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Technologies such as the Internet allow many spatially
distributed parties (or agents) to rapidly interact according to
intricate protocols. Some of the most exciting applications
of this involve making decisions based on the agents’ prefer-
ences (for a more detailed discussion, see Conitzer (2010)).
For example, in electronic commerce, agents can bid on
items in online auctions. This results in an allocation of the
items for sale to the agents bidding in the auctions; one view
of this is that we decide on the allocation based on the pref-
erences that the agents reveal through their bids. Similarly,
in an online rating system, the quality of a product, article,
video, etc. is decided based on the submitted ratings. In an
online election, an alternative is selected based on the sub-
mitted votes. In general, a mechanism takes the submitted
preferences (bids, ratings, votes, etc.) as input, and produces
an outcome as output.

One issue with such mechanisms is that sometimes, an
agent has an incentive to report her preferences insincerely,
as this will result in an outcome that she prefers. Agents that
respond to such incentives are said to report strategically.
For example, in a (first-price, sealed-bid) auction, a bidder
may value the item for sale at $100, but she may strategi-
cally choose to bid only $70 because she believes that she
will still win with this bid, and pay less. Similarly, in a rat-
ing system, an agent who believes that the product should
receive an overall rating of 7 may strategically give it a rat-
ing of 10, in order to “correct” earlier ratings by others that
resulted in an average rating of 6 so far. Finally, in an elec-
tion, an agent whose favorite alternative is A may strategi-
cally claim that B is her most-preferred alternative, because
she believes that A has no realistic chance of winning, and
she very much wants to keep C from winning.

A fundamental problem caused by such strategic reports
is that they may result in the “wrong” outcome. For exam-
ple, let us again consider the bidder who values the item at
$100 but chooses to bid $70 instead because she believes
that she will still win with this bid. It is possible that she is
mistaken—in particular, it could happen that there is another
bidder who values the item at $90 but, being more cautious
than the former bidder, bids $80. In this case, the latter bid-
der wins, even though from the perspective of the bidders’
true valuations, it would have been more economically effi-
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cient for the item to end up with the former bidder. Similar
failures can occur with rating and voting.

Mechanism design, which is based on game theory, con-
cerns the study of how to design mechanisms that result in
good outcomes even when the agents act strategically. A
fundamental result known as the revelation principle (Gib-
bard 1973; Green and Laffont 1977; Dasgupta, Hammond,
and Maskin 1979; Myerson 1979) shows that without loss
of generality, we can restrict our attention to the design
of incentive compatible mechanisms—that is, mechanisms
in which it is in each agent’s best interest to report truth-
fully. A strong notion of incentive compatibility is strategy-
proofness: a mechanism is strategy-proof if no agent ever
benefits from misreporting, regardless of the others’ reports.

However, in highly anonymous settings such as the Inter-
net, declaring preferences insincerely is not the only way to
manipulate the mechanism. Often, it is possible for an agent
to pretend to be multiple agents, and participate in the mech-
anism multiple times. Many Web applications only require
a valid e-mail address, and it is easy for one agent to create
multiple e-mail accounts. In an online election, this allows a
single agent to vote multiple times—a significant drawback
of online elections. Similarly, in a rating system, a single
agent can manipulate the average or median rating to be ef-
fectively anything by rating the product a sufficient number
of times. (At some level, this is not fundamentally differ-
ent from the situation in elections: rating can be thought of
as a special case of voting.) It is perhaps less obvious how
using multiple identities to bid can help in an auction, but
we will see examples of this shortly. We will refer to this
type of strategic behavior as false-name manipulation. It
is closely related to the notion of a Sybil attack in the sys-
tems literature (Douceur 2002), where an attacker also uses
pseudonymous identities to subvert a system. As in the case
of strategic misreporting of preferences, the main downside
of false-name manipulation for the system as a whole is that
it may result in suboptimal outcomes.

There are several ways in which the problem of false-
name manipulation can be addressed. One approach is to
try to prevent it directly. For example, we can require users
to submit information that would completely identify them
in the real world, such as a social security number. How-
ever, such an approach would doom most Internet-based ap-
plications to failure, because users are extremely averse to



giving out such information—for example due to concerns
about identity theft, or simply because the user prefers to
stay anonymous. Various alternative approaches to directly
preventing false-name manipulation have been pursued.

• A Completely Automated Public Turing Test to Tell Com-
puters and Humans Apart, or CAPTCHA (von Ahn et al.
2003; von Ahn, Blum, and Langford 2004), is an auto-
mated test that is easy to pass for humans, but difficult
to pass for computers. While CAPTCHAs can prevent a
manipulator from obtaining a very large number of identi-
fiers by writing a program that automatically registers for
them, they do not prevent the manipulator from obtaining
multiple identifiers by hand.

• A recent approach consists of attempting to create a test
that is easy for a person to pass once, but difficult for a
single person to pass more than once (Conitzer 2008b).
Early attempts to design such tests focused on memory
tests that were set up in such a way that a user taking the
test a second time would become confused with the first
time that she took the test. Unfortunately, for the tests
designed so far, results from studies with human subjects
are nowhere close to robust enough for practical use.

• Another direction is to use social-network structure to
prevent a user from obtaining too many identifiers. Here,
the basic idea is that it is easy to create new nodes in the
network, as well as edges among them, but it is difficult to
get legitimate nodes to link to these new nodes—so that if
a user creates many false nodes, they will be disconnected
from the legitimate nodes by an unexpectedly small cut.
This observation has been leveraged to limit the number
of identifiers that a manipulating user can obtain (Yu et al.
2008; 2010).

• A simple approach is to limit the number of identifiers
registered from one IP address. A downside of this ap-
proach is that there are often many users behind a single
IP address, so that the limit must be set rather high.

Some of these approaches can successfully prevent a sin-
gle agent from obtaining an extremely large number of iden-
tifiers. This may be sufficient if the agent’s goal is, for exam-
ple, to send spam e-mail. However, in the settings in which
we are interested, this is generally not sufficient: an agent
may still derive significant benefits from creating just a few
false names.

In this article, we consider to what extent the issue of
false-name manipulation can be addressed using techniques
from mechanism design. Under this approach, we accept
the fact that it is possible for an agent to participate mul-
tiple times, but we design the mechanism—the rules that
map reported preferences to outcomes—in such a way that
good outcomes result even when agents strategically decide
whether to participate multiple times. The primary approach
to doing this is to simply ensure that it is always optimal
for an agent to participate only once (again, a revelation
principle can be given to justify this approach). A mecha-
nism is said to be false-name-proof if no agent ever bene-
fits from using multiple identifiers. The typical formal def-
inition also implies strategy-proofness. In this article, we

do not give formal mathematical definitions of false-name-
proofness; rather, we rely on examples to illustrate the con-
cept.

Voting
We will first discuss voting settings. One should immedi-
ately be suspicious of the idea that an election in which a
single agent can vote multiple times can lead to good results,
and the technical result that we will discuss in this section
will lend support to this suspicion. A natural reaction is that
we should simply avoid such elections. However, examples
of real-world online elections abound.

An intriguing recent example of this phenomenon is the
“New Seven Wonders of the World” election, a global elec-
tion to elect contemporary alternatives to the ancient won-
ders. Anyone could vote, either by phone or over the Inter-
net; for the latter, an e-mail address was required. One could
also buy additional votes (of course, simply using another
e-mail address was a much cheaper alternative). In spite
of various irregularities (including unreasonably large num-
bers of votes in some cases (Dwoskin 2007)) and UNESCO
distancing itself from the election, the election nevertheless
seems to have attained some legitimacy in the public’s mind.

To illustrate the difficulties that such online elections face,
let us first consider an election with two alternatives, say, A
and B. In this case, each voter prefers one of the two, and
will be asked to vote for the one she prefers. If false-name
manipulation is not possible, the most natural approach is
to run the simple majority rule: the alternative with more
votes wins (with some way of breaking ties, for example,
flipping a coin). It is easy to see that this rule is strategy-
proof: there is nothing that can be gained from voting for
one’s less-preferred alternative. Also, if we suppose that an
agent receives utility 1 if her preferred alternative is elected,
and 0 otherwise, then the majority rule maximizes the sum
of the agents’ utilities.

Unfortunately, the majority rule is clearly not false-name-
proof. For example, consider an election in which one agent
prefers A and two agents prefer B. If the two agents that
prefer B each use a single identifier and vote truthfully, then
the agent that prefers A has an incentive to create two ad-
ditional fake identifiers, and vote for A with all three of her
identifiers, to makeAwin. More generally, holding the other
agents’ votes fixed, an agent can always make her preferred
alternative win by casting sufficiently many votes for that
alternative.

From this, the difficulty of designing a good false-name-
proof voting rule should be apparent. One may conjecture
that votes are necessarily entirely meaningless in this con-
text, and that we might as well choose the winning alterna-
tive randomly (flipping a coin), without regard to the votes.
Doing so is certainly false-name-proof: in this case, there is
no incentive to vote multiple times, because there is no in-
centive to vote at all! Obviously, this is not very satisfactory.

Conitzer (2008a) studies false-name-proof voting rules
more thoroughly, and it turns out that we can do just a lit-
tle better than choosing the winning alternative completely
at random. Consider the following unanimity rule for two al-
ternatives. If all the voters vote for the same alternative (and



at least one vote is cast), then we choose that alternative;
otherwise, we flip a fair coin to decide the winner. Using a
case-by-case analysis, we see that this rule leaves an agent
(who prefers, say, A) no incentive for manipulation:

• If B does not receive any votes from the other agents,
voting truthfully results in a win for A;

• If both A and B receive votes from the other agents, then
it does not matter what the agent does;

• If B receives votes from the other agents and A does not,
then the agent wants to (truthfully) cast a vote for A to
force the coin flip, but casting additional votes will have
no effect.

While this rule avoids the bizarre scenario where we flip a
coin even though all agents agree on what the preferred alter-
native is, it is otherwise still not very desirable. For example,
even if 100 agents prefer A and only 1 agent prefers B, the
probability that A wins is only 50%. Thus, we may wonder
whether there is another false-name-proof voting rule that is
a closer approximation of the majority rule. It turns out that
the answer is negative: in a sense, the unanimity rule is the
best we can do under the constraint of false-name-proofness.

In settings with more than two alternatives, there is an
even more negative result: in a sense, the best we can do
under the constraint of false-name-proofness is to choose
two alternatives uniformly at random (without regard to the
votes), and then run the unanimity rule on these two al-
ternatives. This is somewhat reminiscent of another fairly
negative characterization by Gibbard (1977) for the case of
strategy-proof randomized voting rules (when there are no
restrictions on preferences and false-name manipulation is
not possible). Gibbard’s characterization allows for rules
such as:

• choose two alternatives at random and run a majority elec-
tion between these two, or

• randomly choose one of the agents as a dictator, whose
most-preferred alternative is then chosen.

Unfortunately, Gibbard’s characterization does not allow for
much more than these rules. Still, it is much more per-
missive than the characterization for false-name-proof rules.
For example, choosing a random dictator is not false-name-
proof: an agent would have an incentive to use many iden-
tifiers, to increase the chances that one of these will be cho-
sen as the dictator. Also, unlike in the case of false-name-
proofness, Gibbard’s characterization poses no problem in
the two-alternative case, because there it allows for the ma-
jority rule, which is quite natural. Finally, the strategy-
proofness (in fact, group-strategy-proofness—no coalition
of agents has an incentive to deviate) of the majority rule can
be extended to more alternatives if we restrict the agents’
possible preferences to single-peaked preferences (Black
1948; Moulin 1980). In contrast, for false-name-proofness,
there appears to be little hope of finding a positive result
based on restricting the preferences, because we already get
a negative result for two alternatives.

We will discuss what can be done about (or in spite of)
this impossibility result later in this article. But, first, we

turn to a discussion of combinatorial auctions, in which the
concept of false-name-proofness was originally defined.

Combinatorial auctions
In a combinatorial auction, multiple items are simultane-
ously for sale. An agent (aka. bidder) is allowed to place
complex bids on these items. For example, an agent may
say, “If I receive both items A and B, that is worth $100 to
me, but if I only receive one of them, that is only worth $10.”
This is a case of complementarity, where the items are worth
more together than the sum of their parts. Complementarity
often motivates the use of a combinatorial auction.

Generally, if I is the set of items, an agent i has a val-
uation function vi : 2I → R that specifies how much she
values each possible bundle of items, and her bid will be a
reported valuation function v̂i : 2I → R. (We consider only
sealed-bid auctions here, where an agent only places a single
bid; this is justified by the revelation principle.) Usually, the
goal is to assign subsets of the items to the agents in a way
that maximizes efficiency, that is, if agent i receives Si ⊆ I
(where Si ∩ Sj = ∅ for i 6= j), the goal is to maximize∑
i vi(Si).
How can we incentivize truthful bidding in a combina-

torial auction? To explain this, it is helpful to first con-
sider a single-item auction, in which each agent i bids some
amount v̂i on the item. The standard solution here is the
Vickrey or second-price sealed-bid auction (Vickrey 1961),
where the highest bid wins and pays the price of the second-
highest bid. This is strategy-proof, and the reason is that
the winning bidder automatically pays the smallest amount
she could have bid and still won the item. It turns out that
this intuition generalizes to combinatorial auctions: in the
Generalized Vickrey Auction (GVA), an allocation is chosen
that maximizes efficiency according to the reported valua-
tion functions—that is, it maximizes

∑
i v̂i(Si) (how ties

are broken is not essential); each bidder pays the small-
est amount she could have bid to win her bundle of items.
The GVA is a special case of the Clarke mechanism (Clarke
1971), and it is strategy-proof.

However, the GVA is not false-name-proof. For example,
suppose we are allocating two items, A and B. Agent 1 bids
(reports a valuation of) $100 for the bundle {A,B} of both
items (and $0 for any other bundle). Suppose agent 2’s true
valuation for the bundle {A,B} of both items is $80 (and it
is $0 for any other bundle). Thus, if agent 2 truthfully reports
her valuation $80, she does not win any item. Alternatively,
in a highly anonymous environment, agent 2 can participate
under two different identifiers, 2a and 2b; if 2a bids $80 on
{A}, and 2b bids $80 on {B}, then 2a and 2b will both win
their item (so that 2 wins both items). Moreover, the GVA
payments of 2a and 2b are 20 each, because each of them
could have reduced the bid to $20 and still won the item.
Hence, using the false-name manipulation, agent 2 gets both
items and pays $40 in total. Thus, this manipulation is prof-
itable for agent 2. This results in an inefficient outcome,
because 1 values the items more. Figures 1 and 2 show how
this example illustrates the difference between standard and
highly anonymous mechanism design settings.



$100 f {A B} Alice wins {A B}$100 for {A, B} Alice wins {A, B},
pays $80

Alice

$80 for {A, B}

Bob
Mechanism

Figure 1: The Generalized Vickrey Auction in a standard
setting where the true identities of the agents can be ob-
served.

$100 f {A B}
bjones wins {A},

$100 for {A, B} pays $20, 
manip2008 wins 
{B} pays $20honesty42@yahoo com

Alice

{B}, pays $20honesty42@yahoo.com

$80 for {A}

bj @ b d

Bob
Mechanism

bjones@abc.edu

$80 for {B}
Mechanism

manip2008@gmail.com

Figure 2: The Generalized Vickrey Auction in a highly
anonymous (Internet) setting. The mechanism cannot ob-
serve the agents’ true identities directly; all it can observe is
the identifiers (e-mail addresses) and the bids that are sub-
mitted through those identifiers.

While the previous example already illustrates the poten-
tial for false-name manipulation in the GVA, a somewhat
different type of false-name manipulation is also possible.
Namely, the manipulating agent can bid under multiple iden-
tifiers, but then, once the outcome has been decided, fail
to respond for some of them—that is, have these identifiers
refuse to pay. While these refusing identifiers will presum-
ably not obtain the items that they won, it is possible that
their presence was beneficial to the agent’s other identifiers.
For example, suppose bidder 1 bids $100 for the bundle
{A,B}, and bidder 2 bids $40 for the bundle {A}. Bid-
der 3—the false-name bidder—has true valuation $20 for
the bundle {B} and any superset of it (and $0 for any other
bundle). Under the GVA, if bidder 3 bids truthfully (which is
optimal if false-name bidding is impossible), she wins noth-
ing and pays nothing. She also cannot benefit from the type
of false-name bidding in the previous example: for example,
she can win both items by bidding $100 for {A} under iden-
tifier 3a and $60 for {B} under identifier 3b, in which case
3a pays $40 and 3b pays $0; but her valuation for {A,B}
is only $20, so this would make her worse off. However,
now suppose that she can disown identifier 3a (e.g., by never
checking that e-mail account anymore), never making the
payment and never collecting A. Then, she has obtained
B with the other identifier at a price of $0. This type of
manipulation is not addressed by the standard definition of
false-name-proofness, but recent work (Guo and Conitzer
2010) considers a modified definition that does also capture
this type of manipulation. In any case, most (but not all) of
the standard false-name-proof mechanisms also satisfy this
stronger condition.

At this point, the obvious question is: can we fix the
GVA mechanism, or develop a completely new mechanism,
so that the obtained mechanism is false-name-proof and
achieves efficient outcomes? Unfortunately, the answer is
no. Yokoo, Sakurai, and Matsubara (2004) give a sim-
ple generic counter-example illustrating that there exists no
false-name-proof combinatorial auction mechanism that al-
ways achieves an efficient outcome.1 They also show that
the revelation principle holds for false-name-proof mecha-
nisms. This implies that there exists no efficient mechanism
in general when false-name bids are possible.

Another question we might ask is: although the GVA
is not false-name-proof in general, can we identify some
(hopefully natural and general) special cases where the GVA
is false-name-proof? Yokoo, Sakurai, and Matsubara (2004)
show that a well-known condition called submodularity is
sufficient to guarantee that the GVA is false-name-proof.
Submodularity is defined as follows: for any subset of bid-
ders N , for two sets of items S1, S2, the following condition
holds:

V ∗(N,S1)+V ∗(N,S2) ≥ V ∗(N,S1∪S2)+V ∗(N,S1∩S2),

where V ∗(N,S) represents the social surplus (sum of valu-
ations) when allocating S optimally among N . The idea is
that additional items become less useful as there are more

1Fairly weak conditions that preclude false-name-proofness
were later given by Rastegari, Condon, and Leyton-Brown (2007).



items already. This condition does not hold for Alice in
Figure 2. When Alice has nothing, adding A does not in-
crease her valuation. When Alice has B already, adding
A increases her valuation from 0 to 80. In other words, A
and B are complementary for Alice, i.e., the bundle is worth
more than the sum of its parts.

Theoretically, the submodularity condition is very use-
ful, since it guarantees several other desirable properties of
the GVA, for example: the outcome is in the core—i.e., the
seller does not wish to sell items to some loser rather than
the winners; collusion by the losers is useless; and the con-
dition facilitates the computation of the winners and pay-
ments (Müller 2006). However, the submodularity condition
is of limited use, because in practice often a major motiva-
tion for using a combinatorial auction (rather than multiple
single-item auctions sequentially) is that there is comple-
mentarity among the items—though, of course, combinato-
rial auctions may be useful in settings without complemen-
tarity as well.

A series of mechanisms that are false-name-proof in var-
ious settings has been developed: combinatorial auction
mechanisms (Yokoo, Sakurai, and Matsubara 2001a; Yokoo
2003), multi-unit auction mechanisms (Yokoo, Sakurai, and
Matsubara 2001b; Terada and Yokoo 2003; Iwasaki, Yokoo,
and Terada 2005), double auction mechanisms (Sakurai
and Yokoo 2002; 2003; Yokoo, Sakurai, and Matsubara
2005), and combinatorial procurement auctions (Suyama
and Yokoo 2005).

For the purpose of illustration, let us describe some false-
name-proof combinatorial auction mechanisms. The sim-
plest such mechanism is called the Set mechanism. It allo-
cates all items I to a single bidder, namely, the bidder with
the largest valuation for the grand bundle of all items. Ef-
fectively, it sells the grand bundle as a single good, in a
Vickrey/second-price auction. It is not difficult to see that
false-name bids are ineffective under the Set mechanism:
there is only one winner and placing additional bids only
increases the payment of the winner.

Of course, we would hope to find a mechanism that does
better than this rather trivial Set mechanism. A non-trivial
false-name-proof mechanism called the Minimal Bundle
(MB) mechanism (Yokoo 2003) can be thought of as an
improved version of the Set mechanism. (In the following
description, we assume each agent is interested only in a
single bundle (single-minded) for simplicity, but the general
MB mechanism can also be applied to non-single-minded
agents.) Let us assume bidder i is the winner under the Set
mechanism. The grand bundle might contain some useless
items for bidder i, i.e., it may be the case that for some
S ( I , vi(S) is the same as vi(I). We call the minimal
bundle S for which vi(S) = vi(I) holds the minimal bundle
for i. Instead of allocating all items I to bidder i, we first
allocate Si ⊆ I to i, where Si is the minimal bundle for i.
Then, we consider the next highest bidder j; if her minimal
bundle Sj does not overlap with Si, then she wins Sj , and so
on. The price for a bundle S is equal to the highest valuation
of another bidder for a bundle that is minimal for that bidder
and conflicting with S, i.e., it has an item in common with
S.

Let us show a simple example. Assume there are four
items, A,B,C and D, and five bidders. Their valuations are
as follows.

bidder 1: $100 for {A,B}
bidder 2: $80 for {C,D}
bidder 3: $70 for {B,D}
bidder 4: $60 for {C}
bidder 5: $50 for {A}

In this case, bidder 1 wins {A,B}. Since this bundle con-
flicts with bidder 3’s bundle, the payment is $70. Then, bid-
der 2 wins {C,D}. Since this bundle also conflicts with
bidder 3’s bundle, the payment is again $70.

Again, under this mechanism, false-name bids are use-
less. If bidder 1 splits her bid and obtains {A} and {B}
with separate identifiers, her payment would be $50+$70,
which is more than her original payment of $70. More gen-
erally, for disjoint bundles S1 and S2, the price for obtaining
S1 ∪ S2 is the maximum of the price of S1 and the price of
S2. However, if the bidder obtains S1 and S2 with separate
identifiers, then she must pay the sum of these prices. Also,
placing additional bids only increases the payments of the
winners.

An auction mechanism consists of an allocation rule and
a payment rule. There have been several studies on char-
acterizing allocation rules for which there exists a pay-
ment rule that makes the mechanism as a whole strategy-
proof. Bikhchandani et al. (2006) propose weak monotonic-
ity and show that it is a necessary and sufficient condition
for strategy-proofness when several assumptions hold on the
domain of valuation functions.

In a similar type of result, Todo et al. (2009) show that
if (and only if) an allocation rule satisfies a condition called
sub-additivity as well as weak monotonicity, then there ex-
ists an appropriate payment rule so that the mechanism
becomes false-name-proof, i.e., sub-additivity and weak
monotonicity fully characterize false-name-proof allocation
rules. In other work, Iwasaki et al. (2010) derive a negative
result showing that any false-name-proof combinatorial auc-
tion mechanism (satisfying certain conditions) must have a
low worst-case efficiency ratio (not much better than that of
the Set mechanism), and develop a mechanism whose worst-
case efficiency ratio matches this theoretical bound.

Ways around the negative results
Many of the results so far are quite negative. This is espe-
cially the case in voting settings, where even when there are
only two alternatives, the best possible rule is the unanimity
rule, which will flip a fair coin unless all the voters agree on
which alternative is better. Even in combinatorial auctions,
we have a strong impossibility result about the worst-case ef-
ficiency ratio. Of course, the worst-case efficiency ratio may
not occur very often in practice—in particular, under some
conditions on the valuations, even the regular GVA mecha-
nism is false-name-proof. In any case, it is worthwhile in-
vestigating whether we can somehow circumvent these neg-
ative results, especially in voting settings.



A natural response is that we should just not run mecha-
nisms, especially voting mechanisms, in highly anonymous
settings! That is, we should run the mechanism in an en-
vironment where we can verify the identities of all of the
agents. While this thought is not without its merit—it does
not seem wise to conduct, for example, presidential elections
over the Internet—it is apparent that many mechanisms will
be run over the Internet, and objecting to this phenomenon
will not make it go away. For example, numerous orga-
nizations stubbornly continue running polls over the Inter-
net in spite of past troubles, and these polls can still have
significant impact. The New Seven Wonders of the World
event discussed earlier clearly illustrates this phenomenon:
in spite of questionable methodology (and, eventually, ques-
tionable results), the election attracted an enormous amount
of attention, as well as significant effort from various orga-
nizations that tried to get their preferred alternative elected.
Moreover, a follow-up event, the New 7 Wonders of Nature,
is already underway. Similarly, with the continued growth of
e-commerce, the presence of product rating mechanisms and
auctions on the Web seems more likely to increase than to
decrease. It appears that when organizations decide whether
to run a mechanism over the Internet, the convenience of do-
ing so often far outweighs the potential trouble from false-
name manipulations in their minds.

In the remainder of this section, we consider several ways
around the impossibility results that do not require us to ver-
ify every identity.

Costly false names
The assumption that a manipulator can obtain an unlim-
ited number of identifiers at no cost is not realistic. Set-
ting up a free (say) e-mail account requires some effort, in-
cluding, perhaps, solving a CAPTCHA. This effort comes
at a (presumably small) economic cost that will make false-
name manipulation somewhat less appealing. Can we de-
sign mechanisms that are false-name-proof when these costs
are taken into account—that is, when the cost is taken
into account false-name manipulation becomes strategically
suboptimal—and that outperform mechanisms that are false-
name-proof in the standard sense (i.e., when the cost of cre-
ating false names is not taken into account)?

It turns out that this is, in fact, possible (Wagman and
Conitzer 2008). Of course, if the cost of creating an ad-
ditional identifier is extremely high, then (with two alter-
natives) even the majority rule—choose the alternative pre-
ferred by more voters (breaking ties randomly)—becomes
false-name-proof: even if the election is tied and casting one
additional vote will make the difference, which is a case in
which casting an additional vote has the greatest possible
value to a manipulating agent, no agent will be willing to
do this if the cost of creating an additional identifier is suf-
ficiently high. Of course, it is unreasonable to expect the
cost to be so high if it corresponds to something as trivial as
solving a CAPTCHA. We may try to increase the cost—for
example, by attempting to detect manipulating agents and
severely punishing them in the real world, perhaps under
some new law. Of course, this would be extremely diffi-
cult to do. Is there a mechanism that works even if the cost

of creating another identifier is relatively small?
It turns out that this is possible, but we need to consider

mechanisms that use randomization (and not just for tie-
breaking). The problem with the majority rule is that when
the election is currently tied, then a single additional vote
for A will make the probability that alternative A wins jump
from .5 to 1. For an agent that prefersA, this is an enormous
incentive to cast another vote. To make this more concrete,
let us suppose that the agent has a utility of 1 for A winning
the election, and a utility of 0 for B winning the election.
Then, the agent has an expected utility of .5 for the elec-
tion being tied. Hence, the benefit of casting another vote is
.5, which the agent will do if the cost of obtaining another
identifier is less than .5.

However, now suppose that we use the following rule. If
A andB are tied, thenA (and hence alsoB) wins with prob-
ability .5. If A is ahead by one vote, then A wins with prob-
ability .51. If A is ahead by two votes, then A wins with
probability .52, etc. If A is ahead by fifty or more votes, A
wins with probability 1. Under this rule, the benefit of cast-
ing another vote is always at most .01, so as long as the cost
of obtaining another identifier is greater than this, no agent
will be incentivized to obtain additional identifiers.

The downside of this rule, of course, is that if A is ahead
by (say) 25 votes, then with probability 25% we choose al-
ternative B, which is suboptimal from a welfare perspective
because A makes 25 more agents happy. However, one can
make an argument that if the number of agents is large, then
the probability that the alternatives are within fifty votes of
each other is small—so that we almost always choose the al-
ternative that would have won under the majority rule, which
is the alternative that maximizes welfare.2 The cost of ob-
taining a false identifier also plays a role. For example, if we
are sure that the cost of obtaining a new identifier is always
at least .05 for any agent, then we can increase the proba-
bility that A wins by .05 every time it receives another vote
(and once A receives at least 10 more votes than B, A wins
with probability 1). Thus, the larger the number of agents
voting, and the larger the cost of obtaining an additional
identifier, the closer the rule gets to the majority rule—while
remaining false-name-proof.

Verifying only some of the identifiers
As pointed out above, a simple way of addressing the issue
of false-name manipulation is to verify that all the identifiers
correspond to real agents in the real world. If we do so, then
it suffices to run a strategy-proof mechanism (assuming that
we are not worried about collusion, etc.). Of course, this
generally puts an unacceptable overhead on the system. On
the other hand, it is not clear that we must really verify all
of the identifiers. For example, in an election between two
alternatives, must we really verify identifiers who voted for
the losing alternative? In a combinatorial auction, must we
really verify the identifiers that placed a losing bid? One

2This may lead one to ask why we do not simply use the major-
ity rule; the answer is that the majority rule is not false-name-proof
with small costs, so that the votes can no longer be taken at face
value.



would think that this should not be necessary, because in
both cases, these identifiers are losing anyway. Generally,
we would like to verify as few identifiers as possible, but
enough to make false-name manipulation suboptimal.

Conitzer (2007) pursues this approach in detail. The ba-
sic version of the model is as follows. The mechanism first
collects the identifiers’ reports of their preferences (for ex-
ample, their votes or bids). Based on these reports, the veri-
fication protocol will ask a subset of the identifiers for real-
world identifying information. If an agent participated under
multiple identifiers, she will be able to respond for at most
one of these identifiers. This is because if she responds for
multiple identifiers with the same identifying information,
then the manipulation is easily detected.3 This poses no
problem for the manipulating agent if the verification pro-
tocol asks for identifying information for at most one of her
identifiers. However, if the verification protocol wishes to
verify two of her identifiers, then the agent has a problem.
She can choose to submit identifying information for either
one, but must then stay silent for the other. If an identifier
stays silent, the verification protocol knows that something
fishy is going on: presumably, the reason that the identifier
stays silent is that it is one of the identifiers used by a ma-
nipulating agent, who has chosen to respond for one of her
other identifiers instead. However, the verification protocol
cannot identify which identifier this is; nor can it, presum-
ably, find the agent in the real world to punish her. Thus, it
is assumed that all that the verification protocol can do is to
remove the nonresponsive identifier(s) from the mechanism.
If a nonempty set of identifiers is removed, then the verifica-
tion protocol starts from scratch with the remaining reports
(and can thus choose to verify additional identifiers).4

As a simple example, suppose that we wish to run a ma-
jority election between two alternatives. We can proceed as
follows. First, let each identifier vote for eitherA orB. Sup-
pose thatA comes out ahead by l votes (nA = nB+l). Then,
the verification protocol will ask for identifying information
of nB + 1 of the identifiers voting for A. If all of them re-
spond with valid (and distinct) identifying information, we
declare A the winner; otherwise, all the nonresponsive iden-
tifiers are removed, and the verification protocol starts anew
with the remaining votes (note that the balance may have
shifted to B now). In the end, we will have guaranteed that
there were more responsive identifiers for the winning al-
ternative than for the losing alternative. This removes any
incentive for an agent to participate multiple times.

3It is possible that the agent can respond, for some identifier,
with the identifying information of some other real-world agent.
However, if the other real-world agent is a willing participant in
this, then this is a case of collusion, not false-name manipulation.
Otherwise, it is a case of identity theft, which would have to be
prevented through other means.

4It may seem inefficient to start entirely from scratch; however,
it facilitates the analysis. Moreover, because the protocol will re-
move any incentives to participate more than once, we may assume
that, in fact, nobody will participate more than once, so that we do
not expect any identifiers to not respond. (This, of course, does not
mean that we do not need to do any verification at all, because then
incentives to participate multiple times would reappear.)

As another example, let us consider again a combinatorial
auction in which we use the GVA. Agent 1 uses identifier 1
to bid $100 for {A,B}, and agent 2 uses two identifiers, 2a
and 2b, and bids $80 for {A} with the former and $80 for
{B} with the latter. Without verification, this is an effective
false-name manipulation for agent 2. However, now let us
suppose that the verification protocol decides to ask both 2a
and 2b for identifying information. At this point, agent 2 has
a problem. She can respond for neither, in which case both
identifiers are removed and the manipulation was obviously
ineffective. She can also respond for (say) 2a, in which case
2b will be removed. After the removal of 2b, 2a loses. Thus
the manipulation becomes ineffective.

Unlike in the case of majority voting, for combinato-
rial auctions we have not made it clear how the verifica-
tion protocol chooses which identifiers to ask for identi-
fying information in general. Without a general specifi-
cation of this, we cannot say whether the resulting over-
all mechanism is robust to false-name manipulation, or not.
More ambitiously, can we give a general characterization of
how much verification is needed in order to guarantee false-
name-proofness? It turns out that we can.

First, let us say that a subset of at least two reports (votes
or bids) requires verification if it is possible that this sub-
set consists exactly of the identifiers used by a single agent,
and that moreover, under the mechanism without verifica-
tion, this agent is strictly benefiting from this manipulation
(relative to just using a single identifier). For instance, in the
previous example, the set of bids {2a, 2b} requires verifica-
tion, because we have already seen that an agent can benefit
from using these two bids under the standard GVA. Simi-
larly, in a majority election between two alternatives, if A is
ahead of B by l votes, then any subset of l + 1 votes for A
requires verification. (A subset of l or fewer votes does not
require verification, because, if a single agent had submitted
these l votes, then the agent would have succeeded just as
well without manipulating, since her single true vote would
have been enough to make A win.)

Now, it turns out that the necessary and sufficient con-
dition for the verification protocol to guarantee false-name-
proofness is as follows: for every subset that requires ver-
ification, the verification protocol must ask for identifying
information from at least two of the identifiers in this subset.
The intuition is simple: if the protocol asks at most one of
the identifiers in the subset for identifying information, then
we have found a situation where this subset would lead to a
successful manipulation for an agent (because the agent can
respond for this one identifier). On the other hand, a ver-
ification protocol that satisfies this condition will not leave
any incentives for false-name manipulation, because in ev-
ery situation where an agent engages in a false-name manip-
ulation that might be beneficial, that agent will be asked to
provide identifying information for at least two of her iden-
tifiers, and will hence fail to respond for at least one. It is
important to recall here that when at least one identifier is
removed, the verification protocol restarts, so that the iden-
tifiers that the agent has left when verification finally termi-
nates completely cannot constitute a beneficial false-name
manipulation.



Using social network structure to prevent
false-name manipulation
Yet another way around the impossibility results for false-
name-proofness is to use the social relationships among the
agents. This is an idea that has been explored in the systems
literature in the context of preventing Sybil attacks (Yu et al.
2008; 2010), but more recent work takes a mechanism de-
sign approach to this (Conitzer et al. 2010). Let us suppose
that the entity running the mechanism (the center) has ac-
cess to some social network structure on the identifiers. For
example, in 2009, Facebook, Inc. conducted a poll among
its users regarding its new terms of use. Facebook naturally
knows the social network structure among the accounts. At
the same time, it is easy for a user to create one or more fake
accounts on Facebook. Moreover, it is easy for that user
to connect some of her accounts (including her legitimate
account) to each other, in arbitrary ways: the user simply
logs in under one account, requests to connect to the other
account, then logs in under that account and approves the
request. However, it is more difficult for this user to connect
her fake accounts to the accounts of other users: presumably,
if the user sends a request from one of her fake accounts to
another user’s account, that user will not recognize the fake
account, and reject the request.5

Let us assume that the manipulating user is unable to con-
nect her fake accounts to the accounts of any other users. Of
course, she can still connect her true account to the accounts
of her real-life friends. This results in an odd-looking social
network graph, where the manipulating user’s true account
provides the only connection between her fake accounts and
the rest of the graph. Technically, her true account is a vertex
cut of size 1 in the graph (where the vertices of the graph are
the accounts). While the center cannot directly observe that
the accounts on the other side of this vertex cut are indeed
fake, she has reason to be suspicious of them. To remove in-
centives for false-name manipulation, the center can simply
refuse to let such accounts participate. Of course, the down-
side of this is that in some cases, such accounts are actu-
ally legitimate accounts that just happen not to be very well
connected to the rest of the graph. However, if this rarely
occurs (for legitimate accounts), then preventing a few legit-
imate accounts from participating may be a reasonable price
to pay to obtain a type of false-name-proofness guarantee.

There are several issues that need to be addressed to make
this approach successful. The first is that, at least in prin-
ciple, the manipulating user could build a structure of fake
accounts that is incredibly large and complex, just as much
so as the true social network. If she does so, then how does
the center know which one is the true social network? To
address this, we make the reasonable assumption that some
accounts are trusted by the center, in the sense that these
accounts are known to correspond to real agents. Thus, the
accounts that the center should suspect are the ones that are

5Of course, depending on the particular social network, some
users may actually approve such requests. However, it seems that
it would be easy to detect an account that illegitimately attempts
to connect to many other users: it would have a noticeably low
success rate, and these other users may report the account.

separated from the trusted accounts by a vertex cut of size
(at most) 1.

Another issue is that two legitimate users may conspire
and create fake accounts together. In this case, they can con-
nect the fake accounts to both of their legitimate accounts,
so that there is no vertex cut of size 1. Of course, the two
legitimate accounts now constitute a vertex cut of size 2.
The general solution to this problem, unsurprisingly, is to
refuse to let any account participate that is separated from
the trusted accounts by a vertex cut of size at most k, where
k is the largest number of users that can be conceived to
conspire together.

In fact, this introduces another subtlety that needs to be
addressed. It turns out that, if the only accounts that we pre-
vent from participating are the ones that are separated from
the trusted accounts by a vertex cut of size at most k, then
there can still be incentives to create fake accounts. The rea-
son is that, while these fake accounts will not be allowed
to participate, they may nevertheless prevent other accounts
from being separated from the trusted accounts by a vertex
cut of size at most k, which can be strategically valuable.
A solution is to apply the procedure iteratively: remove the
accounts that are separated from the trusted accounts by a
vertex cut of size at most k, then do the same on the remain-
ing graph, etc., until convergence.

For the case where there are no trusted accounts, these
techniques can still be applied if we have a method of ver-
ifying whether accounts are legitimate. Then, accounts that
have passed the verification step take the role of trusted ac-
counts. This naturally leads to the question of which ac-
counts should be verified. One natural approach is to try
to find a minimum-size set of accounts that, when verified,
guarantees that every account in the graph is legitimate (i.e.,
no accounts are separated from the verified accounts by a
vertex cut of size at most k). It turns out that this opti-
mization problem can be solved in polynomial time, using
a matroid property of this problem (Nagamochi, Ishii, and
Ito 1993).

Coalitional games
In this final section before the conclusion, we consider one
additional setting that is slightly different in nature from the
mechanism design settings that we have considered so far.
Here, we consider some elements of cooperative game the-
ory, also known as coalitional game theory. Specifically,
we consider settings in which agents can work together in
a coalition to generate some type of value. For example,
multiple companies may be able to increase their profit by
working together. A key question is how to divide the gains
that result from such cooperation among the members of the
coalition.

Coalitional game theory provides several solution con-
cepts that prescribe how much of the generated value each
agent should receive. These solution concepts require us
to know the characteristic function w : 2N → R, where
N is the set of all agents and w(S) gives the value that
would be generated by coalition S. A good example of
a solution concept is that of the Shapley value (Shapley



1953). To understand the Shapley value, it helps to first con-
sider a simpler way of dividing the value, which we will
call the marginal contribution solution. Place the agents
in some order π : {1, . . . , n} → N , where π(i) gives the
agent ordered ith. Let S(π, k) = {a ∈ N : π−1(a) ≤
k} consist of the first k agents according to the order π.
Then, we give each agent her marginal contribution to the
coalition—that is, the agent π(k), who is ordered kth, re-
ceives w(S(π, k))−w(S(π, k−1)), the difference between
the value that the first k agents can generate and the value
that the first k − 1 agents can generate.

A drawback of the marginal contribution solution concept
is that it requires us to choose some order π, and this order
can have a significant impact on the values received by in-
dividual agents. For example, suppose that two agents are
substitutable, in the sense that having either one of them
in a coalition generates a significant amount of value, but
having both of them generates hardly more value than just
having one. Then, each of these two agents would strongly
prefer to be earlier in the order, where she can still make
a difference. The Shapley value gives a fair solution to
this problem: it simply averages the marginal contribution
value over all possible orders. That is, agent a receives

1
|Π|

∑
π w(S(π, π−1(a)))−w(S(π, π−1(a)− 1)) under the

Shapley value, where |Π| is the number of possible orders of
the agents.

However, it turns out that the Shapley value is vulnerable
to a type of false-name manipulation (Yokoo et al. 2005).
To see why, we first consider the fact that the reason that
an agent is useful to a coalition is that she brings certain
resources to the coalition. LettingR be the set of all possible
resources, we can define a characteristic function directly
over subsets of these resources, v : 2R → R. If we know
that agent a owns resources Ra, then we can rederive the
characteristic function over subsets of agents from this: the
value of a coalition is simply the value of all the resources
they possess, w(S) = v(

⋃
a∈S Ra).

Now, consider a situation where there are three resources,
{A,B,C}, and all these resources are necessary to gen-
erate any value: v({A,B,C}) = 1 and v(S) = 0 for
S ( {A,B,C}. Also, suppose that there are two agents:
agent 1 owns resource C and agent 2 owns resources A and
B. It is straightforward to calculate that the Shapley value of
each agent is 1/2. However, now suppose that 2 pretends to
be two agents instead: 2a who owns resourceA, and 2b who
owns resource B. Then, the Shapley value of each identi-
fier is 1/3. Because agent 2 controls two of these identi-
fiers, she obtains a total value of 2/3, greater than the 1/2
that she would have obtained without false-name manipula-
tion. (This example was given by Yokoo et al. (2005). This
type of manipulation has also been studied in the context of
weighted voting games (Bachrach and Elkind 2008).)

This leads to the question of whether there are good so-
lution concepts in this context that are not vulnerable to this
type of manipulation. Because we have a characteristic func-
tion v that is defined over subsets of the resources rather than
the agents, a natural idea is to distribute payoffs to the re-
sources, instead of to the agents. Then, an agent receives the

payoffs of all of the resources she owns. For example, if we
apply the idea of the Shapley value to the resources directly,
then each of the resources A, B, and C receives 1/3, re-
gardless of who owns them. This immediately prevents the
type of false-name manipulation discussed above: distribut-
ing one’s resources over multiple identifiers does not affect
how much these resources will receive.

Unfortunately, distributing to resources instead of to
agents introduces another problem, namely that an agent
may wish to hide some of her resources. To see why,
consider a different function v, namely one for which
v({A,B,C}) = v({A,C}) = v({B,C}) = 1, and v(S) =
0 for all other S. A straightforward calculation shows that
the Shapley value (applied to resources) gives 1/6 to each
of A and B. Now, consider a situation where agent 1 owns
resource C, and agent 2 owns resources A and B. If agent 2
hides resource A (but reports resource B), then the restric-
tion of v on the reported resources is v({B,C}) = 1 and
v(S) = 0 for all S ( {B,C}. Hence, the Shapley value dis-
tributes 1/2 to B, which is more than the 1/6 + 1/6 = 1/3
that agent 2 would have received without hiding A.

Based on these ideas, Yokoo et al. (2005) define the
anonymity-proof core, which is robust to these manipula-
tions. Ohta et al. (2006) give a compact representation of
outcome functions in the anonymity-proof core, and also
introduce a concept called the anonymity-proof nucleolus.
Finally, Ohta et al. (2008) introduce the anonymity-proof
Shapley value, based on the concept of the Shapley value
discussed above.

Conclusion

As we have seen, the basic notion of false-name-proofness
allows for useful mechanisms under certain circumstances,
but in general there are impossibility results that show that
false-name-proof mechanisms have severe limitations. One
may react to these impossibility results by saying that, since
false-name-proof mechanisms are unsatisfactory, we should
not run any important mechanisms in highly anonymous
settings—unless, perhaps, we can find some methodology
that directly prevents false-name manipulation even in such
settings, so that we are back in a more typical mechanism
design context.

However, it seems unlikely that the phenomenon of false-
name manipulation will disappear anytime soon. Because
the Internet is so attractive as a platform for running cer-
tain types of mechanisms, it seems unlikely that the orga-
nizations running these mechanisms will take them offline.
Moreover, because a goal of these organizations is often to
get as many users to participate as possible, they will be re-
luctant to use high-overhead solutions that discourage users
from participating. As a result, perhaps the most promising
approaches at this point are those that combine techniques
from mechanism design with other techniques, as discussed
towards the end of this article. It appears that this is a rich
domain for new, creative approaches that can have signifi-
cant practical impact.
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