
Manufacturing systems are typically workhorses that
run reliably for long periods of time under intense
use. They have not traditionally been known for

their flexibility and changeability. When something does go
wrong, the entire system may need to be shut down, with
every minute of down time representing lost production and
possibly damaged product. Further, making changes in a fac-
tory line can require extensive redesign, retooling, and repro-
gramming.

Recently, a trend in manufacturing technology has been
toward reconfigurable manufacturing systems (Koren et al.
1999), in which factory lines are designed to support changes
in their structure. Such systems, which are gradually being
deployed, still need to be configured and rearranged offline,
but have advantages in terms of rapid deployment of new con-
figurations, standardization of parts, and machine design time.

The next challenge in achieving true flexibility in manu-
facturing is to imbue factory systems with online reconfig-
urability, that is, the ability to swap parts out online, enable
or disable capabilities in real time, and respond quickly to
changes in the system or environment (including faults). In
addition to the advantages conferred by offline reconfigura-
bility, online reconfigurability would allow a manufacturing
system to run more consistently and reliably, as well as allow
it to be more flexible, able to change products or objectives
extremely rapidly. We believe that these goals can be attained
through the use of a very high level of modularity, both in
hardware and software, combined with intelligent software.

To test this hypothesis, Palo Alto Research Center (PARC)
designed and built a prototype highly modular system in the
printing domain. This “hypermodular” printer explores the
extremes of modularity, reconfigurability, and parallelism in
both hardware and software. The hardware prototype con-
nects four standard Xerox marking engines (the component
of a printer that does the actual printing) in parallel using a
highly modular paper path. This configuration can achieve a
print rate of four times that of an individual print engine.

The system software stack for the prototype consists of

Articles

FALL 2013 73Copyright © 2013, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Online Reconfigurable Machines

Lara S. Crawford, Minh Binh Do, Wheeler Ruml, Haitham Hindi,
Craig Eldershaw, Rong Zhou, Lukas Kuhn, Markus P. J. Fromherz,

David Biegelsen, Johan de Kleer, Daniel Larner

n A recent trend in intelligent
machines and manufacturing has been
toward reconfigurable manufacturing
systems. Such systems move away from
a fixed factory line executing an
unchanging set of operations and
toward the goal of an adaptable factory
structure. The logical next challenge in
this area is that of online reconfigura-
bility. With this capability, machines
can reconfigure while running, enable or
disable capabilities in real time, and
respond quickly to changes in the sys-
tem or the environment (including
faults). We propose an approach to
achieving online reconfigurability based
on a high level of system modularity
supported by integrated, model-based
planning and control software. Our
software capitalizes on many advanced
techniques from the artificial intelli-
gence research community, particularly
in model-based domain-independent
planning and scheduling, heuristic
search, and temporal resource reason-
ing. We describe the implementation of
this design in a prototype highly modu-
lar, parallel printing system.

three integrated layers with (1) a model-based artifi-
cial intelligence (AI) planner / scheduler that can
quickly find sheet trajectories for all requested print-
ing jobs, (2) sheet controllers that coordinate the
control of individual sheets to execute these plans,
and (3) printer module controllers that control the
actual printer hardware. This software architecture
supports flexibility in configuration, graceful degra-
dation under component failure, and rerouting of in-
process sheets under exception conditions. These
capabilities were made possible by utilizing advanced
AI techniques in model-based planning, scheduling,
search, and temporal reasoning such as state-space
regression planning, partial-order scheduling, tem-
poral planning graph–based heuristic estimates, mul-
tiobjective search, and fast, simple temporal network
reasoning. The AI planner / scheduler incorporates
mostly domain-independent techniques from the
planning and scheduling research community,
enabling its flexibility and configurability to be
demonstrated on a variety of applications, including
other printer designs, food-packaging machines, and
material control systems.

In addition to a novel integration of existing tech-
niques that represents the first successful industrial
application of embedded, domain-independent tem-
poral planning, this work also contributes (1) new
heuristic evaluation functions for temporal planning
that incorporate some of the effects of resource con-
straints, (2) planning algorithms targeting wall-clock
goal achievement time (that is, combining planning
time and plan execution time), and (3) a chained best-
first-search algorithm that efficiently handles replan-
ning problems in real time. The planner / scheduler
will be described, but for greater detail on these algo-
rithms we refer the reader to Ruml et al. (2011).

Reconfigurable
Manufacturing Systems

Market trends have led the manufacturing commu-
nity to explore alternatives to dedicated manufactur-
ing lines, alternatives that would provide more flexi-
bility in a variety of dimensions. In particular, the
ability to vary a product line without having to
redesign the manufacturing line enables manufac-
turers to respond to more rapidly changing market
realities.

The 1980s saw the rise of the concept of flexible
manufacturing (ElMaraghy 2006). The main empha-
sis of flexible manufacturing systems (FMSs) is on
making use of highly flexible machines, such as com-
puter numerical control (CNC) machines, to enable a
wider product mix in the manufacturing line. This
approach requires a large capital investment, howev-
er, and only allows for a range of products commen-
surate with the tools’ capabilities. FMSs also include
to some extent the idea of routing flexibility, in
which a system is built so that there are multiple

machines that can perform the same operation and
the system can route parts to appropriate machines.

The idea of reconfigurable manufacturing, by con-
trast, focuses on changing the structure of the man-
ufacturing system, both in hardware and software, to
adapt quickly to changing product designs or capac-
ity needs. Reconfigurable manufacturing systems
(RMSs) were introduced as a concept in the late
1990s (Koren et al. 1999), but the prerequisites, in
both software and hardware, for implementing them
successfully have proved daunting; very few exam-
ples of RMSs exist today in practice. These prerequi-
sites include modular, reconfigurable hardware com-
ponents as well as the software and control
architectures and logic to support them. RMSs can
include both hard reconfigurability (physical recon-
figuration) and soft reconfigurability (logical recon-
figuration) (ElMaraghy 2006). This latter concept
includes the idea of flexible routing as well as replan-
ning and rescheduling.

There has been much literature devoted to the pre-
cise definition and differentiation of the various
types of modern manufacturing approaches, includ-
ing flexible manufacturing and reconfigurable man-
ufacturing (Mehrabi et al. 2002; Heisel and Meitzner
2004; ElMaraghy 2006; Bi et al. 2008; ElMaraghy
2009; Wiendahl et al. 2007; Koren and Shpitalni
2011). All of these approaches are trying to achieve
the same goals in flexibility, though possibly at dif-
ferent levels of the system hierarchy or through dif-
ferent techniques. These goals include flexibility in
operations, products, routing, volume, controls, and
expansion, among others (ElMaraghy 2006). The
term changeable manufacturing has been introduced
as an umbrella term to include both FMSs and RMSs
(Wiendahl et al. 2007). In this article, as we are
emphasizing physical and logical reconfigurability
rather than highly flexible component machines, we
will use the term reconfigurable.

Physical reconfiguration as well as logical recon-
figuration requires support in software. In particular,
technology for reconfigurable process planning
(Azab, ElMaraghy, and Samy 2009) is needed that can
support hardware reconfiguration. There are several
types of automated reconfigurable process planning
that have been identified, ranging from approaches
that create plans for component variations by modi-
fying plans for known components to fully genera-
tive process planning in which plans are generated
from first principles and models of the manufactur-
ing system, parts, and so on. (Wiendahl et al. 2007).
As far as we are aware, fully generative process plan-
ning systems to support reconfigurable manufactur-
ing do not yet exist. Such a first-principles approach
is a very good match for the artificial intelligence
approach to planning, however. Artificial intelli-
gence techniques such as state-space regression plan-
ning, partial-order scheduling, temporal planning
graphs, and temporal networks can provide a new

Articles

74 AI MAGAZINE

take on generative process planning, as well as direct-
ly addressing systemwide performance-oriented
measures. As we will describe in this article, this type
of planning can be made fast enough to execute
online, which enables many features of reconfig-
urable manufacturing systems in a dynamic online
sense, including reconfiguration of hardware,
dynamically flexible routing, repurposing of
machines, and robustness to equipment failure. Plan-
ning approaches have been used in the manufactur-
ing domain to plan reconfiguration strategies for
RMSs ((Tang et al. 2006), for example), but as far as
we are aware they have not been used for online gen-
erative process planning.

Online Reconfigurability
In this article, we focus on the design, development,
and control of what we term online reconfigurable sys-
tems. Online reconfigurability encompasses a range of
system properties. A reconfigurable system can be
recomposed, with parts being removed or added,
without reengineering the hardware or software
(Fromherz, Bobrow, and de Kleer 2003). This proper-
ty means that the system must be highly scalable, in
both hardware and software. The ability to reconfig-
ure online implies that the system software can
respond quickly to changes in the system composi-
tion, which in turn means that it can adapt quickly to
faults or other changes in system capabilities. Recon-
figurability can also mean the ability to use the same
parts differently for a different purpose, such as a dif-
ferent system objective; it includes functional as well
as structural reconfigurability. Online reconfigurabili-
ty of this type confers the ability to adapt to a real-
time change in system goals or even an observed
change in the system environment. To take advantage
of these capabilities of adaptation, the system must
have some redundancy or variety in its composition,
so that when the system or environment changes
there are alternatives the system can employ to con-
tinue to operate near-optimally. As we stated above,
the combination of these aspects of online reconfig-
urability confers many benefits in manufacturing sys-
tems, including flexibility, graceful degradation under
faults, and high levels of customizability.

Model-Based Modularity
We conjectured that a high degree of modularity
combined with integrated, model-based planning
and control software would enable all the features of
online reconfigurability. Modularity can be used to
create a scalable system with a degree of redundancy
useful for adapting to change. Model-based, online
planning allows a system to react seamlessly to
changes in system configuration, changes in system
goals, or faults. Integration of planning and control
software creates consistency in such a complex sys-

Articles

FALL 2013 75

tem and enables rapid responses to these changes.
A high degree of modularity and redundancy intro-

duces challenges of its own. A highly modular system
tends to be large-scale, in terms of number of compo-
nents, and fairly complex due to component interac-
tions. There are many possible control architecture
designs and coordination mechanisms for such a
complex system, and choosing among them requires
analysis of a variety of trade-offs. The best architec-
ture may be quite specific to the particular system.

Hypermodular Printer
The PARC highly modular printer prototype, known
as the “hypermodular” printer, was developed as part
of a Xerox research program on parallel printing. Our
goal has been to enable online reconfigurability in
this system through a high degree of modularity in
both hardware and software. The project focuses on
the hardware and software elements required for
paper-path control, which includes the routing, tim-
ing, and control of sheets through the machine. This
article will discuss aspects of the software (system
control) side of this extended experiment into hyper-
modular system design.

The hypermodular printing system is shown in fig-
ure 1. The system contains four black-and-white
marking engines, which do the actual printing on
one side of sheets fed to them. There are two paper
feeders at the left of the machine and three system
outputs on the right (two output trays and one purge
location). The feeders, marking engines, and outputs
are connected by reconfigurable paper paths. These
paths are made of PARC-designed modules that can
be positioned in a grid frame to create the desired
shape of path. There are three types of these hyper-
modules used in the machine: three-way director
modules (which allow path branching), straight-
through modules, and roller actuator (called “nip”)
modules (Biegelsen et al. 2009, 2011). The paper-path
modules are inserted and removed using a rotary
action that supports jam clearance.

The hypermodular paper-path elements are bidi-
rectional, meaning the paper can travel in either
direction along the internal paths. Bidirectionality is
new for the printing industry and has complexity
consequences for the software. Each hypermodule
has its own processor (a Texas Instruments F2811
DSP) and connects to one of five CAN buses at the
back of the machine. Each nip module has a nip,
actuated with a stepper motor, and infrared sheet
sensors on either side of the nip. Each three-way has
flippers, driven by solenoids, to direct sheets to the
correct output. In the machine, a nip module is
placed in between each pair of three-way or straight-
through modules on the grid. Our machine is con-
figured to have three main high-speed sheet “high-
ways” going the length of the machine, with some
cross connections between them. There are “off-

ramps” and “on-ramps” sending paper to and from
the marking engines, which run at a slower speed.
The system has, in total, 36 three-way, 33 straight-
through, and 89 nip modules. At full nominal speed,
the highways move paper at 1.25 m/s.

The redundancy in the system, in terms of mark-
ing engines, paper-path modules, and possible paper
paths, means that if one component fails, the others

can continue to run (with some possible loss of pro-
ductivity). The highly distributed nature of the sys-
tem enables a large degree of reconfigurability,
robustness, and scalability.

Control Architecture
The control architecture for the hypermodular print-
er prototype was developed with online reconfigura-

Articles

76 AI MAGAZINE

feeders outputs

marking engine marking engine

marking engine marking engine

A B

DC

Figure 1. The Hypermodular High-Speed Printer Prototype.

Paper paths are shown as lines on the schematic, with a thicker line indicating a typical sheet route. Nips are shown as pairs of small circles.
The machine contains three types of hypermodules: three-ways (lower left, rear view), straight-throughs, and nip modules (lower right). Fig-
ures 1a and 1b are reproduced with permission from Crawford et al. (2009), © IEEE. Figure 1b is reproduced with permission from Hindi
(2008), © IEEE. Figures 1c and 1d are reproduced with permission Biegelsen et al (2009), © IS&T.

bility and extreme modularity in mind. There are
many possible architectures for a system of this type,
and the ideal solution is tied to the choices made in
physical system instantiation. Our design choices
were guided by several design principles, which
included (Fromherz, Crawford, and Hindi 2005):

Multiscale control. As a basic principle, we decom-
pose the control problem both horizontally (over
modules or sheets) and vertically (hierarchically),
based on the location and time scale of different
aspects of the control task.

Encapsulation. Whenever possible, we try to keep
knowledge and algorithms related to a particular sub-
system together and local to that subsystem, avoid-
ing replicating knowledge in different places as much
as possible.

Autonomy, delegation, and escalation. Each control
entity is designed to function autonomously, includ-
ing monitoring its own behavior and correcting it
where possible. To enable autonomy, an entity dele-
gating a control task must also provide sufficient
information for the controller to tell if its behavior is
within requirements. If it is not, and the autonomous
controller is unable to perform its delegated task, it
must escalate exception information back up the
hierarchy.

The hierarchical control architecture shown in fig-
ure 2 represents an attempt to locate the best point
along all the design trade-offs for this system, guided
by the principles described above. Each modular sys-
tem component has its own module controller. Each
individual sheet in the system has associated with it
a software entity called a sheet controller, which is
responsible for coordinating the modules to achieve
motion for that sheet. The planner / scheduler is
responsible for determining routes and timing to
direct the sheets through the system. The informa-
tion flow through these levels of the hierarchy is
shown in figure 3. The software components will be
discussed in more detail below.

Communication is key for a system with many dis-
tributed components. Our approach was based on
the ideal of what we call a model-based contract. In
this paradigm, each request or command from the
planner / scheduler to a sheet controller is viewed as
a contractual obligation on the part of the sheet con-
troller. The contract is founded on a model of behav-
ior that the sheet controller is expected to execute.
By accepting the contract, the sheet controller prom-
ises the planner / scheduler that it can use that
behavior model in its reasoning about the future. The
sheet controller uses the model as a guide to monitor
its own behavior, as well; if it is unable to keep to the
terms of the contract, it must escalate an error mes-
sage to the planner. This situation is assumed to be
quite rare. The model-based contracts approach is
part of our effort to more closely integrate planning
and control, which we believe allows more rapid,
flexible responses to online events.

Planner/Scheduler
The planner / scheduler is at the top of the control
hierarchy. It takes print job descriptions as input and
produces valid sheet itineraries as output. This task
involves determining routes and timing through the
paper-path elements and making sure that all sheets
end up with the correct properties (with the correct
images printed on them, for example) and do not
interfere with each other. The planner / scheduler
also tries to ensure print jobs finish at the earliest
possible times. Since the planner / scheduler both
chooses routes and decides timing along the routes,
our design combines planning and scheduling into
one entity. The planner / scheduler runs on its own
processor (a PC) and communicates to the sheet con-
trollers over Ethernet.

The hypermodular prototype presents a number
of challenges for the planner / scheduler. First, there
are many possible paths through the machine, and
the machine can also be reconfigured in real time.
Determining the optimal route for a sheet is there-
fore not trivial but it must be done in an online fash-
ion (routes cannot be precompiled). Second, for a
printer or other manufacturing system, new jobs are
continuously and incrementally submitted, so the
planner / scheduler must plan continuously. One of
the main objectives of the system is for the job to fin-
ish production as soon as possible after it is submit-
ted to the printer; this objective requires minimizing
the sum of the plan execution time and the time
required to find a plan. The planner / scheduler must
thus find a good quality plan very quickly, and it
must do so in parallel with monitoring other sheets
executing on the machine. The plans are then sent
to the controllers and are eventually converted into
low-level control signals (figure 3).

The planner / scheduler must also be able to
respond to escalations (exceptions) as well as config-
uration (system model) changes from the lower hier-
archical layers. It therefore needs to be able to replan
sheets already in flight, taking into account the pre-
dicted real-time state of the machine at the end of
the planning. One example of an exception is a
paper jam (figure 4). A jam means that one particu-
lar sheet will not be produced correctly, but it also
means that part of the machine is unexpectedly
blocked and thus unavailable. In this case, the plan-
ner / scheduler must find new plans for all sheets
that have already been planned, including those
already in the machine, so that they can be routed
around the obstacle. It must also, of course, find a
way to replace the damaged sheet and insert it into
the job in the correct order. Sheets already in the
machine may be routed to a purge tray if they would
otherwise come out in the wrong order. During nom-
inal operation, a delay in planning only results in
lower productivity, but in the case of a paper jam or
other fault, planning delay can cause a cascade of
failures, such as many sheets piling into the jammed

Articles

FALL 2013 77

location. Until now, production printers have used
two approaches to exception handling: stop the pro-
duction to allow the operator to remove all sheets, or

use machine-specific customized local rules to purge
sheets from the system.

We have developed a model-based, online, tempo-

Articles

78 AI MAGAZINE

planner / scheduler

sheet
controller

sheet
controller

sheet controller factory

CANbus

n-MC

n-MC

n-MC n-MC n-MC

n-MC

t-MC t-MC

t-MC

s-MC s-MC

t-MC n-MC

embedded controllers

Ethernet

system model
job requests

physical system

n-MC

Figure 2. Hypermodular Printer Control Architecture.

Sheets are shown as thick lines in the physical system. Module controllers (MCs) are shown in a configuration matching
that of their associated physical modules, nip (n), three-way (t), or straight-through (s). Module and sheet controllers are
shaded according to their association with one of two different control groups (corresponding to the two sheets shown in
the physical system diagram). One module controller is processing information on both sheets, and as such is (or is about
to be) part of both control groups. Unshaded module controllers are not part of either control group. Figure 2 is reproduced
with permission from Biegelsen et al (2011), © SPIE.

ral planner / scheduler to address these challenges
(Ruml, Do, and Fromherz 2005). A schematic is
shown in figure 5. Model-based here means that the
machine model is separate from the reasoning algo-
rithms, which do not contain any domain- or con-
figuration-specific information. Online here means
that the processes of goals (printing requests) arriv-
ing, planning (finding legal routes), and plan execu-
tion (printing) all interleave. This approach is key for
online reconfigurability: since the reasoning algo-
rithms can handle any of a wide range of machine
models, the model can be allowed to change online.

Our planning algorithm is a combination of
heuristic state-space regression planning (Bonet and
Geffner 1999) and partial-order scheduling (Smith
and Cheng 1993, Policella et al. 2007). The planning
aspect refers to determining the component actions
required to route the sheet through the machine and
end up with the correct properties. The scheduling
aspect refers to defining the ordering between actions
for different sheets competing for the same resources,

such as a marking engine. Since the planner / sched-
uler must process new jobs continually online, plan-
ning is done on a per sheet basis, optimizing the
completion time for all planned sheets. Plan timing
is not fixed until the plan is sent to the control lev-
els of the hierarchy. In essence, the time point repre-
senting the instant that a given sheet will be at a par-
ticular location stays flexible within the constraints
between it and related time points (for example, the
time it reaches the previous location). Only when
the plan is sent down to the controller to execute are
all time points fixed at their earliest possible times;
this procedure can be carried out quickly by a stan-
dard algorithm on the temporal network.

The plan optimization, with the default objective
function of finishing printing all known jobs as
quickly as possible, is performed using a regression
search through the system state space, which builds
the plan “backward” from the end location of each
sheet (the sheet ends in the tray in the correct order
within a given print job) back to the beginning loca-

Articles

FALL 2013 79

module
controller

module
controller

module
controller

module
controller

sheet
controller

planner / scheduler

sheet
controller

module
controller

<Job 1, Sheet 1, simplex, A4, b&w, …>
<Job 1, Sheet 2, simplex, A4, b&w, …>
<Job 2, Sheet 1, simplex, A4, color, …>
<Job 1, Sheet 3, simplex, A4, b&w, …>

 .
 .

<feeder1, feed, 3.2>
<m9, left2middle, 3.3>
<m5, middle2left, 3.4>

 .
 .

t

u

x

t

Figure 3. Information Flow in the Hypermodular Printer Control Architecture.

The planner / scheduler receives a job description as input and outputs a set of itineraries for sheets. Each itinerary is a sequence of actions
with their starting times. The sheet controller creates a set of time and position points for the module controllers, which in turn produce
the commands (desired rotational velocities) for the motors. The diagrams are based on figures previously published in Fromherz, Craw-
ford, and Hindi (2005) and are © 2005 and reproduced with kind permission of Springer Science+Business Media.

tion (a blank sheet at a feeder). The search is
informed by an admissible heuristic based on a tem-
poral planning graph structure (Smith and Weld
1999), which can be built quickly in linear time by
incrementally estimating the earliest time each

action in a given domain can start in any legal plan.
In our domain, the complete temporal planning
graph gives a good estimate as to when a sheet can
optimistically reach a particular location, respecting
the trajectories of sheets that are either printing or

Articles

80 AI MAGAZINE

feeders outputs

marking engine marking engine

marking engine marking engine

1.1

1.2

2.1

A

feeders outputs

marking engine marking engine

marking engine marking engine

1.1

1.2

2.1

B

before jam
or failure

after jam
or failure

Figure 4. Replanning Example.

(A) Top: Job one (lighter dashed path) has two sheets (1.1, 1.2) finishing in the bottom output tray. Job two (darker dashed
path) has one sheet (2.1) exiting at the top tray. (B) Bottom: If sheet 1.1 jams, sheet 1.2 must be rerouted to the purge tray
to avoid being out of order. Sheet 2.1 must also be rerouted around the jam. Sheets 1.1 and 1.2 then need to be regenerat-
ed in order.

already committed to previous plans. The planner /
scheduler uses this information when it builds the
plan backward to choose between different possible
sheet trajectories, selecting the one that completes at
the earliest time.

If the planner / scheduler needs to replan for sheets
already in flight, it enters a replanning mode in
which it can consider all the sheets in different loca-
tions in the machine at once. In this mode, it uses a
chained progression search through the state space
that links the search for different in-flight sheets
together and builds plans forward using the sheets’
real-time states as starting constraints (Do, Ruml, and
Zhou 2008b). Progression (forward) here means that,
unlike in nominal planning where the plans/routes
are built backward from the sheets’ end locations, we
build the plans starting from the sheet locations at
the point when the exception happens and extend-
ing to the end location (which can be the original fin-
isher or a “purge” tray). Chained here means we find
the plans for all the in-flight sheets at once, sequen-
tially, and the planning episode only ends when the
plans for all in-flight sheets are found. This is in con-
trast to the nominal planning case, in which each
planning episode is for a single sheet. This addition-
al requirement stems from the preference for not
halting the machine completely when an exception
occurs, which implies all the in-flight sheets in con-
cert need a set of nonconflicting routes.

The planner / scheduler uses temporal constraints
to keep track of timing and ordering concerns. These

constraints can be used to model the ordering of
actions of different sheets that might interact as well
as real-time considerations such as setup times or
network delays. These temporal constraints are man-
aged in a simple temporal network (STN) (Dechter,
Meiri, and Pearl 1991). The STN answers simple tem-
poral queries the planner / scheduler poses when
searching for a good plan, such as, what is the earli-
est time a given sheet can complete its execution, or,
is a particular ordering of two actions in two differ-
ent sheets feasible or not (for example, can page two
be printed before page one on printer X). In addi-
tion, the planner / scheduler has a plan management
component that forms the interface between the
planning algorithm and the real-time world. This
component keeps track of new job requests coming
in, sheet plans that have not yet been sent to the
controllers, and model changes and exceptions com-
ing up from the controllers.

Our planner / scheduler has a proven track record.
To our knowledge, this work represents the first suc-
cessful industrial application of embedded, domain-
independent, temporal planning technology. While
other planners have been able to handle one or a few
of the planning constraints in our domain, there is
no existing online planner / scheduler that can han-
dle all of them, including both nominal planning
and replanning with very fast planning time require-
ments as well as multiple objective functions. The
main objective function is minimizing the comple-
tion time of all known jobs, but our planner / sched-

Articles

FALL 2013 81

planner/scheduler

plan manager

STN

sheet
controllers

problem
description plans

constraints

failures

time info

updates,
escalations (faults)

itineraries

printer model

sheet
description

Figure 5. Overview of the Planner/Scheduler Structure.

This figure originally appeared in Ruml, Do, and Fromherz (2005), and is reproduced with permission of AAAI.

uler can also handle other objective functions such
as: (1) minimizing printing cost (for example, penal-
izing printing black-and-white sheets on color
engines); or (2) optimizing for print quality (for
example, printing any pair of the facing pages in a
book on engines with the same or similar quality).
Our planner / scheduler has been successfully
deployed to control three physical printer prototypes
as well as a large number of hypothetical configura-
tions in simulation. It can produce plans quickly
enough to keep these systems running at full capaci-
ty, which can be quite challenging (at full speed, the
hypermodular system requires a new sheet every 27
milliseconds on average). The planner / scheduler
also compares favorably to state-of-the-art domain-
independent planners in the literature (Do, Ruml,
and Zhou 2008a; Ruml et al. 2011), running hun-
dreds of times faster on this domain and often find-
ing better quality plans than winners of previous
International Planning Competitions (IPCs). Overall,
our experience demonstrates that
domain-independent artificial intelligence planning
based on heuristic search can flexibly handle time,
resources, replanning, and multiple objectives in a
high-speed practical application without requiring
hand-coded control knowledge. Further details on
the planner / scheduler can be found in Ruml et al.
(2011).

Related Planning and Scheduling Work
There has been much interest in the last 20 years in
the integration of planning and scheduling tech-
niques. HSTS (Muscettola 1994) and IxTeT (Ghallab
and Laruelle 1994) are examples of systems that not
only select and order the actions necessary to reach a
goal, but also specify precise execution times for the
actions. The Visopt ShopFloor system of Barták
(2002) uses a constraint logic programming approach
to incorporate aspects of planning into scheduling.
The Europa system of Frank and Jónsson (2003) uses
a novel representation based on attributes and inter-
vals. Unlike our planner / scheduler, all of these sys-
tems use domain representations quite different from
the mainstream PDDL language (Fox and Long 2003)
used in planning research, and all of them were
designed for offline use, rather than controlling a sys-
tem during continual execution.

The online nature of the task and the unambigu-
ous objective function in our printer-control domain
give rise to an additional trade-off between planning
time and execution time that is absent from much
prior work in planning and scheduling. In our setting
the set of sheets is only revealed incrementally over
time, whereas in classical temporal planning the
entire problem instance is available at once. Addi-
tionally, in contrast to much work on continual plan-
ning (desJardins et al. 1999), the tight constraints of
our domain require that we produce a complete plan
for each sheet before its execution can begin. Our

domain emphasizes online decision making, which
has received only limited attention to date.

Although we present our system as a temporal
planner, it fits easily into the tradition of constraint-
based scheduling (Smith and Cheng 1993; Policella
et al. 2007). The main difference is that actions’ time
points and resource allocations are added incremen-
tally rather than all being present at the start of the
search process. In our approach, we attempt to main-
tain a conflict-free schedule rather than allowing
contention to accumulate and then carefully choos-
ing which conflicts to resolve first. Our approach is
perhaps similar in spirit to that taken by the IxTeT
system (Ghallab and Laruelle 1994).

Our basic approach of coordinating separate state-
space searches through temporal constraints may
well be suitable for other online planning domains.
By planning for individual print jobs and managing
multiple plans at the same time, our strategy is simi-
lar in spirit to planners that partition goals into sub-
goals and later merge plans for individual goals (Wah
and Chen 2003, Koehler and Hoffmann 2000). In our
framework, even though each print job is planned
locally, the global temporal database ensures that
there are no temporal or resource inconsistencies at
any step of the search.

There are several previously proposed frameworks
for handling exceptions and uncertainty in plan exe-
cution. Markov decision processes (Boutilier, Dean,
and Hanks 1999) and contingency planning (Pryor
and Collins 1996) build plans and policies robust to
uncertain environments. Planners built on those
techniques are normally slow, especially in a real-
time dynamic environment with complex temporal
constraints like ours. They are not suitable for our
domain where exceptions do not happen frequently
but need very quick responses. Fox et al. (2006) dis-
cuss the trade-off between replanning and plan-
repair strategies for handling execution failure. Their
algorithms work offline, instead of in an online real-
time environment such as ours, and they target a dif-
ferent objective function (in their case, plan stabili-
ty). The CASPER system at JPL (Chien et al. 1999) uses
iterative repairs to continuously modify and update
plans to adjust to the dynamic environment. Unlike
our system, CASPER uses domain control rules, and
thus is less flexible. The replanning decision is also
not needed as quickly as in our domain (in our case,
subsecond).

Coordination and Control
In addition to the complexity involved in planning
and scheduling for the hypermodular printing sys-
tem, there were also several challenges in designing
the control components of the system because of its
highly distributed nature and the need to support
reconfigurability. These challenges centered on the
twin issues of coordination and communication.

Each module in the system has its own processor

Articles

82 AI MAGAZINE

and local controller, the better to reap the benefits of
modularity, encapsulation, and autonomy by allow-
ing each module to contain and act on its own mod-
ule-specific knowledge locally. The module controller
was designed to be sophisticated enough to handle
all the local module-specific control, rather than sim-
ply accepting control commands from an outside
agent. Though relatively costly in terms of module
processing power, this choice has benefits in terms of
online reconfigurability. The nip module controllers
use a proximal time-optimal servo (PTOS) control
scheme (Hindi et al. 2008), which demonstrates good
tracking performance for this system. In addition, the
module controller has the ability to inform higher
hierarchical levels when it is being taken offline
(necessitating a configuration change).

Independently actuated modules require coordi-
nation. The hypermodularity of the system means
that the sheet is under the control of multiple inde-
pendent actuators at all times as it goes through the
machine. In a more traditional system, actuators
would all be controlled centrally, or there would be at
most two controllers cooperating during a brief trans-
fer between large control domains. There are several
possible choices for addressing the coordination
problem. Coordination could be performed at the
module level, through local communication, or the
coordination functionality could travel with the
sheet, or it could be centralized; it could even theo-
retically reside at the higher planning level. We chose
to define a separate entity for performing the coordi-
nation function for a sheet, named the sheet con-
troller, with one sheet controller being assigned
dynamically to each sheet. Defining a separate coor-
dination entity kept the different control roles in the
system separate (encapsulation): the sheet controller
could handle issues involving multiple modules,
while the module controllers did not need to be
aware of the existence of other modules. In our pro-
totype, the sheet controllers are located on their own
processor (a PC).

When a new sheet plan is created by the planner,
a new sheet controller is generated and associated
with that sheet. Each sheet controller is responsible
for defining and maintaining the control group for
its sheet, that is, the dynamic group of modules act-
ing on the sheet at any one time. It interprets com-
mands, or model-based contract requests, for its sheet
coming down the control hierarchy (from the plan-
ner / scheduler) and disseminates corresponding
commands to the control group; it is the sheet con-
troller’s job to translate the action/time world view
of the planner / scheduler into position/time trajec-
tories for the module controllers to track (figure 3). It
mediates communication, including feedback infor-
mation, among modules in the control group. Final-
ly, it monitors the sheet’s progress, and, if the plan-
ner / scheduler’s specifications cannot be met, it
escalates an exception message up the hierarchy. For

example, the sheet controller might determine that
its sheet has jammed. It would then tell the planner
/ scheduler not only about the jam but also about
which module paths were blocked.

To coordinate the modules tightly enough to
ensure accurate control and avoid damaging the
sheet, we chose to synchronize the controllers in the
control group exactly so that they would always pro-
duce identical output (nip actuator commands). This
synchronization, brokered by the sheet controller,
has three components. First, the sheet controller
ensures that all nips in the control group are given
matching tracking commands. Second, each new
controller (for a nip just ahead of the sheet) joining
the control group must synchronize its internal state
with the controllers already in the group. Third, to
maintain synchronization among the control group,
feedback from the sensors must be shared (through
the sheet controller) and used simultaneously. Data
traveling over the network is delayed, so synchro-
nization initialization and maintenance require
some care and local processing (Crawford et al.
2009).

Self-Awareness and Diagnosis
To fully realize the potential of the model-based con-
tracts approach, the system components must be
able to recognize when they are not meeting the
conditions of their contracts. In the hypermodular
printer prototype, the sheet controller is responsible
for monitoring the sheet progress and then notify-
ing the planner / scheduler if the sheet is not fol-
lowing the itinerary sufficiently closely (the contract
is being breached). In general, the more components
are able to model their own internal processes and
analyze their own performance, in other words, the
more self-aware they are, the more autonomy and
delegation can be reliably performed in a system.
This kind of self-awareness is akin to system diagno-
sis, but at a variety of hierarchical levels, and per-
formed in an ongoing manner, in parallel with sys-
tem operation.

We have been exploring the potential of this type
of diagnosis at the planning level. If the printing sys-
tem can determine and monitor the current health
status of the components of the machine, the plan-
ner / scheduler can then choose plans based on that
knowledge. For example, if exceptions appear to
occur more often whenever sheets are routed
through a particular module, then perhaps there is
something wrong with that module. The planner /
scheduler can then choose a plan either to help iden-
tify the problem or to simply avoid the module.
Since the goals of the system as a whole include
maintaining high productivity, it is desirable to per-
form this type of diagnosis in parallel with the nor-
mal machine operation. This idea we call pervasive
diagnosis (Kuhn et al. 2008).

Articles

FALL 2013 83

Results: Online
Reconfigurable Systems

The software described above was implemented in
the hypermodular printer prototype. The printer is
capable of running at approximately 210 pages per
minute at full speed, using all four 55-page-per-
minute print engines. With individual highway
modules artificially “failed” (or removed), the same
throughput can typically be achieved; if a print
engine or a module on an on- or off-ramp is failed,
throughput is reduced by approximately 25 percent.
Failing multiple modules at once has different effects
on the throughput, depending on the choice of mod-
ules.

Online rerouting in response to a change in con-
figuration has also been demonstrated in this
machine, though at a lower sheet speed and density.
If a module is artificially “failed” online, this change
in configuration is reported up to the planner /
scheduler, which can then reroute the sheets in the
system to avoid the failed module. Additionally, if a
sheet is artificially “jammed” in the machine, the sys-
tem can detect the jam and report it to the planner /
scheduler, which will then replan to replace that
sheet, purge any sheets that are now out of order, and
reroute sheet traffic around the jam.

The planner / scheduler can handle a wide range of
system configurations. As mentioned above, the
planner / scheduler has been demonstrated on other
real printer designs as well as many hypothetical sys-
tems (Ruml et al. 2011). On the hypermodular pro-
totype configuration, the planner / scheduler can
plan a sheet in an average of 92.8 milliseconds (the
time varies depending on the sheet requirements and
the current states of the sheets in flight). This time is
significantly less than the 270 millisecond average
needed to support the full machine throughput of
220 pages per minute. With other printer designs, all
of which are less complex than the hypermodular
prototype, the planner / scheduler takes less time per
sheet on average.

In the case of a paper jam, the planner / scheduler
is able to reroute up to five sheets on the fly (in real
time) for the hypermodular printer. This number
may seem low, but replanning is harder than nomi-
nal planning by a factor exponential in the number
of in-flight sheets. For simpler protytpe systems, the
planner / scheduler can reroute all the sheets in the
system in real time, so an increase in computing
capacity may assist in the hypermodular printer case.
Our planner / scheduler is the first to demonstrate
this generic, automatic exception handling for print-
ers, rather than relying on machine-specific rules or
operator intervention.

In addition, the planner / scheduler has been
extended to other domains including food packaging
(Do et al. 2011a) and material control systems (Do et
al. 2011b). Though we have not yet demonstrated

the capability of adding new components to a system
online, we believe the planner / scheduler and con-
trol architecture described here are capable of han-
dling this aspect of online reconfigurability as well.

Planner/Scheduler Lessons Learned
Exploration of the hypermodular printer system has
given us a number of insights into the design and
control of such distributed, adaptable machines. As
one example, during the course of the system devel-
opment we learned some significant lessons regard-
ing the planner / scheduler and its use in real-world
applications.

Modeling for planning is important: In this work, we
modeled printers using a specialized, high-level,
human-friendly representation in which machine
modules and the connections between them are the
main themes of the language. We then compiled this
representation into the planner / scheduler input lan-
guage, taking the capabilities of different modules
along with their interconnections and producing
action schemata. Through discussion with our users
and industrial partners, we feel that the machine-
centered language involving modules, machine
instances, and interconnections is easier for them to
understand and accept, while the compiled-down
representation makes it much easier for us to adopt
STRIPS (Stanford Research Institute Problem Solver)
planning techniques. Figure 6 shows the STRIPS-like
representation of an action that prints one side of a
given sheet and inverts it after printing. Further, we
found that because we understood the search algo-
rithm (regression with three-value state representa-
tion) and the heuristics (planning graph with mutex-
es) used by the planner, we could manipulate the
modeling of the actions, goals, and initial states to
produce quite different computational results. The
same domain physics can be represented differently,
even if limited to STRIPS, and finding the right match
with the chosen search strategy can dramatically
affect the planner’s performance. As application
developers, not having to work with a fixed bench-
mark domain representation allows us to exploit
another dimension in modeling to improve our plan-
ner’s performance.

The most suitable planning algorithm depends on the
application specifications: Even after formulating our
domain using an extension of STRIPS, we went
through several implementations of different plan-
ning algorithms before settling on the current one.
Our first version was a lifted partial-order planner,
which we still think is the more elegant algorithm.
We then implemented a grounded forward state-
space planner, because that approach has dominated
the recent international planning competitions. We
realized, however, that a combination of the con-
straint that sheets in the same print job should be fin-
ished in order and our objective function of mini-
mizing the finishing time is not suitable for forward

Articles

84 AI MAGAZINE

state-space search (Ruml et al. 2011). We finally set-
tled on a backward state-space framework, which is
much faster in our domain. The lesson we drew from
this experience is that just because some approach
works best in a wide range of benchmark domains in
the competition does not mean that it is the best
choice for a given application, and if it does not
work, it does not mean that other less popular
approaches cannot do significantly better. Therefore,
understanding a domain, the important constraints
involved, the objective function, and how different
planning algorithms work can help in selecting the
most suitable strategy. Competition results are not a
replacement for understanding the variety of appli-
cable planning algorithms.

There are many uses for a planner: Besides its main
job of controlling different printers, the planner /
scheduler has also been used extensively for system
analysis purposes. Thus, the planner / scheduler has
been tested against (1) different printer designs to
help determine the better ones, and (2) printers with
various broken modules to test the reliability of each
printer. These analyses can help a product group to
decide which printer to build for a given purpose.
Another use has been to test the performance of the
upstream job submission and sequencing methods.
Through these experiences, we learned that there are
many potential applications of a planner / scheduler
beyond direct machine control.

Design Trade-Offs
In addition to choices made in the individual soft-
ware components’ designs, such as those described

here for the planner, there were many trade-offs
involved in designing the overall system architecture
and the interplay of the components. These trade-
offs included decisions about the level of modulari-
ty of the software as well as the level of intelligence
of the various components. Unfortunately, there are
no unique answers for design questions such as
these, as the decisions generally must depend on the
details of the implementation. In making choices,
we were guided as much as possible by the design
principles of multiscale control, encapsulation, and
autonomy/delegation/escalation, and by the realities
of our implementation. For example, we had a
choice regarding what the finest-grained level of
modeling and control would be. We could choose to
have a “module” include one three-way and multi-
ple nips, or instead have separate nip and three-way
“modules.” We chose the latter option for a higher
degree of modularity and reconfigurability. The
trade-off, of course, was a greater complexity in the
planner / scheduler algorithms, because of the
greater number of modules to represent. This numer-
ical explosion can be combated by grouping the con-
trol modules into units for the purpose of planning,
but again this choice requires a trade-off in loss of
generality, a larger variety of more specific module
types, and a mismatch between modeling granulari-
ty at different levels of the control hierarchy. This
grouping into macromodules proved necessary for a
limited number of subsystems (the on- and off-
ramps) for computational reasons. For similar rea-
sons of flexibility, reconfigurability, and modeling
uniformity we chose to have one controller associat-

Articles

FALL 2013 85

PrintSimplexAndInvert(?sheet, ?side, ?color, ?image)

Location(?sheet,Printer1-Input)
Blank(?sheet)
SideUp(?sheet,?side)
Opposite(?side, ?other-side)
CanPrint(MarkingEngine, ?color)
Location(?sheet, Printer1-Output)

HasImage(?sheet,?side,?image)
¬Blank(?sheet)
¬SideUp(?sheet, ?side)
SideUp(?sheet,?other-side)
[13.2 secs,15.0 secs]
0.1 secs
MarkingEngine at ?start + 5.9 for 3.7 secs

preconditions:

effects:

duration:
set-up time:
allocations:

¬Location(?sheet, Printer1-Input)

Figure 6. A Simple STRIPS-Like Temporal Action Specification with Resource Allocation.

This figure originally appeared in Ruml, et al. (2011) and is reproduced with permission of JAIR.

ed with each processor, and one processor associated
with each physical unit (nip, three-way, or straight-
through).

The other set of major trade-offs involved where to
put the logical boundaries between levels of the con-
trol hierarchy. For example, we had a choice as to what
kind of actions the planner / scheduler should pro-
duce as output. The planner / scheduler output must
be converted at some point to trajectories for the nips
to track. The planner / scheduler could output detailed
commands to the nips and directors, which would
allow it to be more directly responsive to the system,
but then it would have to be correspondingly more
complex, would have to know many more details
about the physical system, and could not then com-
plete its calculations in the required time frame. At the
other extreme, the planner / scheduler could lump
many modules together into a highway unit, for
example, with several possible entrances and exits,
and output actions such as “entrance 1 to exit 2.” In
this case, significant interpretation would be needed
between the planner / scheduler output and the
inputs to the control actuators, and the macromodule
units would need to be somehow configuration spe-
cific. The choice we made of having the planner /
scheduler output discrete actions such as “left to right”
for each module (except for the on- and off-ramps, as
mentioned above; see figure 3) lies somewhere in
between these extremes and has the advantage of cor-
responding to the level of modularity of the hardware
and the control layer. It therefore provides for greater
ease in reconfiguration and has a complexity in
between those of the extreme solutions just described.
On the other hand, this choice requires some other
entity to interpret between the planner / scheduler
output and the required inputs to the nips and direc-
tors, which is at a greater level of detail. The inter-
preter must also translate feedback coming from the
modules up to the planner. Putting this computation
in the modules themselves introduces another set of
trade-offs, including greater module processing needs
and communication among the modules (to ensure
coordination). The decision to put this required func-
tionality in the sheet controller allowed all the inter-
module computations to be encapsulated in one loca-
tion, as well as saving on module controller
complexity.

Conclusions
We believe that the design principles espoused here
are key to the success of our system. Though hierar-
chical control systems are very common, we feel that
the ideas of encapsulation, delegation, autonomy,
and escalation, as implemented, for example, in the
model-based contract interface, allow for clear com-
munication and a high level of component inde-
pendence and reliability, which are required in such
a large-scale, online reconfigurable system. A high

level of component self-awareness is required to sup-
port this framework.

Online reconfigurable systems offer many poten-
tial gains in the areas of flexibility and customizabil-
ity of product design and graceful degradation in the
face of system faults. As such, the research described
here has applications in a range of areas outside
printing, including other manufacturing domains as
well as military systems. As we have demonstrated, a
high level of modularity combined with integrated,
model-based software is one path to achieving online
reconfigurability. Extreme modularity admittedly
adds system complexity, though, which affects both
planning/scheduling complexity and communica-
tion overhead. It is likely that, for a particular target
system, the benefits of online reconfigurability could
be realized by using different levels of modularity in
different parts of the machine, thus reducing some of
the communication overhead and system complexi-
ty but retaining all the desired flexibility. Additional-
ly, communication and computation are improving
at a significant pace, particularly relative to mechan-
ical hardware, giving higher levels of modularity
more of an advanted in the future. Determining the
ideal level of modularity, or combination of levels,
for a particular application is still more a matter of art
than science, however.

Acknowledgments
The authors would like to thank all of our many cur-
rent and former colleagues at PARC and Xerox who
have contributed to this project. Special thanks to
Bob Lofthus and Martin Krucinski. This work was
funded by Xerox.

References
Azab, A.; ElMaraghy, H.; and Samy, S. 2009. Reconfiguring
Process Plans: A New Approach to Minimize Change. In
Changeable and Reconfigurable Manufacturing Systems, ed. H.
A. ElMaraghy, chapter 10, 179–194. Berlin: Springer-Verlag.

Barták, R. 2002. Visopt ShopFloor: On the Edge of Planning
and Scheduling. In Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Program-
ming, Lecture Notes in Computer Science, 587–602. Berlin:
Springer.

Bi, Z. M.; Lang, S. Y. T.; Shen, W.; and Wang, L. 2008. Recon-
figurable Manufacturing Systems: The State of the Art. Inter-
national Journal of Production Research 46(4): 967–992.

Biegelsen, D.; Crawford, L.; Duff, D.; Eldershaw, C.;
Fromherz, M. P. J.; Kott, G.; Larner, D.; Mandel, B.; Moore,
S.; Preas, B.; Schmitz, G.; and Swartz, L. 2009. Hypermodu-
lar Parallel Printing Systems. In Proceedings of the Interna-
tional Conference on Digital Printing Technologies and Digital
Fabrication 2009 (NIP25), 184–187. Springfield, VA: Society
for Imaging Science and Technology.

Biegelsen, D. K.; Crawford, L. S.; Do, M. B.; Duff, D. G.;
Eldershaw, C.; Fromherz, M. P. J.; Hindi, H.; Kott, G.; Larn-
er, D. L.; Mandel, B.; Moore, S.; Preas, B. T.; Ruml, W.;
Schmitz, G. P.; Schwartz, L.-E.; and Zhou, R. 2011. Integrat-
ed Parallel Printing Systems with Hypermodular Architec-
ture. In Parallel Processing for Imaging Applications, SPIE Pro-

Articles

86 AI MAGAZINE

ceedings 7872. Bellingham, WA: Society of Photo-Optical
Instrumentation Engineers.

Bonet, B., and Geffner, H. 1999. Planning as Heuristic
Search: New Results. In Proceedings of the 5th European Con-
ference on Planning, Lecture Notes in Computer Science, ed.
S. Biundo and M. Fox 359–371. Berlin: Springer.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-Theo-
retic Planning: Structural Assumptions and Computational
Leverage. Journal of Artificial Intelligence Research 11: 1–91.

Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 1999. Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling for
Autonomous Spacecraft. In Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence. San Francis-
co: Morgan Kaufmann Publishers.

Crawford, L.; Hindi, H.; Zhou, R.; and Larner, D. 2009. Syn-
chronized Control in a Large-Scale Networked Distributed
Printing System. In Proceedings of the IEEE International Con-
ference on Robotics and Automation. Piscataway, NJ: Institute
of Electrical and Electronics Engineers.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49(1–3): 61 – 95.

desJardins, M. E.; Durfee, E. H.; Ortiz, Jr., C. L.; and Wolver-
ton, M. J. 1999. A Survey of Research in Distributed, Con-
tinual Planning. AI Magazine 20(4): 13–22.

Do, M. B.; Lee, L.; Zhou, R.; Crawford, L. S.; and Uckun, S.
2011a. Online Planning to Control a Packaging Infeed Sys-
tem. In Proceedings of the 23rd International Conference on
Innovative Applications of Artificial Intelligence (IAAI-11). Palo
Alto, CA: AAAI Press.

Do, M. B.; Uckun, S.; Crawford, L. S.; Zhang, Y.; Ohashi, A.;
Okajima, K.; Hasegawa, F.; Kawano, Y.; and Tanaka, K.
2011b. Online Planning for a Material Control System for
Liquid Crystal Display Manufacturing. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS). Palo Alto, CA: AAAI Press.

Do, M. B.; Ruml, W.; and Zhou, R. 2008a. On-Line Planning
and Scheduling: An Application to Controlling Modular
Printers. In Proceedings of the 23rd AAAI Conference on Artifi-
cial Intelligence. Palo Alto, CA: AAAI Press.

Do, M.; Ruml, W.; and Zhou, R. 2008b. Planning for Modu-
lar Printers: Beyond Productivity. In Proceedings of the 18th
International Conference on Automated Planning and Schedul-
ing (ICAPS). Palo Alto, CA: AAAI Press.

El Maraghy, H. A., ed. 2009. Changeable and Reconfigurable
Manufacturing Systems. Berlin: Springer-Verlag.

ElMaraghy, H. A. 2006. Flexible and Reconfigurable Manu-
facturing Systems Paradigms. International Journal of Flexible
Manufacturing Systems 17(4): 261–276.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal of
Artificial Intelligence Research 20: 61–124.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan Sta-
bility: Replanning versus Plan Repair. In Proceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS), 212–221. Palo Alto, CA: AAAI Press.

Frank, J., and Jónsson, A. 2003. Constraint-Based Attribute
and Interval Planning. Constraints 8(2): 339–364.

Fromherz, M. P. J.; Bobrow, D. G.; and de Kleer, J. 2003.
Model-Based Computing for Design and Control of Recon-
figurable Systems. AI Magazine 24(4): 120–130.

Fromherz, M. P. J.; Crawford, L. S.; and Hindi, H. A. 2005.

Coordinated Control for Highly Reconfigurable Systems. In
Hybrid Systems: Computation and Control (HSCC). Berlin:
Springer-Verlag.

Ghallab, M., and Laruelle, H. 1994. Representation and
Control in IxTeT, a Temporal Planner. In Proceedings of the
Second International Conference on Artificial Intelligence Plan-
ning Systems, 61–67. Palo Alto, CA: AAAI Press.

Heisel, U., and Meitzner, M. 2004. Progress in Reconfig-
urable Manufacturing Systems. Journal for Manufacturing Sci-
ence and Production 6(1-2): 1–8.

Hindi, H.; Crawford, L.; Zhou, R.; and Eldershaw, C. 2008.
Efficient Waypoint Tracking Hybrid Controllers for Double
Integrators Using Classical Time Optimal Control. In Pro-
ceedings of the 2008 IEEE Conference on Decision and
Control. Piscataway, NJ: Institute of Electrical and Elec-
tronics Engineers.

Koehler, J., and Hoffmann, J. 2000. On Reasonable and
Forced Goal Orderings and Their Use in an Agenda-Driven
Planning Algorithm. Journal of Artificial Intelligence Research
12: 338–386.

Koren, Y., and Shpitalni, M. 2011. Design of Reconfigurable
Manufacturing Systems. Journal of Manufacturing Systems
29(4): 130–141.

Koren, Y.; Heisel, U.; Jovane, F.; Moriwaki, T.; Pritschow, G.;
Ulsoy, G.; and Brussel, H. V. 1999. Reconfigurable Manu-
facturing Systems. Annals of the CIRP 48(2): 527–540.

Kuhn, L.; Price, B.; De Kleer, J.; Do, M.; and Zhou, R. 2008.
Pervasive Diagnosis: The Integration of Diagnostic Goals
into Production Plans. In Proceedings of the 23rd National
Conference on Artificial Intelligence, 1306–1312. Palo Alto,
CA: AAAI Press.

Mehrabi, M. G.; Ulsoy, A. G.; Koren, Y.; and Heytler, P. 2002.
Trends and Perspectives in Flexible and Reconfigurable
Manufacturing Systems. Journal of Intelligent Manufacturing
13(2): 135–146.

Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Intelligent Scheduling, ed. M. Zweben and M.
Fox, chapter 6, 169–212. San Francisco: Morgan Kaufmann
Publishers.

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. F. 2007. From
Precedence Constraint Posting to Partial Order Schedules.
AI Communications 20(3): 163–180.

Pryor, L., and Collins, G. 1996. Planning for Contingencies:
A Decision-Based Approach. Journal of Artificial Intelligence
Research 4: 287–339.

Ruml, W.; Do, M. B.; Zhou, R.; and Fromherz, M. P. J. 2011.
On-Line Planning and Scheduling: An Application to Con-
trolling Modular Printers. Journal of Artificial Intelligence
Research 40: 415–468.

Ruml, W.; Do, M. B.; and Fromherz, M. P. J. 2005. On-Line
Planning and Scheduling for High-Speed Manufacturing. In
Proceedings of the 15th International Conference on Automated
Planning and Scheduling (ICAPS-05). Palo Alto, CA: AAAI
Press.

Smith, D. E., and Weld, D. S. 1999. Temporal Planning with
Mutual Exclusion Reasoning. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, 26–333.
San Francisco: Morgan Kaufmann Publishers.

Smith, S. F., and Cheng, C.-C. 1993. Slack-Based Heuristics
for Constraint Satisfaction Scheduling. In Proceedings of the
Eleventh National Conference on Artificial Intelligence, 139–
144. Palo Alto, CA: AAAI Press.

Articles

FALL 2013 87

Tang, L.; Koren, Y.; Yip-Hoi, D. M.; and Wang, W. 2006.
Computer-Aided Reconfiguration Planning: An Artificial
Intelligence-Based Approach. Journal of Computing and Infor-
mation Science in Engineering 6(3): 230–240.

Wah, B. W., and Chen, Y. 2003. Partitioning of Temporal
Planning Problems in Mixed Space Using the Theory of
Extended Saddle Points. In Proceedings of the 2003 IEEE Inter-
national Conference on Tools with Artificial Intelligence. Piscat-
away, NJ: Institute of Electrical and Electronics Engineers.

Wiendahl, H.-P.; ElMaraghy, H. A.; Nyhuis, P.; Zah, M. F.;
Wiendahl, H.-H.; Duffie, N.; and Brieke, M. 2007. Change-
able Manufacturing — Classification, Design and Opera-
tion. Annals of the CIRP 56(2): 783–809.

Lara Crawford is with the Intelligent Systems Lab (ISL) at
the Palo Alto Research Center. She received a Ph.D. in bio-
physics and an M.S. in electrical engineering science from
the University of California at Berkeley. Her research inter-
ests include control and coordination of distributed,
embedded systems, the interface between planning and
control, optimization, modeling, simulation, robotics, and
energy systems.

Minh Do is a senior research scientist at SGT Inc. working
in the Planning and Scheduling Group at the NASA Ames
Research Center. He received a Ph.D. in computer science
from the Arizona State University. His main research inter-
est is in automated planning with concentration on online
continual planning for manufacturing systems with com-
plex temporal and resource constraints. He has also worked
on other topics in planning such as partial-satisfaction plan-
ning, integrating planning and diagnosis, and constraint-
based planning.

Wheeler Ruml is an associate professor at the University of
New Hampshire (UNH). He received a Ph.D. in computer
science from Harvard University in 2002. Before joining
UNH in 2007, he was a member of the research staff and
area manager for embedded reasoning at the Palo Alto
Research Center. His research interests include heuristic
search and planning, with an emphasis on time-aware deci-
sion making.

Haitham Hindi is with Walmart Labs. He was with ISL at
Palo Alto Research Center from 2003–2011. He holds a B.Sc.
from Imperial College in physics, and an M.S. and Ph.D.
from Stanford University in electrical engineering. His
research is in control and optimization and their applica-
tion to real-world problems, including online advertising,
radiation treatment optimization, energy management sys-
tems, dynamic pricing, networked and hybrid control,
printing and manufacturing networks, particle accelerators,
and disk drives.

Craig Eldershaw is with the Hardware Systems Laboratory
at the Palo Alto Research Center. He received a D.Phil. from
the University of Oxford on the topic of robot motion plan-
ning. His specialty is integrating mechanical, electrical and
software designs within a complex, distributed, system. The
work described in this article was a natural extension of his
previous NASA and U.S. Defense Advanced Research Proj-
ects Agency–funded work on modular robotics.

Rong Zhou is with ISL at the Palo Alto Research Center,
where he is a member of the High Performance Analytics
area. He received a Ph.D. in computer science from Missis-

sippi State University. His main research interests include
combinatorial optimization and automated planning with
concentration on large-scale graph search using parallel and
memory hierarchy aware search methods. He has also
worked on user interface design and human factors.

Lukas Kuhn is a cofounder of Zenhavior. Prior to Zenhav-
ior, he worked as a senior system engineer at Qualcomm
R&D on the first generation of mass-scale embedded con-
textual computing. He received a Ph.D. and a diploma
(equivalent to a Master’s) in computer science from the
Technical University of Munich and the University of
Munich, respectively. Before joining Qualcomm in 2010, he
was a research assistant with the Embedded Reasoning Area
at the Palo Alto Research Center, where he worked on the
integration of model-based diagnosis and planning. His cur-
rent work focuses on reasoning for contextual awareness,
mobile computing, and behavior modeling.

Markus Fromherz is the chief innovation officer, health
care, at Xerox. Previously, he was vice president and direc-
tor of the Intelligent Systems Lab at the Palo Alto Research
Center. He received his Ph.D. in computer science from the
University of Zurich, Switzerland, and his M.S. in computer
science from ETH Zurich. His research interests are in the
domain of intelligent embedded software, including con-
straint-based modeling, model-based planning, scheduling,
and control, andmodel-based design analysis and optimiza-
tion.

David Biegelsen was a charter member of Xerox PARC and
is currently a Research Fellow. His fields of expertise include
acousto-optic interactions, electron spin resonance, and
fundamental aspects of disordered semiconductors, laser-
induced thin-film crystallization, scanning tunneling
microscopy, heteroepitaxial growth, and new fabrication
methods and use of complex “smart matter” systems.
Biegelsen holds more than 100 U.S. patents. He is a Fellow
of the APS and has been an editorial board member of
Applied Physics Letters and divisional associate editor of Phys-
ical Review Letters. Biegelsen gets his kicks from learning new
concepts and using them in novel ways.

Johan de Kleer is area manager and research fellow in the
Intelligent Systems Laboratory. He received his Ph.D. and
S.M. from the Massachusetts Institute of Technology. de
Kleer’s interests include large-scale inference, qualitative rea-
soning, knowledge representation, model-based diagnosis,
and truth maintenance systems. He is a fellow of the Asso-
ciation for the Advancement of Artificial Intelligence and
the Association of Computing Machinery.

Dan Larner has a B.S. in mechanical engineering and a B.S.
in computer science and engineering from MIT, and an M.S.
in computer science from Stanford. He has worked on a
variety of systems in both physical and software areas. He is
currently a mechanical engineer on autonomous vehicles at
Google.

Articles

88 AI MAGAZINE

