability. Increasing domain diffi-
culty in this way could encourage researchers to
develop robust methods in a bottom-up fashion:
by starting with very specific domains and gradu-
ally broadening them as much as possible.

The competition could also select a challenge
problem, one clearly too difficult for current meth-
ods, in the hopes of galvanizing the community
into making a big leap forward. This approach has
been successful for the DARPA Grand Challenge.
One way to find such a problem would be in indus-
try. Businesses currently face numerous challenges
that could be addressed using RL if sufficiently
robust methods could be found. Drawing on
industry for a challenge problem would ensure
that the resulting methods have real-world rele-
vance and would also attract sponsors and public-
ity to the event.

All of these possible extensions must be balanced
against the need to keep the competition simple
and comprehensible to outsiders and potential new
participants. Keeping a low barrier to entry is essen-
tial for maintaining momentum, increasing partic-
ipation, and further establishing the competition’s
importance within the community.

Acknowledgments
We wish to thank the sponsors of the 2008 and
2009 reinforcement learning competitions for
their generous support, which made possible the
prizes awarded to winners and travel grants
enabling students to attend the workshops. The
2008 sponsors were the Alberta Ingenuity Centre
for Machine Learning, the Toyota Research Insti-
tute of North America, and the Reinforcement
Learning and Artificial Intelligence Lab at the Uni-
versity of Alberta. The 2009 sponsors were the
Alberta Ingenuity Centre for Machine Learning,
the Reinforcement Learning and Artificial Intelli-
gence Lab at the University of Alberta, Interna-
tional Business Machines, Intel, MathWorks, the
University of Southern California, and the Insti-
tute for Creative Technologies.

We also wish to thank David Wingate and Car-
los Diuk, the chairs of the organizing and techni-
cal committees for the 2009 competition, for their

Articles

SUMMER 2010 93

www.cambridge.org/us/computerscience

800.872.7423

NIST Handbook
of Mathematical
Functions
Edited by Frank W. J. Olver,
Daniel W. Lozier,
Ronald F. Boisvert, and
Charles W. Clark
This handbook results from a
10-year project conducted by
the National Institute of Stan-
dards and Technology with an
international group of expert
authors and validators. Printed
in full color, it is destined to re-
place its predecessor, the classic
but long-outdated Handbook
of Mathematical Functions,
edited by Abramowitz and
Stegun. Included with every
copy is a CD with a searchable
PDF of each chapter.
$99.00: HB: 978-0-521-19225-5
$50.00: PB: 978-0-521-14063-8
966 pp.

Networks, Crowds,
and Markets
Reasoning About a
Highly Connected World
David Easley and
Jon Kleinberg
“In this remarkable book, David
Easley and Jon Kleinberg bring
all the tools of computer sci-
ence, economics, and sociology
to bear on one of the great sci-
entifi c challenges of our time:
understanding the structure,
function, and dynamics of net-
works in society. Clearly writ-
ten and covering an impressive
range of topics, “Networks,
Crowds, and Markets” is the
ideal starting point for any
student aspiring to learn the
fundamentals of the emerging
fi eld of network science.”

– Duncan Watts,
Principal Research Scientist,
Yahoo! Research, and author
of Six Degrees: The Science
of A Connected Age
$50.00: HB: 978-0-521-19533-1
736 pp.

Artificial Intelligence
Foundations of
Computational Agents
David L. Poole and
Alan K. Mackworth
$90.00: HB: 978-0-521-51900-7
688 pp.

Grammatical Inference
Learning Automata
and Grammars
Colin de la Higuera
$85.00: HB: 978-0-521-76316-5
432 pp.

Computational
Principles of
Mobile Robotics
Second Edition
Gregory Dudek and
Michael Jenkin
$99.00: HB: 978-0-521-87157-0

$49.99: PB: 978-0-521-69212-0
408 pp.

Cognitive Science
An Introduction to
the Science of the Mind
José Luis Bermúdez
$130.00: HB: 978-0-521-88200-2
$60.00: PB: 978-0-521-70837-1
400 pp.

Recommender Systems
An Introduction
Dietmar Jannach,
Markus Zanker,
Alexander Felfernig, and
Gerhard Friedrich
$70.00: HB: 978-0-521-49336-9
368 pp.

Prices are subject to change.

Fantastic New Titles from Cambridge!

field, C.; and Taylor, G. 2009. A Novel Benchmark
Methodology and Data Repository for Real-Life Rein-
forcement Learning. In Proceedings of the 26th Internation-
al Conference on Machine Learning. New York: Association
for Computing Machinery.

Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2005.
Keepaway Soccer: From Machine Learning Testbed to
Benchmark. In Robocup-2005: Robot Soccer World Cup IX,
Volume 4020, 93–105. Berlin: Springer Verlag.

Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Rein-
forcement Learning in Robocup-Soccer Keepaway. Adap-
tive Behavior 13(3): 165–188.

Sutton, R. S. 1996. Generalization in Reinforcement
Learning: Successful Examples Using Sparse Coarse Cod-
ing. In Proceedings of Advances in Neural Information Pro-
cessing Systems 8, 1038–1044. Cambridge, MA: The MIT
Press.

Sutton, R. S. 1988. Learning to Predict by the Methods of
Temporal Differences. Machine Learning 3(1): 9–44.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: The MIT Press

Szita, I., and Lörincz, A. 2006. Learning Tetris Using the
Noisy Cross-Entropy Method. Neural Computation 18(12):
2936–2941.

Tanner, B., and White, A. 2009. RL-Glue: Language-Inde-
pendent Software for Reinforcement-Learning Experi-
ments. Journal of Machine Learning Research 10 (Septem-
ber): 2133–2136.

White, A. 2006. A Standard Benchmarking System for
Reinforcement Learning. Master’s Thesis, Department of
Computing, University of Alberta, Edmonton, Alberta,
Canada.

Whiteson, S.; Tanner, B.; Taylor, M. E.; and Stone, P. 2009.
Generalized Domains for Empirical Evaluations in Rein-
forcement Learning. Paper presented at the 4th Work-
shop on Evaluation Methods for Machine Learning,
Montreal, Quebec, Canada, 25 March.

Yekutieli, Y.; Sagiv-Zohar, R.; Aharonov, R.; Engel, Y.;
Hochner, B.; and Flash, T. 2005. A Dynamic Model of the
Octopus Arm. I. Biomechanics of the Octopus Reaching
Movement. Journal of Neurophysiology 94(2): 1443–1458.

Shimon Whiteson is an assistant professor at the Infor-
matics Institute at the University of Amsterdam. His
research focuses on single- and multiagent decision-theo-
retic planning and learning, especially reinforcement
learning. He served as the chair of the organizing com-
mittee for the 2008 Reinforcement Learning Competition.

Brian Tanner is a provisional Ph.D. candidate at the Uni-
versity of Alberta. His research focuses on empirical eval-
uation and comparison in artificial intelligence. He
served as the chair of the technical committee for the
2008 Reinforcement Learning Competition and the sen-
ior technical advisor in the 2009 competition.

Adam White is a provisional Ph.D. candidate at the Uni-
versity of Alberta. His research focuses on human-com-
puter interaction using reinforcement learning. He
served as the chair of the organizing committee for the
2006 Reinforcement Learning Competition, a member of
the organizing committee for the 2008 competition, and
a member of the technical committee for the 2009 com-
petition.

Articles

94 AI MAGAZINE

tireless efforts. Finally, we wish to thank all the
members of the organizing and technical commit-
tees as well as all the participants for helping make
the competitions successful.

Notes
1. See rl-competition.org.

2. See rl-viz.googlecode.com.

3. See www.colinfahey.com/tetris/tetris en.html.

4. See www.mojang.com/notch/mario.

5. See rl-competition.googlecode.com.

References
Bagnell, J., and Schneider, J. 2001. Autonomous Helicop-
ter Control Using Reinforcement Learning Policy Search
Methods. In Proceedings of the International Conference on
Robotics and Automation 2001, 1615–1620. Piscataway, NJ:
Institute of Electrical and Electronics Engineers, Inc.

Bellman, R. E. 1956. A Problem in the Sequential Design
of Experiments. Sankhya 16(3,4): 221–229.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neural Dynamic
Programming. Belmont, MA: Athena Scientific.

Boyan, J. A., and Moore, A. W. 1995. Generalization in
Reinforcement Learning: Safely Approximating the Value
Function. In Advances in Neural Information Processing Sys-
tems 7, 369–376. Cambridge, MA: The MIT Press.

Dejong, G., and Spong, M. W. 1994. Swinging Up the
Acrobot: An Example of Intelligent Control. In Proceed-
ings of the American Control Conference, 2158–2162. Pis-
cataway, NJ: Institute of Electrical and Electronics Engi-
neers, Inc.

Demaine, D. E.; Hohenberger, S.; and Liben-Nowell, D.
2003. Tetris Is Hard, Even to Approximate. In Proceedings
of the Ninth International Computing and Combinatorics
Conference, 351–363. Lecture Notes in Computer Science,
Volume 2697. Berlin: Springer.

Diuk, C.; Cohen, A.; and Littman, M. 2008. An Object-
Oriented Representation for Efficient Reinforcement
Learning. In Proceedings of the 25th International Confer-
ence on Machine Learning, 240–247. New York: Association
for Computing Machinery.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Cambridge, MA: Addi-
son-Wesley.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. P. 1996.
Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research 4: 237–285.

Koppejan, R., and Whiteson, S. 2009. Neuroevolutionary
Reinforcement Learning for Generalized Helicopter Con-
trol. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2009), 145–152. New York:
Association for Computing Machinery.

Ng, A. Y.; Coates, A.; Diel, M.; Ganapathi, V.; Schulte, J.;
Tse, B.; Berger, E.; and Liang, E. 2004. Inverted
Autonomous Helicopter Flight Via Reinforcement Learn-
ing. In Proceedings of the International Symposium on Exper-
imental Robotics, 363–372. Berlin: Springer.

Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998.
Soccer Server: A Tool for Research on Multiagent Systems.
Applied Artificial Intelligence 12(1): 233–250.

Nouri, A.; Littman, M. L.; Li, L.; Parr, R.; Painter-Wake-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

