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Why Is Expressive Music Important?
The simple rendering of a quantized score by a sequencer
sounds monotonous and uninteresting. On the other hand,
musicians make intentional deviations from the score to convey
their own interpretation of the music. These deviations consti-
tute what we call expressiveness and are mostly intended to clar-
ify the musical structure of the composition. This includes the
metrical structure (Sloboda 1983), the phrasing (Gabrielsson
1987), and harmonic structure (Palmer 1966). Besides clarifying
the structure, expressiveness is also used as a way of communi-
cating affective content (Juslin 2001; Lindström 1992; Gabriels-
son 1995). 

But, why do we prefer listening to expressive music instead of
nonexpressive synthesized music? There is a neurological expla-
nation for that: The brain is interested in change. Indeed, audi-
tory neurons, like most neurons in the brain, fire constantly
even in silent environments. What really matters, therefore, is
not the base firing rate but the changes in firing rate. There are
auditory neurons whose firing rate changes only when the
sound frequency or the sound intensity increases or decreases.
Other neurons react similarly when a sound repeats. Converse-
ly, most of the primary auditory neurons also exhibit what is
known as habituation (Baars 1998), which means that when
neurons repeatedly receive the same stimulus their firing rate
decreases over time, which means that we deafen to a sound
unless it manifests some sort of novelty or renewal in its char-
acteristics. Therefore, it is not surprising that music becomes
more interesting when it contains alterations in dynamics, tim-
bre, pitch, rhythm, and others. This pack of alterations might at
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oped at our Institute, for applying musically
acceptable tempo transformations to mono-
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least partially explain why synthesized music is
much less interesting than human-performed
music: A real instrument gives the auditory cortex
more stimuli to respond to than synthesized music
(Jourdain 1977). The alterations provided by
expressive music resources such as changes of tim-
ing, loudness, phrasing, and improvised ornamen-
tation are an extremely rich source of stimuli to
our brains that are absent in the inexpressive,
mechanical renderings.

By tickling our neurons, music reaches our
hearts. Emotions arise in part through the ups and
downs of pitch, dynamics, rhythm, and tension
(alteration between consonance and dissonance)
in music. Indeed, certain sounds elicit powerful
emotions in people possibly as a consequence of
evolution because music is built on universal fea-
tures of human sound processing that have deep
evolutionary roots (Trainor 2008). Mothers in all
cultures talk and sing to their infants using a coo-
ing soft voice with high pitch (known as “moth-
erese”). By doing so and introducing melodic and
rhythmic variations, mothers help prelinguistic
infants regulate their emotional states (Trainor
2008).

Synthesizing Expressive 
Music with AI

In this section we focus on well-known approach-
es to expressive computer music performance with
an emphasis on AI-related approaches. For a com-
plete survey on expressive computer music per-
formance we refer the reader to Kirke and Miranda
(2009).

One of the first attempts to address expressive-
ness in music is that of Johnson (1992). She devel-
oped an expert system to determine the tempo and
the articulation to be applied when playing Bach’s
fugues from The Well-Tempered Clavier. The rules
were obtained from two expert human performers.
The output gives the base tempo value and a list of
performance instructions on notes’ duration and
articulation that should be followed by a human
player. The results very much coincide with the
instructions given in well-known commented edi-
tions of The Well-Tempered Clavier. The main limi-
tation of this system is its lack of generality because
it works well only for fugues written in a 4/4 meter.
For different meters, the rules should be different.
Another obvious consequence of this lack of gen-
erality is that the rules are applicable only to Bach
fugues.

The work of the KTH group from Stockholm
(Friberg 1995; Friberg et al. 1998; Friberg, Sunberg,
and Fryden 2000; Bresin 2001), is one of the best
known long-term efforts on performance systems.
Their current Director Musices system incorporates
rules for tempo, dynamic, and articulation trans-

formations constrained to MIDI. These rules are
inferred both from theoretical musical knowledge
and experimentally by training, specially using the
so-called analysis-by-synthesis approach. The rules
are divided into three main classes: differentiation
rules, which enhance the differences between scale
tones; grouping rules, which show what tones
belong together; and ensemble rules, which syn-
chronize the various voices in an ensemble.

Canazza et al. (1997) developed a system to ana-
lyze how the musician’s expressive intentions are
reflected in the performance. The analysis reveals
two different expressive dimensions: one related to
the energy (dynamics) and the other one related to
the kinetics (rubato) of the piece. The authors also
developed a program for generating expressive per-
formances according to these two dimensions.

The work of Dannenberg and Derenyi (1998) is
also a good example of articulation transforma-
tions using manually constructed rules. They
developed a trumpet synthesizer that combines a
physical model with a performance model. The
goal of the performance model is to generate con-
trol information for the physical model by means
of a collection of rules manually extracted from the
analysis of a collection of controlled recordings of
human performance.

Another approach taken for performing tempo
and dynamics transformation is the use of neural
network techniques. In Bresin (1998), a system
that combines symbolic decision rules with neural
networks is implemented for simulating the style
of real piano performers. The outputs of the neural
networks express time and loudness deviations.
These neural networks extend the standard feed-
forward network trained with the back propaga-
tion algorithm with feedback connections from
the output neurons to the input neurons. The
Emotional Flute system (Camurri, Dillon, and
Saron 2000) also uses artificial neural networks to
train the system to play expressively. This system is
related to and extends Bresin’s system in order to
deal with a flute and by adding a way of modeling
the mood of the performance. They use several
neural networks, one for timing, one for loudness,
and a third one for crescendo and diminuendo at
the note level.

There are several very interesting approaches
based on evolutionary computation (EC). For
instance, Ramirez and Hazan used a genetic algo-
rithm (GA) to learn a set of regression trees
(Ramirez and Hazan 2005) that emulate a set of
human performance actions. They also applied a
GA to learn performance rules (Ramirez and Hazan
2007). Zhang and Miranda (2006) also applied a
GA to compute timing and dynamics curves for a
given melody. These curves are then used to influ-
ence the evolution of pulse sets (sets of numbers
multiplying tempo and dynamic values in the



score) that are unique to each composer. That is,
each composer has a unique pattern of amplitude
and tempo variations (a unique pulse) running
through performances. In Zhang and Miranda
(2007), the authors have proposed a multiagent
system based on the hypothesis that expressive
performance evolves as a result of interaction in
the performer’s society. That is, each performer
agent listens to other performer agents and learns
by imitation from those performances that are bet-
ter than their own. The differences in the perform-
ances are computed based on their pulse sets. This
social dimension is a very interesting idea because
it certainly reflects what human performers actual-
ly do.

Most of the systems are limited to two expres-
sive resources such as timing and dynamics, or tim-
ing and articulation. This limitation has to do with
the fact that it is very difficult to find models gen-
eral enough to capture the variety present in dif-
ferent performances of the same piece by the same
musician and even the variety within a single per-
formance (Kendall and Carterette 1990). Further-
more, the different expressive resources interact
with each other. That is, the models for dynamics
alone change when rubato is also taken into
account. Obviously, due to this interdependency,
the more expressive the resources one tries to mod-
el, the more difficult is finding the appropriate
models.

Widmer, Flossman, and Grachten (2009)
describe a computer program that learns to per-
form classical piano music expressively. The
approach is data intensive and based on statistical
learning. Performing music expressively certainly
requires high levels of creativity, but the authors
take a very pragmatic view to the question of
whether their program can be said to be creative or
not and claim that “creativity is in the eye of the
beholder.” In fact, the main goal of the authors is
to investigate and better understand music per-
formance as a creative human behavior by means
of AI methods. For additional information on
approaches to computational creativity, we refer
the reader to the special issue of AI Magazine edit-
ed by Colton, Lopez de Mantaras, and Stock
(2009).

CBR Approaches to Expressive
Music Rendering

The basic principle underpinning case-based rea-
soning (CBR) is that a new problem can be solved
by reusing solutions to past similar problems
(Lopez de Mantaras 2001; Lopez de Mantaras et al.
2006; and Lopez de Mantaras, Perner, and Cun-
ningham 2006b). The main advantage of CBR is
that a case is a very convenient way of capturing
knowledge, specially in weak theory domains,

where the relations between causes and effects may
not be well understood. To avoid this limitation,
we developed a system called SaxEx (Arcos, Lopez
de Mantaras, and Serra 1998), a computer program
capable of synthesizing high-quality expressive
tenor sax solo performances of jazz ballads based
on cases representing human solo performances.
As mentioned above, previous rule-based
approaches cannot easily deal with many expres-
sive parameters simultaneously because it is too
difficult to infer rules general enough to capture
the variety present in expressive performances.
Besides, the different expressive parameters inter-
act with each other making it even more difficult
to find appropriate rules taking into account these
interactions. 

With CBR, we have shown that it is possible to
deal with the five most important expressive
parameters: dynamics, rubato, vibrato, articula-
tion, and attack of the notes. To do so, SaxEx uses
a case memory containing examples of human per-
formances, analyzed by means of spectral model-
ing techniques and background musical knowl-
edge. The score of the piece to be performed is also
provided to the system. The core of the method is
to analyze each input note, determining (by means
of the background musical knowledge) its role in
the musical phrase it belongs to; identify and
retrieve (from the case base of human performanc-
es) notes with similar roles; and finally, transform
the input note so that its expressive properties
(dynamics, rubato, vibrato, articulation, and
attack) match those of the most similar retrieved
note. Each note in the case base is annotated with
its role in the musical phrase it belongs to, as well
as with its expressive values. Furthermore, cases do
not contain just information on each single note
but they include contextual knowledge at the
phrase level. Therefore, cases in this system have a
complex object-centered representation. 

Although limited to monophonic performances,
the results convincingly demonstrate that CBR is a
very powerful methodology to directly use the
knowledge of a human performer that is implicit
in her playing examples rather than trying to make
this knowledge explicit by means of rules.1 More
recent papers (Arcos and Lopez de Mantaras 2001,
Lopez de Mantaras and Arcos 2002), describe this
system in great detail.

Based on the work on SaxEx, we developed Tem-
poExpress (Grachten, Arcos, and Lopez de Man-
taras 2006), a case-based reasoning system for
applying musically acceptable tempo transforma-
tions to monophonic audio recordings of musical
performances. Existing algorithms are mainly
focused on maintaining sound quality of audio
recordings, rather than maintaining the musical
quality of the audio. However, as demonstrated by
H. Honing (2007), humans are able to detect, based
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only on expressive aspects of the performances,
whether audio recordings are original or uniform-
ly time stretched. The next section describes in
some detail this system. For a very detailed descrip-
tion we refer the reader to Grachten, Arcos, and
Lopez de Mantaras (2006).

TempoExpress: 
A Tempo Transformation System
TempoExpress has a rich description of the musical
expressivity of the performances that includes not
only timing deviations of performed score notes,
but also represents more rigorous kinds of expres-
sivity such as note ornamentation, consolidation,
and fragmentation. Within the tempo transforma-
tion process, the expressivity of the performance is
adjusted in such a way that the result sounds nat-
ural for the new tempo. A case base of previously
performed melodies is used to infer the appropriate
expressivity. The problem of changing the tempo
of a musical performance is not as trivial as it may
seem because it involves a lot of musical knowl-
edge and creative thinking. Indeed, when a musi-
cian performs a musical piece at different tempos
the performances are not just time-scaled versions
of each other (as if the same performance were
played back at different speeds). That is, changing
the tempo is a problem that cannot be reduced to
applying what is known as a uniform time stretch-
ing (UTS) transformation to the original tempo.
This is so because together with the changes of
tempo, variations in musical expression need to be
made (Desain and Honing 1994). Such variations
do not only affect the timing of the notes, but can
also involve for example the addition or deletion
of ornamentations, or the consolidation or frag-
mentation of notes. Apart from the tempo, other
domain-specific factors, such as meter, and phrase
structure, seem to play an important role in the
way a melody is performed. Tempo transformation
is one of the audio postprocessing tasks manually
done in audio labs. Automatizing this process may,
therefore, be of industrial interest.

TempoExpress Architecture 
A schematic view of the system is shown in figure
1. We will focus our explanation on the gray box,
that is, the steps involved in modifying the expres-
sive parameters of the performance at the musical
level. For a detailed account of the audio analysis
and audio synthesis components, we refer the
reader to Gómez et al. (2003) and Maestre and
Gómez (2005).

Given a score of a phrase, a monophonic audio
recording of a saxophone performance of that
phrase at a particular source tempo, and a number
specifying the desired target tempo, the task of the
system is to render the audio recording at the

desired target tempo adjusting the expressive
parameters of the performance in accordance with
the target tempo. In order to apply the CBR
process, the first task is to build a phrase input
problem specification from the given input data
(see figure 1). This is a data structure that contains
all the information necessary to define a tempo
transformation task for a musical phrase. Besides
the given source and target tempos and the input
audio performance, the phrase input problem
specification requires an abstract description of the
melody as well as a description of the expressivity
of the input performance. These two extra pieces of
information are automatically inferred by the
modules Musical Analysis and Performance Anno-
tation (see figure 1). 

The musical analysis is inferred from the score
and derives information about various kinds of
structural aspects of the score. In particular, it
derives a description of the melodic surface of the
phrase, above the note level, in terms of the eight
basic Implication-Realization structures of Nar-
mour (Narmour 1990, Lopez de Mantaras and
Arcos 2002), and a segmentation of the phrase cap-
turing the grouping of notes within the phrase.
The performance annotation is computed by com-
paring, through the edit distance, the score and
the input performance. 

The performance annotation describes the musi-
cal behavior of the performer by means of a
sequence of performance events that maps the per-
formance to the score. For example, the occurrence
of a note that is present in the score but has no
counterpart in the audio performance will be rep-
resented by a deletion event. Although important,
such deletion events are not very common since
the majority of score notes are actually performed,
be it with alterations in timing and dynamics. This
type of event is called a transformation event
because it establishes a correspondence between
the note in the score and the corresponding note
in the performance. Once such a correspondence is
established, expressive transformations such as
onset time, duration, and dynamic changes can be
derived by calculating the differences of these
attributes on a note-to-note basis. Analyzing the
corpus of monophonic tenor saxophone record-
ings of jazz standards that we have used (4256 per-
formed notes), we identified the following types of
performance events: insertion (the occurrence of a
performed note that is not present in the score),
deletion (the presence of a note in the score that
does not occur in the performance), consolidation
(multiple notes in the score that are performed as
a single note whose duration is approximately the
sum of the durations of the multiple correspon-
ding notes in the score), fragmentation (a single
note in the score that is performed as multiple
notes whose total duration is approximately equal
to the duration of the single score note), and orna-



mentation (the insertion of one or several short
notes, not present in the score, to anticipate a score
note that is also a performed note). In order to
infer the sequence of performance events, the
notes in the performance are matched to the notes
in the score using the well-known edit distance
(Levenshtein 1966). 

An example of performance annotation is
shown in figure 2. The bars below the staff repre-
sent performed notes. The letters represent the per-
formance events (“T” for transformation, “O” for
ornamentation, “C” for consolidation, and “D” for
deletion). 

Once we have build the phrase input problem,
the CBR problem-solving cycle can start. The
phrase input problem is used to query the case
base, whose cases contain the scores of phrases
together with 12 performance annotations for
each phrase that correspond to audio performanc-
es at 12 different tempos. The goal is to retrieve the
phrase in the case base with highest similarity to
the phrase input problem and reuse the solution.
This is done analyzing the differences between the

performance annotations at the source and target
tempo in the retrieved phrase and adapting
(reusing) these differences in order to infer the per-
formance annotation of the phrase input problem
at the target tempo. Next we further describe this
CBR problem-solving process with the help of the
example of figure 3. In particular we explain how
a solution is obtained for each segment of each
phrase input problem. We do so by briefly explain-
ing the numbered steps, shown in figure 3, one by
one.

The first step is to find the case in the case base
that is most similar to the input problem. The sim-
ilarity is assessed by calculating the edit distance,
at the note level, between the sequence of score
notes of the segment input problem and the
sequences of score notes of the segments of all the
phrases contained in the case base. 

In the second step, an optimal alignment
between the input problem and the most similar
segment, retrieved in step one, is made. This opti-
mal alignment is actually given as a side effect of
the computation of the edit distance in step one. 
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In the third step, the performance annotations
corresponding to the relevant tempos are extract-
ed. That is, the source tempo for the input prob-
lem, and the source and target tempo for the
retrieved segment, in such a way that the source
tempo of the retrieved segment is similar (within a
10 BPM tolerance interval) to the source tempo of
the input segment and the target tempo of the
retrieved segment is similar to the target tempo
given by the user. 

The fourth step consists in linking, in the
retrieved segment, the performance annotation at
the source tempo with the performance annota-
tion at the target tempo. In figure 3 this linking
can be seen in the upper part of box 4 and consists
in the following three relations: �T Æ T�, �TT Æ

OTT�, �C Æ TT�. Besides, the alignment between
the input segment and the retrieved segment, giv-
en by the edit distance, is used to determine which
performance events from the retrieved segment

4
4

T T T T O T T T T T T T T T O T F T T T O T T

Figure 2. Performance Annotation of “Body and Soul.”
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belong to which performance events of the input
segment leading to what we call annotation pat-
terns. In figure 3 we can see the following three
annotation patterns: [T, �T Æ T�], [T, �TT Æ OTT�],
and [T, �C Æ TT�]. The first pattern reflects a rather
simple situation because it involves the same num-
ber of notes (one in this case) in the input segment
performance at the source tempo as well as in the
two performances at different tempos (source and
target) of the retrieved segment. This pattern
means that a score note of the retrieved segment
was played as T at the source tempo and played as
T (most probably with some dynamic, duration,
and onset deviations) at the target tempo while a
melodically similar note of the input segment has
been played as T at the source tempo. Based on
this, the CBR system infers how to play the input
segment note at the target tempo by imitating the
dynamic, duration, and onset deviations used in
the target tempo of the retrieved segment. 

The remaining two annotation patterns are a bit
more complex because they involve a different
number of notes. More concretely we can see that
a single note in the input segment corresponds to
two notes in the retrieved segment. To deal with
these situations, the system employs a set of adap-
tation rules that are used in the fifth step. Figure 3
shows the two rules that have been respectively
applied to these annotation patterns in the fifth
step. We will see why the upper rule infers OT
based in the case of the annotation pattern [T, �TT
Æ OTT�]. Indeed, this annotation pattern indicates
that in the retrieved segment two notes were per-
formed as two transformation events at the source
tempo but an ornamentation note was added an
the target tempo performance. Since the perform-
ance of the input segment at the source tempo is T,
the application of the rule infers that the perform-
ance at the target tempo should be OT. The net
result is thus the introduction of an ornamenta-
tion note in front. 

The lower rule in the fifth step states that the
annotation pattern [T, �C Æ TT�] infers F. The moti-
vation for this is that from an acoustic point of
view changing a performance from a consolidation
event (C) to two transformation events (TT)
amounts to changing from one performed note to
two performed notes. To reproduce this perceptual
effect when the input performance is a single per-
formed note (T), a fragmentation of this note has
to be applied.

We have experimentally evaluated the results of
TempoExpress on the task of tempo transforma-
tion and compared these results with a Uniform
Time Stretching (UTS) process (Grachten, Arcos,
and Lopez de Mantaras 2006). A leave-one-out
method was used to evaluate the system over 64
input segments involving a total of 6364 note tem-
po transformation problems. For each transforma-

tion problem, the TempoExpress performance at
the target tempo was compared, by means of the
edit distance between performance annotations, to
both a UTS-based performance and a human per-
formance also at the target tempo. The conclusion
is that TempoExpress is clearly closer (Wilcoxin
signed-rank test significance p < 0.001) than UTS
to the human performance when the target tempo
is slower than the source tempo. When the target
tempo is faster than the source tempo the improve-
ment is not statistically significant.

Other CBR Approaches 
to Expressive Music
Other applications of CBR to expressive music are
those of Suzuki (2003) and those of Tobudic and
Widmer (2003, 2004). Suzuki’s Kagurame system
(2003) uses examples of expressive performances
to generate multiple polyphonic MIDI perform-
ances of a given piece with varying musical expres-
sion; however, they deal only with two expressive
parameters due to the limitations of the MIDI rep-
resentation. Although the task of their system is
performance generation rather than transforma-
tion, it has some subtasks in common with our
approach, such as performance to score matching,
segmentation of the score, melody comparison for
retrieval, and the use of the edit distance for per-
formance-score alignment.

Tobudic and Widmer (2003) apply instance-
based learning (IBL) also to the problem of gener-
ating expressive performances. The IBL approach
is used to complement a note-level rule-based
model with some predictive capability at the high-
er level of musical phrasing. More concretely, the
IBL component recognizes performance patterns,
of a concert pianist, at the phrase level and learns
how to apply them to new pieces by analogy. The
approach produced some interesting results but, as
the authors recognize, was not very convincing
due to the limitation of using an attribute-value
representation for the phrases. Such simple repre-
sentation cannot take into account relevant struc-
tural information of the piece, both at the sub-
phrase level and at the interphrasal level. In a
subsequent paper, Tobudic and Widmer (2004),
succeeded in partly overcoming this limitation by
using a relational phrase representation. 

Adding Gesture
Music is played through our bodies. These body
movements may be involved in the sound produc-
tion or may pursue the goal of enforcing emotion-
al communication. In a recent experiment Vines et
al. (2011) demonstrated the contribution of musi-
cian’s movements not involved in sound produc-
tion to enforce musical expressivity. Therefore,

Articles

28 AI MAGAZINE



Articles

WINTER 2012   29

capturing the gesture of the performer is another
fundamental aspect that has to be taken into
account in expressive music renderings. 

Gesture capture can be done by adding sensors
to instruments becoming “augmented” instru-
ments or “hyperinstruments.” Take a traditional
instrument, for example a cello, and connect it to
a computer through electronic sensors in the neck
and in the bow, equip also with sensors the hand
that holds the bow, and program the computer
with a system similar to SaxEx that allows analysis
of the way the human interprets the piece, based

on the score, on musical knowledge and on the
readings of the sensors. The results of such analy-
sis allow the hyperinstrument to play an active role
altering aspects such as timbre, tone, rhythm, and
phrasing as well as generating an accompanying
voice. In other words, this yields an instrument
that can be its own intelligent accompanist. Tod
Machover, from MIT’s Media Lab, developed an
hypercello and the great cello player Yo-Yo Ma pre-
miered a piece, composed by Tod Machover, called
“Begin Again Again …” at the Tanglewood Festival
several years ago. The hypercello is based on the

Figure 4. Nonintrusive Capacitive Sensors Mounted on the First 10 Frets of a Nylon Strings Guitar.



Hyperbow system (Young 2002) initially developed
to capture the performance parameters in violin
playing. Also related with modeling violin expres-
sivity, inductive logic programming techniques
have been applied to learn violin expressive mod-
els by combining audio and gestural information
(Ramirez et al 2010). 

Gesture analysis has been also conducted in
woodwind instrument performers (Wanderley and
Depalle 2004). Their experiments with a clarinet
show how some expressive nuances are directly
caused by body movements not directly related to
sound production. For instance, postural adjust-
ments or upward/downward movements of the
instrument influence recorded sound. 

Heijink and Meulenbroek (2002) proposed the
use of a three-dimensional motion-tracking sys-
tem, Optotrak 3020, to analyze the left hand fin-
gering in a classical guitar. Their experiments
demonstrate that, although biomechanical hand
constraints play a role when playing, fingering
decisions are mainly aimed at producing the
desired expressive effect. Norton (2008) is another
example of the use of an optical motion caption
system based on a capture system by Phase Space
Inc., with quite successful results. For a detailed
review of existing approaches to gestural acquisi-
tion in music we refer the reader to Wanderley and
Depalle (2004). 

Extending our previous work, we are currently
focused on complementing audio information
with information of musician gestures. This multi-
modal approach is very useful when analyzing
string instruments where the same notes can be
played at different positions or when the analysis
of the fingers’ movements allows characterization
of expressive nuances that are very difficult to cap-
ture with the current audio analysis technology.
Our research is focused on the study of guitar
expressivity and aims at designing a system able to
model and extend the expressive resources of that
instrument.2

Musician gestures are captured by a sensing sys-
tem mounted in the guitar fretboard (Guaus et al
2010). The sensors are nonintrusive to the player
and track the gestures of the left hand fingers (see
Figure 4). The system captures from macroscale
changes (that is, the presence of finger bars) to
microscale changes (that is, vibrato) in player’s
movements. Specifically, gesture information is
used to model expressive articulations such as
legatos, appoggiaturas, glissandi, and vibratos.
Moreover, preliminary experiments show that ges-
ture information allows the building of a deeper
fingering model that, in turn, improves note iden-
tification and characterization. We are analyzing
the use of these expressive resources working with
pieces of different styles such as Bach Preludes or
Jazz Standards.

Concluding Remarks
In the first part of this article, we presented a brief
overview discussing why we prefer listening to
expressive music instead of lifeless synthesized
music. Next we surveyed a representative selection
of well-known approaches to expressive computer
music performance with an emphasis on AI-relat-
ed approaches. In the second part of the article we
focused on the existing CBR approaches to the
problem of synthesizing expressive music, and par-
ticularly on TempoExpress, a case-based reasoning
system developed at our institute, for applying
musically acceptable tempo transformations to
monophonic audio recordings of musical perform-
ances. Experimental results have shown that the
TempoExpress tempo transformations are better
than the uniform time stretching ones, in the
sense that they are closer to human performances
when the target tempo is slower than the source
tempo. Finally we briefly survey some work on ges-
ture caption and analysis and particularly our cur-
rent and future work on complementing audio
information with information of musician gestures
in the case of a study of guitar expressivity. Specifi-
cally, gesture information is used to model expres-
sive articulations, appoggiaturas, glissandi, and
vibratos. Preliminary experiments show that ges-
ture information allows the building of a better fin-
gering model that, in turn, improves note identifi-
cation and characterization with the aim of
extending the expressive modeling of that instru-
ment.
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Notes
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