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B The DARPA Urban Challenge was a compe-
tition to develop autonomous vehicles capable
of safely, reliably, and robustly driving in traf-
fic. In this article we introduce Boss, the
autonomous vehicle that won the challenge.
Boss is a complex artificially intelligent soft-
ware system embodied in a 2007 Chevy Tahoe.
To navigate safely, the vehicle builds a model of
the world around it in real time. This model is
used to generate safe routes and motion plans
both on roads and in unstructured zones. An
essential part of Boss’s success stems from its
ability to safely handle both abnormal situa-
tions and system glitches.
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L 2003 the Defense Advanced Research Projects Agency
(DARPA) announced the first Grand Challenge with the goal of
developing vehicles capable of autonomously navigating desert
trails and roads at high speeds. The competition was generated
as aresponse to a mandate from the United States Congress that
a third of U.S. military ground vehicles be unmanned by 2015.
To achieve this goal DARPA drew from inspirational successes
such as Charles Lindbergh’s May 1927 solo transatlantic flight
aboard the Spirit of St. Louis and the May 1997 IBM Deep Blue
chess victory over reigning world chess champion Garry Kas-
parov. Instead of conventional funded research, these successes
were organized as challenges with monetary prizes for achieving
specific goals.

DARPA’s intent was not only to develop technology but also
to rally the field of robotics and ignite interest in science and
engineering on a scale comparable to the Apollo program. Thus,
the Grand Challenges were born. Organized as competitions
with cash prizes awarded to the winners (§1 million in 2004; $2
million in 2005; and $2 million for first, $1 million for second,
and $500,000 for third in 2007). For the first two years the gov-
ernment provided no research funding to teams, forcing them
to be resourceful in funding their endeavours. For the 2007
Urban Challenge, some research funding was provided to teams
through research contracts. By providing limited funding, the
competition encouraged teams to find corporate sponsorship,
planting the seeds for strong future relationships between aca-
demia (the source of many of the teams) and industry.

The Grand Challenge! was framed as a cross-country race
where vehicles had to drive a prescribed route in the minimum
time. There would be no moving obstacles on the course, and
no one was allowed to predrive the course. To complete the
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Figure 1. The Urban Challenge Final Event.

Eleven teams qualified for the Urban Challenge final event. Eighty-nine teams from the United States and countries as far away as China
registered for the competition.

challenge, the autonomous vehicles would need to
drive the route in less than 10 hours. The compe-
tition was scoped to require driving both on and
off road, through underpasses, and even through
standing water. These diverse challenges lead to a
field with a wide variety of vehicles, ranging from
military high-mobility multipurpose wheeled
vehicles (HMMWYVs) and sport utility vehicles
(SUVs) to motorcycles and custom-built dune bug-
gies.

The first running of the Grand Challenge
occurred on March 3, 2004. The 142-mile course
was too difficult for the field, with the best vehicle
traveling 7.4 miles. Though described as a failure
in the popular press, the competition was a tech-
nical success; though the vehicles drove a small
fraction of the course, the top competitors did so at
high, sustained speeds that had not been previ-
ously demonstrated. Given the excitement and
promise generated by this first challenge, the com-
petition was rerun in 2005.

The 2005 Grand Challenge began at 6:30 AM on
October 8. Vehicles launched at intervals from
three start chutes in the Mojave desert. Approxi-
mately 7 hours later, the first of five finishers com-
pleted the challenge. Stanley (Thrun et al. 2006),
from Stanford University, finished first, in 6 hours
and 53 minutes, followed soon after by the two
Carnegie Mellon robots, Sandstorm and
Hlghlander (Urmson et al. 2006). Kat-5, funded by
the Gray Insurance Company, and TerraMax, a
30,000-pound behemoth developed by the
OshKosh Truck Corporation, rounded out the fin-
ishers. With five vehicles completing the course,
the 2005 Grand Challenge redefined the percep-
tion of the capability of autonomous mobile
robots.

The DARPA 2007 Urban Challenge? continued
the excitement generated by the previous chal-
lenges, engaging researchers from around the
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world to advance intelligent, autonomous vehicle
technology (figure 1). Competitors were required
to develop full-size autonomous vehicles cable of
driving with moving traffic in an urban environ-
ment at speeds up to 30 miles per hour (mph). The
vehicles were required to demonstrate capabilities
that were undeniably intelligent, including obey-
ing traffic rules while driving along roads, negoti-
ating intersections, merging with moving traffic,
parking, and independently handling abnormal
situations.

The Urban Challenge was fundamentally about
intelligent software. The most visible artifacts of
the research and development are the numerous
autonomous vehicles that were entered in the
competition, but the magic is really in the algo-
rithms that make these vehicles drive. The compe-
tition was a 60-mile race through urban traffic; a
drive that many people face daily. Thus the chal-
lenge was not in developing a mechanism that
could survive these rigors (most automotive man-
ufacturers do this already), but in developing the
algorithms and software that would robustly han-
dle driving, even during unexpected situations. To
complete the challenge, vehicles had to consis-
tently display safe and correct driving behavior;
any unsafe or illegal maneuver could result in elim-
ination from the competition.

In this article we present an overview of Boss,
the vehicle that won the Urban Challenge (figure
2). Boss was developed by a team of researchers
and students from Carnegie Mellon University,
General Motors, Caterpillar, Continental, and
Intel. Boss drives at speeds up to 30 mph by mon-
itoring its location and environment and con-
stantly updating its motion plan and the model of
the world around it. Throughout this article we
provide pointers to other publications that delve
into each area in greater depth.



Figure 2. Boss.

Boss uses a combination of 17 sensors to navigate safely in traffic at speeds up to 30 mph.

The Vehicle

Boss is a 2007 Chevrolet Tahoe modified for
autonomous driving. While it was built from the
chassis up for the Urban Challenge, it incorporat-
ed many lessons learned from the previous chal-
lenges. Like most of the vehicles that competed in
the Urban, we built Boss from a standard chassis,
to reduce mechanical complexity and benefit from
the reliability of a highly engineered platform. The
Tahoe provides ample room to mount sensors,
computers, and other components while main-
taining seating for four, which is important for safe
and efficient testing and development. Computer
control of the vehicle is made possible by using
electric motors to actuate the brake pedal, gear
selector, and steering column and through con-
troller area network (CAN) bus communication
with the engine control module. Despite these
changes, the Tahoe maintains its standard human

driving controls, and pressing a button reverts it to
a human-driven vehicle.

Boss integrates a combination of 17 different
sensors (a mixture of light detection and ranging
[lidar], radio detection and ranging [radar]|, and
global positioning system [GPS]). These sensors are
mounted to provide a full 360 degree field of view
around the vehicle. In many cases, sensor field of
views overlap, providing redundancy and in some
cases complementary information. The primary
sensor is a Velodyne HDL-64 lidar, mounted on the
top of the vehicle. This lidar provides dense range
data around the vehicle. Three Sick laser range
finders are used to provide a virtual bumper
around the vehicle while two other long-range
lidars are used to track vehicles at ranges of up to
100 m. Three Continental ACC radars are mount-
ed in the front (two) and rear (one) bumpers to
detect and track moving vehicles at long ranges. In
addition, a pair of Continental sensors (lidar and
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Figure 3. The Boss Software Architecture.

The software architecture consists of a perception layer that provides a model of the world to a classical three-tier con-

trol architecture.

radar) are mounted on pointable bases, enabling
Boss to “turn its head” to look long distances down
cross streets and merging roads. To determine its
location, Boss uses a combination of GPS and iner-
tial data fused by an Applanix POS-LV system. In
addition to this system, Boss combines data from a
pair of down looking SICK laser range finders to
localize itself relative to lane markings described in
its on-board map. The number of sensors incorpo-
rated into Boss provides a great deal of information
to the perception system.

For computation, Boss uses a CompactPCI chas-
sis with ten 2.16 gigahertz Core2Duo processors,
each with 2 gigabytes of memory and a pair of
gigabit Ethernet ports. Each computer boots off of
a 4 gigabyte flash drive, reducing the likelihood of
a disk failure. Two of the machines also mount 500
gigabyte hard drives for data logging, and all are
time synchronized through a custom pulse-per-
second adapter board. The computer cluster pro-
vides ample processing power, so we were able to
focus our efforts on algorithm development rather
than software optimizations.

Software Architecture

To drive safely in traffic, the software system must
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be reliable and robust and able to run in real time.
Boss’s software architecture is fundamentally a dis-
tributed system, enabling decoupled development
and testing. In all, 60 processes combine to imple-
ment Boss’s driving behavior. Architecturally these
are clustered into four major components: percep-
tion, mission planning, behavioral execution, and
motion planning (figure 3).

The perception component interfaces to Boss’s
numerous sensors and fuses the data into a coher-
ent world model. The world model includes the
current state of the vehicle, the current and future
positions of other vehicles, static obstacles, and the
location of the road. The perception system uses a
variety of probabilistic techniques in generating
these estimates.

The mission planning component computes the
fastest route through the road network to reach the
next checkpoint in the mission, based on knowl-
edge of road blockages, speed limits, and the nom-
inal time required to make special maneuvers such
as lane changes or U-turns. The route is actually a
policy generated by performing gradient descent
on a value function calculated over the road net-
work. Thus the current best route can be extracted
at any time.

The behavioral executive executes the mission



plan, accounting for traffic and other features in
the world (Ferguson et al. 2008). It encodes the
rules of the roads and how and when these rules
should be violated. It also implements an error
recovery system that is responsible for handling
off-nominal occurrences, such as crowded inter-
sections or disabled vehicles. The executive is
implemented as a family of state machines that
translate the mission plan into a sequence of
motion planning goals appropriate to the current
driving context and conditions.

The motion planning component takes the
motion goal from the behavioral executive and
generates and executes a trajectory that will safely
drive Boss toward this goal, as described in the fol-
lowing section. Two broad contexts for motion
planning exist: on-road driving and unstructured
driving.

Software Components

In this section we describe several of the key soft-
ware modules (world model, moving obstacle
detection and tracking, motion planning, intersec-
tion handling, and error recovery) that enable Boss
to drive intelligently in traffic.

World Model

Boss’s world model is capable of representing envi-
ronments containing both static and moving
obstacles. While this representation was developed
for the Urban Challenge, it can be also used more
broadly for general autonomous driving. The
world model includes the road network, static
obstacles, tracked vehicles, and the position and
velocity of Boss. The road network defines where
and how vehicles are allowed to drive, traffic rules
(such as speed limits), and the intersections
between roads. The road representation captures
sufficient information to describe the shape (the
number of lanes, lane widths, and geometry) and
the rules governing driving on that road (direction
of travel, lane markings, stop lines, and so on).
Static obstacles are those that do not move dur-
ing some observation period. This includes obsta-
cles off and on road. Examples of static obstacles
include buildings, traffic cones, and parked cars. In
contrast, dynamic obstacles are defined as objects
that may move during an observation period. With
this definition all vehicles participating actively in
traffic are dynamic obstacles even if they are tem-
porarily stopped at an intersection. By these defi-
nitions an object is either static or dynamic; it
should not be represented in both classes. An
object can, however, change from static to dynam-
ic and vice versa: a person may, for example, get
into a parked car and actively begin participating
in traffic. The information about whether an
object is static or dynamic is not tied exclusively to

its motion; it is an interpretation of the current
state of the world around the vehicle.

Each dynamic obstacle is represented by a series
of oriented rectangles and velocities. Each rectan-
gle represents the state, or predicted state, of the
obstacle at an instant in time over the next few sec-
onds. Additionally, each obstacle can be flagged as
either moving or not moving and as either observed
moving or not observed moving. An obstacle is
flagged as moving if its instantaneous velocity esti-
mate is above some minimum noise threshold.
The obstacle is not flagged as observed moving
until the instantaneous velocity remains above a
noise floor for some threshold time. Similarly, a
moving obstacle does not transition from observed
moving to not observed moving until its instanta-
neous velocity remains below threshold for some
large amount of time. These flags provide a hys-
teretic semantic state that is used in the behavioral
executive to improve behavior while maintaining
the availability of full fidelity state information for
motion planning and other modules.

Static obstacles are represented in a grid of regu-
larly spaced cells. The advantages of this represen-
tation are that it provides sufficient information
for motion planning and is relatively inexpensive
to compute and query. The disadvantages are that
this simple representation makes no attempt to
classify the type of obstacle and uses a relatively
large amount of memory. To generate the map,
range data is first segmented into ground and non-
ground returns and then accumulated in a map
using an occupancy gridlike algorithm. To main-
tain a stable world representation, dynamic obsta-
cles that are flagged as not observed moving and
not moving are painted into the map as obstacles.
Once a dynamic obstacle achieves the state of
observed moving, the cells in the map that it over-
laps are cleared. In the process of building the stat-
ic obstacle map, an instantaneous obstacle map is
generated. This map contains all static and dynam-
ic obstacles (that is, data associated to dynamic
obstacle hypotheses with the observed moving flag
set are not removed). This map is much noisier
than the static obstacle map and is used only for
validating potential moving obstacle tracks within
the dynamic obstacle tracking algorithms.

Moving Obstacle Detection and Tracking

The moving obstacle detection and tracking algo-
rithms fuse sensor data to generate a list of any
dynamic obstacles in a scene (Darms, Rybski, and
Urmson 2008). The tracking system is divided into
two layers: a sensor layer and a fusion layer (see fig-
ure 4). The sensor layer includes modules that are
specialized for each class of sensor and runs a mod-
ule for each physical sensor on the vehicle. The
sensor layer modules perform sensor-specific tasks
such as feature extraction, validation, association,
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Figure 4. The Moving Obstacle Tracking System Is Decomposed into Fusion and Sensor Layers.

and proposal and observation generation. Each of
these tasks relies on sensor-specific knowledge,
generally encoded as heuristics; these are the
important details that enable the machinery of the
Kalman filter to work correctly. For example, radar
sensors may generate a specific class of false echoes
that can be heuristically filtered, but the filtering
approach would be irrelevant for a lidar or even a
different class of radar. By encapsulating these sen-
sor-specific details within sensor modules we were
able to modularize the algorithms and maintain a
clean, general implementation in the fusion layer.

The fusion layer combines data from each of the
sensor modules into the dynamic obstacle list,
which is communicated to other components. The
fusion layer performs a global validation of sensor
observations, selects an appropriate tracking mod-
el, incorporates measurements into the model and
predicts future states of each obstacle. The global
validation step uses the road network and instan-
taneous obstacle map to validate measurements
generated by the sensor layer. Any observation
either too far from a road, or without supporting
data in the instantaneous obstacle map, is discard-
ed. For each remaining observation, an appropriate
tracking model is selected, and the state estimate
for each obstacle is updated. The future state of
each moving obstacle is generated by either extrap-
olating its track (over short time intervals) or by
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using the road network and driving context (for
long time intervals).

Motion Planning

Motion planning is responsible for moving the
vehicle safely through the environment. To do
this, it first creates a path toward the goal, then
tracks it by generating a set of candidate trajecto-
ries following the path to varying degrees and
selecting the best collision-free trajectory from this
set. During on-road navigation, the motion plan-
ner generates its nominal path along the center
line of the desired lane (Ferguson, Howard, and
Likhachev 2008a). A set of local goals are selected
at a fixed longitudinal distance down this center
line path, varying in lateral offset to provide sever-
al options for the planner. Then, a model-based
trajectory generation algorithm (Howard et al.
2008) is used to compute dynamically feasible tra-
jectories to these local goals. The resulting trajec-
tories are evaluated against their proximity to stat-
ic and dynamic obstacles, their distance from the
center line path, their smoothness, and various
other metrics to determine the best trajectory for
execution by the vehicle. This technique is suffi-
ciently fast and produces smooth, high-speed tra-
jectories for the vehicle, but it can fail to produce
feasible trajectories when confronted with aberrant
scenarios, such as blocked lanes or extremely tight



turns. In these cases, the error recovery system is
called on to rescue the system.

When driving in unstructured areas the motion
planner’s goal is to achieve a specific pose (Fergu-
son, Howard, and Likhachev 2008b). To achieve a
pose, a lattice planner searches over vehicle posi-
tion, orientation, and velocity to generate a
sequence of feasible maneuvers that are collision
free with respect to static and dynamic obstacles.
This planner is much more powerful and flexible
than the on-road planner, but it also requires more
computational resources and is limited to speeds
below 15 mph. The recovery system leverages this
flexibility to navigate congested intersections, per-
form difficult U-turns, and circumvent or over-
come obstacles that block the progress of the vehi-
cle. In these situations, the lattice planner is
typically biased to avoid unsafe areas, such as
oncoming traffic lanes, but this bias can be
removed as the situation requires.

Intersection Handling

Correctly handling precedence at intersections is
one function of the behavioral executive (Baker
and Dolan 2008). Within the executive, the prece-
dence estimator has primary responsibility for
ensuring that Boss is able to safely and robustly
handle intersections. The precedence estimator
encapsulates all of the algorithms for determining
when it is safe to proceed through an intersection.
Before entering the intersection, the intersection
must be clear (both instantaneously and through-
out the time it predicts Boss will take to travel
through the intersection) and Boss must have
precedence. The precedence order is determined
using typical driving rules (that is, the first to arrive
has precedence through the intersection and in
cases of simultaneous arrival, yield to the right).
The precedence estimator uses knowledge of the
vehicle’s route, to determine which intersection
should be monitored, and the world model, which
includes dynamic obstacles around the robot, to
calculate the precedence ordering at the upcoming
intersection. To ensure robustness to temporary
noise in the dynamic obstacle list, the algorithm
for computing precedence does not make use of
any information beyond the geometric properties
of the intersection and the instantaneous position
of each dynamic obstacle. Instead of assigning
precedence to specific vehicles, precedence is
assigned to individual stop lines at an intersection,
using a geometric notion of “occupancy” to deter-
mine arrival times. Polygons are computed around
each stop line, extending backward along the
incoming lane by a configurable distance and
exceeding the lane geometry by a configurable
margin. If the front bumper of a moving obstacle
is inside this polygon, it is considered an occupant
of the associated stop line. Boss’s front bumper is

added to the pool of front bumpers and is treated
in the same manner to ensure equitable estimation
of arrival times. Figure 5 shows a typical occupan-
cy polygon extending three meters back along the
lane from the stop line. Once the polygon becomes
occupied the time is recorded and used to estimate
precedence. To improve robustness of the dynam-
ic obstacle list, the occupancy state is not cleared
instantly when there is no obstacle in the polygon.
Instead, the polygon remains occupied for a small
amount of time. Should an obstacle reappear in
the polygon in this time, the occupancy state of
the polygon is maintained. This allows moving
obstacles to flicker out of existence for short inter-
vals without disturbing the precedence ordering.

In cases where Boss stops at an intersection and
none of the other vehicles move, Boss will wait 10
seconds before breaking the deadlock. In this case
the precedence estimator assumes that the other
traffic at the intersection is not taking precedence
and asserts that Boss has precedence. In these situ-
ations other elements of the behavioral executive
limit the robot’s maximum speed to 5 mph, caus-
ing it to proceed cautiously through the intersec-
tion. Once the robot has begun moving through
the intersection, there is no facility for aborting the
maneuver, and the system instead relies on the
motion planner’s collision-avoidance algorithms
and, ultimately, the intersection recovery algo-
rithms to guarantee safe, forward progress should
another robot enter the intersection at the same
time.

Error Recovery

Despite best efforts to implement a correct and reli-
able system, there will always be bugs in the imple-
mentation and unforeseen and possibly illegal
behavior by other vehicles in the environment.
The error recovery system was designed to ensure
that Boss handles these situations and “never gives
up.” To this end, a good recovery algorithm should
generate a sequence of nonrepeating motion goals
that gradually accept greater risk; it should adapt
behavior to the driving context, since each context
includes road rules that should be adhered to if
possible and disregarded only if necessary in a
recovery situation; and finally, the recovery system
should also be kept as simple as possible to reduce
the likelihood of introducing further software
bugs.

Our approach is to use a small family of error
recovery modes and maintain a recovery level.
Each recovery mode corresponds to a nominal
driving context (driving down a lane, handling an
intersection or maneuvering in an unstructured
area). When in normal operation, the recovery lev-
el is zero, but as failures occur, it is incremented.
The recovery level is used to encode the level of
risk that is acceptable. It is important to note that
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the recovery goal-selection process does not explic-
itly incorporate any surrounding obstacle data,
making it intrinsically robust to transient environ-
mental effects or perception artifacts that may
cause spurious failures in other subsystems.

All recovery maneuvers are specified as a set of
poses to be achieved and utilize the movement
zone lattice planner to generate paths through
potentially complicated situations. The successful
completion of any recovery goal returns the sys-
tem to normal operation, resetting the recovery
level. Should the same, or a very similar, normal
goal fail immediately after a seemingly successful
recovery sequence, the previous recovery level is
reinstated instead of simply incrementing from
zero to one. This bypasses the recovery levels that
presumably failed to get the system out of trouble
and immediately selects a goal at a higher level.

The on-road recovery algorithm involves gener-
ating goals at incrementally greater distances down
the current road lane to some maximum distance.
These forward goals (goals 1, 2, 3 in figure 6a) are
constrained to remain in the original lane of trav-
el. If none of the forward goals succeed, a goal is
selected a short distance behind the vehicle (goal
4) with the intent of backing up to provide a new
perspective. After backing up, the sequence of for-
ward goals is allowed to repeat once more with an
offset, after which continued failure triggers high-
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er-risk maneuvers. For example, if there is a lane
available in the opposing direction, the road is
eventually marked as blocked, and the system
issues a U-turn goal (goal 5) and attempts to follow
an alternate path to the goal. The intersection
recovery algorithm involves attempting to navi-
gate alternate paths through an intersection and
then alternative routes through the road network.
The desired path through an intersection is a
smooth interpolation between the incoming and
outgoing lanes that may be blocked by some obsta-
cle in the intersection or may be infeasible to drive.
Thus, the first recovery level (goal 1 in figure 6b) is
to try to achieve a pose slightly beyond the origi-
nal goal using the lattice planner, with the whole
intersection as its workspace. This quickly recovers
the system from small or spurious failures in inter-
sections and compensates for intersections with
turns that are tighter than the vehicle can easily
make. If the first recovery goal fails, alternate
routes out of the intersection (goals 2, 3, 4) are
attempted until all alternate routes to the goal are
exhausted. Thereafter, the system removes the con-
straint of staying in the intersection and selects
goals incrementally further out from the intersec-
tion (goals 5, 6).

The unstructured zone recovery procedure varies
depending on the current objective. Initially, the
algorithm selects a sequence of goals in a regular,



Original
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Figure 6. Boss Uses Context-Specific Recovery Goals to Provide Robustness
to Software Bugs and Abnormal Behavior of Other Vehicles.

triangular pattern, centered on the original goal as
shown in figure 6(c). If, after attempting this com-
plete pattern, the vehicle continues to fail to make
progress, a more specialized recovery process is
invoked. For parking spot goals, the pattern is con-
tinuously repeated with small incremental angular
offsets, based on the assumption that the parking
spot will eventually be correctly perceived as emp-
ty, or the obstacle (temporarily) in the spot will
move. If the current goal is to exit the parking lot,

the algorithm tries first to use alternative exits, if
those exits fail, then the algorithm issues goals to
locations on the road network outside of the park-
ing lot, giving the lattice planner free reign in gen-
erating a solution out of the parking lot.

An independent last-ditch recovery system
monitors the vehicle’s motion. If the vehicle does
not move at least one meter every five minutes, it
overrides any other goals with a randomly selected
local motion. The hope is that some small local
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Figure 7. The Urban Challenge Final Event Was Held on a Road Network in and around the Former George Air Force Base.

motion will either physically dislodge the vehicle
or, by changing the point of view, clear any arti-
facts due to noisy perceptions that are causing the
failure. Upon successful completion of this
motion, the recovery level is reset, enabling the
vehicle to continue on its way. This functionality
is analogous to the “wander” behavior (Brooks
1986).

The components described in this section are
just a few examples of the autonomy components
that caused Boss to drive safely. For a more in
depth overview, we point the reader to Urmson et
al. (2008)

Performance

During testing and development, Boss completed
more than 3000 kilometers of autonomous driv-
ing. The most visible portion of this testing
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occurred during qualification and competition at
the DARPA Urban Challenge. The event was held
at the former George Air Force Base in Victorville,
California, USA (figure 7). During qualification,
vehicles were required to demonstrate their abili-
ties in three test areas. Area A required the
autonomous vehicles to merge into and turn
across dense moving traffic. Vehicles had to judge
the size of gaps between moving vehicles, assess
safety, and then maneuver without excessive
delay. For many of the vehicles, this was the most
difficult challenge, as it involved significant rea-
soning about moving obstacles. Area B was a rela-
tively long road course that wound through a
neighborhood. Vehicles were challenged to find
their way through the road network while avoid-
ing parked cars, construction areas, and other road
obstacles but did not encounter moving traffic.
Area C was a relatively short course but required



autonomous vehicles to demonstrate correct
behavior with traffic at four-way intersections and
to demonstrate rerouting around an unexpectedly
blocked road. Boss demonstrated safe and reliable
driving across all of these areas and was the first
vehicle to qualify for the Urban Challenge compe-
tition.

During the final event, the 11 finalists were
required to drive 52 miles in and around the base
while interacting with each other and fifty human-
driven vehicles. Six of the 11 teams that entered
the final competition completed the course
(Buehler, Lagnemma, and Singh 2008). Boss fin-
ished approximately 19 minutes faster than the
second-place vehicle, Junior (from Stanford Uni-
versity), and 26 minutes ahead of the third-place
vehicle, Odin (from Virginia Polytechnic Institue
and State University). The vehicles from Cornell
University, the Massachusetts Institute of Tech-
nology, and the University of Pennsylvania round-
ed out the finishers, but each of these vehicles
required some human intervention to complete
the course. All of the vehicles that completed the
challenge performed impressively with only rela-
tively minor driving errors: Boss twice incorrectly
determined that it needed to make a U-turn, result-
ing in driving an unnecessary 2 miles; Junior had
a minor bug that caused it to repeatedly loop twice
through one section of the course; and Odin
incurred a significant GPS error that caused it to
drive partially off the road for small periods of
time. Despite these glitches, these vehicles repre-
sent a new state of the art for autonomous urban
driving.

During the final competition, the value of Boss’s
error recovery system was demonstrated on 17
occasions. All but 3 of these errors were resolved
by the first error recovery level, which, in general,
meant that an outside observer would not detect
that anything untoward had occurred. The
remaining three recoveries consumed more than
half of the 11 minutes the vehicle spent in error
recovery modes and were generally due to soft-
ware bugs or sensor artifacts. For example, the U-
turn mistakes described above were due to a com-
bination of perception and planning bugs that
caused the system to believe that the path forward
along the current lane was completely and per-
sistently blocked by other traffic when there was,
in fact, no traffic at all. After repeated attempts to
move forward, the recovery system declared the
lane fully blocked, commanded a U-turn, and fol-
lowed an alternate route to its goal. While subop-
timal, this behavior demonstrated the recovery
system’s ability to compensate for subtle but
potentially lethal bugs in the software system. The
end result is that Boss demonstrated robust auton-
omy in the face of the unexpected and its own
shortcomings.

Discussion

The Urban Challenge was a compelling demon-
stration of the state of the art in autonomous
robotic vehicles. It has helped to reinvigorate belief
in the promise of autonomous vehicles. While the
Urban Challenge is not wholly representative of
daily driving, it does represent a significant step
toward achieving general driving. Some of the
remaining challenges include diagnostics, valida-
tion, improved modeling, and autonomous vehi-
cle and driver interaction.

Diagnostics: Tt is essential that autonomous vehi-
cles understand when they are in a safe working
condition and when they should not be operated.
Reliable detection and diagnosis of certain classes
of sensor and operational faults are very difficult.

Validation: Prior to deploying something as safe-
ty critical as an autonomous vehicle, we must have
confidence that the vehicle will behave as desired.
While there has been significant progress in both
systems engineering and automated software vali-
dation, neither field is yet up to the task of vali-
dating these complex autonomous systems.

Improved modeling: The Urban Challenge offered
only a subset of the interactions a driver faces dai-
ly; there were no pedestrians, no traffic lights, no
adversarial drivers, and no bumper-to-bumper traf-
fic. A sufficient and correct model of the world for
complex urban driving tasks is yet to be developed.

Autonomous vehicle and driver interaction: By not
allowing drivers in the Urban Challenge robots,
this problem was irrelevant, but when
autonomous vehicles are deployed, the sharing of
control between driver and vehicle will be critical-
ly important. We are only just beginning to under-
stand how to approach this problem.

Many of these items will best be addressed by
applying artificial intelligence and machine-learn-
ing techniques since they require complicated
models that are difficult to explicitly encode.
Despite these challenges, autonomous vehicles are
here to stay. We have already begun work with
Caterpillar to use techniques and algorithms devel-
oped during the Urban Challenge to automate
large off-highway trucks for mining applications.
The automotive industry is interested in improv-
ing existing driver assistance systems by using
autonomous vehicle techniques to further reduce
traffic accidents and fatalities (global traffic acci-
dent fatalities exceed 1.2 million people each year),
reduce congestion on crowded roads, and improve
fuel economy. The question is no longer if vehicles
will become autonomous but when and where can |
get one?
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Notes
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