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As robotics moved from industrial to service applica-
tions, engineers began looking for new tasks that could
be automated with robots. Industrial tasks had been a

perfect candidate for automation since they are physically
exhausting and require high precision. Motor rehabilitation
seemed like a similarly appropriate robotics application. In
the course of rehabilitation, the patient must exercise by per-
forming limb motions thousands of times, and the therapist
must physically support and guide the patient’s limb during
these motions. Since therapists inevitably get exhausted, a
rehabilitation robot could support and guide the limb
instead.

Numerous rehabilitation robots have been designed for
both the upper (figure 1) and lower limbs (figure 2). The two
most famous arm rehabilitation robots are the MIT-MANUS,
now sold as the InMotion ARM (Interactive Motion Tech-
nologies, USA) and the ARMin, now sold as the ArmeoPower
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n Rehabilitation robots physically sup-
port and guide a patient’s limb during
motor therapy, but require sophisticated
control algorithms and artificial intelli-
gence to do so. This article provides an
overview of the state of the art in this
area. It begins with the dominant para-
digm of assistive control, from imped-
ance-based cooperative controller
through electromyography and inten-
tion estimation. It then covers chal-
lenge-based algorithms, which provide
more difficult and complex tasks for the
patient to perform through resistive con-
trol and error augmentation. Further-
more, it describes exercise adaptation
algorithms that change the overall exer-
cise intensity based on the patient’s per-
formance or physiological responses, as
well as socially assistive robots that pro-
vide only verbal and visual guidance.
The article concludes with a discussion
of the current challenges in rehabilita-
tion robot software: evaluating existing
control strategies in a clinical setting as
well as increasing the robot‘s autonomy
using entirely new artificial intelligence
techniques.
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Figure 1. The MIT-MANUS and the ARMin. 

MIT-MANUS (left); ARMin (right). MIT-MANUS photo courtesy of H. I. Krebs, Massachusetts Institute of Technology. 

(Hocoma AG, Switzerland). The most famous leg
rehabilitation robot is the commercially available
Lokomat (Hocoma AG, Switzerland), with another
notable example being the Gait Trainer (Reha-Stim,
Germany). All of these, and many other robots, were
developed in order to support and guide the patient’s
limbs. However, appropriate hardware is not enough;
both therapists and robots need to intelligently adapt
their support to ensure proper exercise. Mistakes
should be corrected, but the patient should exercise
actively and intensely, so the support should not be
excessive.

The first rehabilitation robot controllers did not
adapt their support to the patient at all. They were
very stiff, and essentially guided the patient’s limbs
along a predefined trajectory with little care for what
the patient was doing or wanted to do. Clinical tests
found that patients put significantly less effort into
robot-aided exercise with such controllers than into
therapist-aided exercise, and frequently just let the
robot move their passive limbs without actively par-
ticipating in the motion (Israel et al. 2006, Ziherl et
al. 2010). This ”slacking“ process leads to slower neu-
romotor recovery (Casadio and Sanguineti 2012). To
avoid it, the robot needs to adopt a control strategy
that assists the patient only as needed: a cooperative
control strategy.

Help Me Help You: Cooperative
Assistive Control

Assistive controllers are the dominant control para-
digm in rehabilitation robotics, and are used in the
majority of commercial systems. They operate on the
level of the individual motion, helping the patient

complete a motion within a desired time while cor-
recting any major errors (such as large deviations
from an optimal trajectory). The main characteristic
of modern assistive controllers is that they only help
as much as it is necessary for the patient to complete
a motion, an approach called patient-cooperative
control (Riener et al. 2005). This is similar to the work
of therapists in rehabilitation: they manually move
the patient’s limb to accomplish a desired motion,
but let the patient move on his or her own whenev-
er possible.

As summarized by Marchal-Crespo and Reinkens-
meyer (2009), many rationales have been given for
such assistive controllers. Aside from allowing
patients to perform more movements in a shorter
amount of time, they interleave active effort by the
participant with stretching of the muscles and con-
nective tissue, they provide novel somatosensory
stimulation that helps induce brain plasticity, and
they may help teach patients to perform demon-
strated patterns. Although most of these rationales
have not been extensively clinically verified (Mar-
chal-Crespo and Reinkensmeyer 2009), assistive con-
trol algorithms remain dominant, particularly
impedance-based control.

Impedance-Based Assistance
The cooperative principle of impedance-based con-
trollers is as follows: while a patient is moving along
a desired trajectory, the robot does not intervene, but
it corrects deviations from this trajectory by applying
a force to the patient’s limb. This correcting force is
generated with a mechanical impedance. The first,
simplest controllers provided proportional position
feedback: as the patient’s limb moves farther from the
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desired trajectory, the robot applies a proportionally
stronger force to the limb. Such force feedback is
often combined with visual feedback that informs
the patient how he/she should move instead. This
generally also requires a deadband around the trajec-
tory so that the patient can make small deviations
without being disturbed. The end effect feels some-
what like a tunnel that the patient needs to follow.
An additional assistive force, sometimes dubbed a
“moving wall” or “flow force,” can push the patient
along the trajectory if he/she is too slow (relative to
a desired velocity profile), providing another type of
assist-as-needed control. An example of such assist-
as-needed control is shown in figure 3 for arm reha-
bilitation.

A major problem with such reference trajectories is
that they are difficult to adapt to an individual

patient. Several algorithms have been developed to
adapt reference trajectories automatically (Jezernik,
Colombo, and Morari 2004) or to make the trajecto-
ries of certain limb joints more compliant than those
of other joints (Stauffer et al. 2009).  Furthermore,
alternative impedance-generation techniques have
been investigated, such as virtual objects (Ekke-
lenkamp et al. 2007). These are shapes generated by
the robot’s haptic interface; if the patient attempts to
move a limb into the physical space where the virtu-
al object is, the haptic interface will push the limb
back, creating the illusion of an object. Such virtual
objects can thus physically support the patient in
reaching a goal.

Movements in rehabilitation should also be self-
initiated for better motor learning (Lotze et al. 2003).
Many impedance controllers, therefore, employ trig-
gered assistance: the robot is entirely passive until the

Figure 2. Lokomat and Gait Trainer.

The Lokomat (left) and Gait Trainer (right) leg rehabilitation robots. Photos courtesy of Hocoma AG, Switzerland, and Reha-Stim, Germany.



patient has started moving the limb. Once a motion
has begun, the robot uses an assistive force and push-
es the patient’s limb toward the desired position, but
only if the patient is not moving sufficiently quickly
or smoothly on his/her own.  If the patient’s own
movement is adequate, the robot becomes passive
again. A more complex possibility is the assist-as-
needed paradigm where the assistance parameters
(for example, robot stiffness, assistive force gain) are
adapted over a continuous interval based on recent
motor performance (Wolbrecht et al. 2008). When
performance is high, assistance is gradually decreased
due to a forgetting factor in the control algorithm.
Such assist-as-needed control has been found to sig-
nificantly improve motor recovery compared to clas-
sic impedance-based control (Cai et al. 2006) or con-
ventional therapy (Reinkensmeyer et al. 2012).

Electromyography-Based Assistance
Surface electromyography (EMG) is the measurement
of a muscle’s electrical activity from the surface of the
limb. By measuring the activation of different mus-
cles, a robot could provide precise assistance to dif-
ferent parts of the limb. The first implementation
was EMG-triggered assistance, where the robot begins
providing assistance once sufficient EMG activity is
detected (Krebs et al. 2003). A more advanced coop-
erative control approach is to augment the activity of
individual muscles: for example, have an exoskeletal

robot apply torque to a joint proportionally to the
EMG of the muscle used to control the corresponding
joint of the human limb (Song et al. 2008, Stein et al.
2007). This avoids the problem of reference trajecto-
ries, which are difficult to adapt to an individual
patient and may thus constrain him/her: since EMG-
based assistance augments the patient’s own move-
ments, it does not provide any constraints.

This lack of constraints, however, presents a differ-
ent weakness. Patients in motor rehabilitation do not
only exhibit voluntary motions, but also pathologi-
cal movements such as tremor and spasms. Patho-
logical EMG is not easily separated from voluntary
EMG, leading to potential augmentation of patho-
logical motions. For this reason, some authors have
suggested that EMG may not be a suitable control sig-
nal with patient populations such as stroke (Cesqui et
al. 2013). Other studies, however, have demonstrated
significant benefits of training with EMG-controlled
robots (Song et al. 2013). It is likely that the use of
EMG in rehabilitation is appropriate for some
pathologies and muscles but not others, and this
should be investigated further.

Assistance Based on Other Information
Impedance-based controllers provide assistive forces
based on motion of the impaired limb while EMG-
based controllers provide them based on muscle
activity on the impaired limb. However, assistance
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Figure 3. The Virtual Tunnel and Moving Wall in an Arm Reaching Task.

A spring-damper system prevents the patient from deviating from the reference trajectory (left) while a second spring-
damper system (right) leads the patient along the trajectory (adapted from Mihelj et al. [2012]).
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can also be provided based on information from oth-
er parts of the body: the motion of the unimpaired
limb, the eyes, and even brain activity related to
movement. The exploitation of this information is
sometimes referred to as intention detection, though
the term remains contested. It remains largely exper-
imental, but has great potential for future rehabilita-
tion robots.

Complementary Limb Motion Estimation
Complementary limb motion estimation (Vallery et
al. 2009) is an approach mainly used for the lower
limbs. Essentially, since human gait is a coordinated

cyclic process, it should be possible to predict the
motion of one leg based on the motion of the other
leg. If only one leg is impaired due to hemiparesis,
the healthy motion pattern for the impaired leg
could also be extracted from the motion of the
unimpaired leg, and a rehabilitation robot can then
provide impedance-based assistance based on this
estimated healthy pattern.

In principle, since the entire body is coordinated
during gait, the motion of the rest of the body can
also be used to more accurately generate a motion
pattern for the impaired leg. A recent study has thus
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Figure 4. Bimanual Training with the HapticMaster Robot. 

Photo courtesy of Matic Trlep, University of Ljubljana.



used sensors embedded in a walking cane to control
a mobile leg exoskeleton with such complementary
motion estimation (Hassan et al. 2014).

Bimanual Training
The motion of both arms is generally not as coordi-
nated as the motion of the legs during gait, so com-
plementary limb motion estimation cannot be
directly transferred to the arms. However, if both
arms are used to manipulate the same object (for
example, lift a box or turn a steering wheel — figure

4), the motion again becomes coordinated. In such
bimanual training, it is then possible to apply coop-
erative control by measuring the forces applied to the
object by the unimpaired arm and replicating them
on the impaired side using a rehabilitation robot
(Lum et al. 2006). The gains achieved in such biman-
ual training have been shown to transfer to other,
unimanual motions, though at least some motion of
the impaired arm is necessary for training (Trlep,
Mihelj, and Munih 2012).
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Figure 5. EEG Combined with the ARMin Rehabilitation Exoskeleton. 

Photo from the authors’ joint research with José del R. Millán and Tom Carlson, Ecole Polytechnique Federale de Lausanne, Switzerland.



Electroencephalography
If the patient’s arm is completely paralyzed, there is
no way to perform cooperative control using motion
measurements. While the robot could simply move
the patient’s arm to achieve some passive exercise,
this does not achieve efficient motor learning; it
would be much better to perform self-initiated move-
ments. Luckily, even completely paralyzed patients
can think about moving their arm, even if no motion
is achieved. If we can detect these thoughts, we can
trigger the robot to move in response, achieving self-
initiated exercise.

While reading thoughts may sound like science fic-
tion, brain activity can be noninvasively measured
using electroencephalography (EEG): measurements
of the brain’s electrical activity along the scalp. Since
it is known which regions of the brain are responsi-
ble for motor planning, increased EEG activity in
these regions would indicate that the patient wants
to perform a motion even if he/she is completely par-
alyzed. While EEG does not allow precise motor
intentions to be identified, it has been used to pro-
vide triggered assistance: once the rehabilitation
robot detects increased EEG activity, it activates assis-
tance along a predefined trajectory. An example pho-
to of EEG in an arm exoskeleton is shown in figure 5.
Such EEG-triggered assistance has actually been
shown to lead to significantly better rehabilitation
outcome than equivalent amounts of robotic assis-
tance applied at random times (Ramos-Murguialday
et al. 2013).

Advanced prototypes of rehabilitation exoskele-
tons have combined EEG triggers with additional
sensors that indicate the type of motion to be per-
formed. For example, the approach of Frisoli et al.
(2012) uses an eye tracker to measure what object the
patient is looking at. Once increased EEG activity is
detected, the robot begins assisting a movement
toward that object. However, the use of EEG has met
with some skepticism in the rehabilitation commu-
nity due to a relatively long setup time and perceived
unreliability of brain activity measurements, and
more studies are needed to show that the clinical use-
fulness of EEG outweighs its drawbacks.

Challenge-Based Control
Assistive control algorithms have been criticized by
studies that suggest that physically guiding the
motion during a task can actually reduce motor
learning, a phenomenon referred to as the guidance
hypothesis (Marchal-Crespo and Reinkensmeyer
2008). While severely impaired patients definitely
require physical guidance, patients with a lower lev-
el of impairment may benefit more from control
algorithms that provide a greater challenge, forcing
patients to adapt to more and more complex situa-
tions. This is similar to training in sports: while
beginners need to be shown how to perform basic

moves, experts improve by overcoming increasingly
challenging opponents and obstacles. This has led to
the development of alternative control algorithms
where the robot challenges rather than assists the
patient.

Vive la résistance: Resistive Control
Resistive control algorithms, as the name suggests,
generate forces that constantly resist any movements
that patients try to make, forcing them to apply a
larger force in order to perform the motion. In sports,
an analogous approach would be weight lifting: the
weights generate a resistive force. Such resistive train-
ing has been proposed for a variety of arm and leg
rehabilitation robots (Lam et al. 2008, Lambercy et al.
2007), but until recently did not achieve widespread
use in commercial robots. However, this is likely to
change, as a recent multicenter clinical study (Klam-
roth-Marganska et al. 2014) has shown that better
strength training is sorely needed in arm rehabilita-
tion robots — a perfect opportunity for resistive con-
trol.

It’s Not A Bug, It’s A Feature: 
Error Augmentation
Unlike resistive control, which aims to improve
strength, error augmentation aims to improve coor-
dination and precision. It does this by identifying
and magnifying the subject’s deviations from a
desired movement trajectory. This can be done by
having the robot push the patient with a disturbing
rather than assistive force, requiring him/her to over-
come the disturbances to achieve the goal (Patton et
al. 2006). Alternatively, the visual feedback given to
the patient can be distorted by, for example, intro-
ducing a rotation between physically performed and
visually displayed movements (Patton et al. 2013).
This forces the patient to learn the mapping between
physical and displayed movements by trial and error.

Error augmentation and visual distortions in par-
ticular may seem counterintuitive at first, as it is not
immediately obvious how forcing patients to over-
come such additional challenges is helpful for reha-
bilitation. However, error-driven learning has been
emphasized as crucial to learning skills in human
motion. Furthermore, a similar principle of error-dri-
ven learning is seen in artificial learning systems such
as neural networks. Studies with healthy subjects
have indeed shown that error augmentation leads to
better, more robust movement patterns than assistive
control (Patton et al. 2006). Improved coordination
has been shown to persist even when the error aug-
mentation is removed.

Until quite recently, most error augmentation
studies had been done with healthy subjects or in a
single session, limiting their acceptance in therapy.
Now that multisession studies with patients have
confirmed the usefulness of error augmentation
(Abdollahi et al. 2014), it is likely to become a stan-
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dard feature of the next generation of commercial
rehabilitation robots.

On a Higher Level: 
Exercise Adaptation

The controllers in the Cooperative Assistive Control
and the Challenge-Based Control sections work on
the level of each individual motion, changing their
assistance or challenges during the motion based on
how well the patient is performing at that moment.
But we can go a step farther and adapt the difficulty
of the overall exercise depending on how well the
patient has been doing over the course of the exer-
cise.

Performance-Based Adaptation
The principle of performance-based exercise adapta-
tion is simple: if the patient is performing well with
respect to a certain performance criterion, make the
exercise harder to perform by increasing the motion
complexity, required range of motion, required
velocity, and so on. Conversely, if the patient is large-
ly unsuccessful at achieving motions, make the exer-
cise easier by decreasing the above parameters. This
should ideally ensure an appropriate moderate chal-
lenge for patients and increase their motivation to
exercise. An early implementation was demonstrated
by Colombo et al. (2007), and increasingly more
complex strategies were proposed later (Cameirão et
al. 2010; Chemuturi, Amirabdollahian, and Dauten-
hahn 2013). However, most of these strategies have
only been tested over a single session; for the great-
est benefit, they should be able to guide the patient
over multiple sessions, gradually shaping therapy.

A new, interesting challenge for performance-
based exercise adaptation has recently arisen in the
form of multipatient exercise games where patients
compete or cooperate with each other in order to
achieve a goal (Novak et al. 2014). The exercise
parameters must then be adapted to suit each exer-
cising patient even though different patients may
have different needs. Several adaptation algorithms
have been suggested for such games (Caurin et al.
2011, Maier et al. 2014), but are so far relatively basic
and have seen very little testing with patients.

Blood, Sweat, and Tears: 
Biocooperative Control
Just because a patient is successfully performing the
exercise does not mean that exercise difficulty should
be increased; he/she may be already overloaded and
struggling just to keep up. Alternatively, a patient
who is failing at the exercise may be enjoying the
challenge and could get annoyed if difficulty were
decreased. To obtain additional subject-specific infor-
mation, we can measure the patient’s physiological
responses such as heart rate and skin conductance,
which reflect both physical and mental workload.

The use of such measurements in rehabilitation
robotics is known as biocooperative control.

Physiological responses can be directly fed into a
controller that adapts exercise parameters to, for
example, keep heart rate close to a desired value
(Koenig, Omlin, et al. 2011). Alternatively, machine-
learning algorithms, such as neural networks or dis-
criminant analysis, can be used to infer workload
from multiple physiological responses and adapt the
exercise difficulty accordingly. Such analysis of phys-
iological responses has been shown to effectively
complement performance measurements in both
upper (Guerrero et al. 2013, Novak et al. 2011) and
lower (Koenig, Novak, et al. 2011) extremity rehabil-
itation robots, though it is still unclear whether phys-
iological measurements provide enough additional
information to offset the sensor costs and additional
preparation time.

Socially Assistive 
Rehabilitation Robots

Finally, an entirely different type of rehabilitation
robot should be mentioned: those that do not phys-
ically support the patient, but instead demonstrate
motions to be performed and provide simultaneous
verbal guidance, acting as an exercise coach. These
are relatively rare in motor rehabilitation and have
mainly been studied by the group of Maja Mataric for
healthy older adults (Fasola and Mataric 2012). They
utilize artificial intelligence techniques that allow
them to deliver appropriate verbal instructions at the
right time as well as, for example, switch between dif-
ferent personalities — one patient may prefer caring
gentle guidance while another may prefer a military
drill instructor robot that brooks no argument
(Tapus, Tapus, and Mataric 2008).

While socially assistive robots are unlikely to see
broad use with populations such as stroke or spinal
cord injury, where physical support is crucial, they
have provided several lessons that also apply to
motor rehabilitation robots, such as patients’ subjec-
tive preferences for different types of guidance and
encouragement. Researchers have now begun adapt-
ing elements of socially assistive robots for classic
rehabilitation robots, creating robots that give verbal
instructions as they provide impedance-based assis-
tance (Mihelj et al. 2012).

Discussion
Large multicenter clinical studies of rehabilitation
robots have shown that robots can deliver effective
rehabilitation with several advantages over manually
assisted therapy (Klamroth-Marganska et al. 2014, Lo
et al. 2010). However, the biggest studies focused
only on impedance-based assistance; other control
strategies such as error augmentation have gained
limited clinical acceptance and are rarely seen in
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commercial robots. One major challenge will be to
determine how different control strategies can be
combined over the course of rehabilitation. For
example, it may be beneficial for patients to progress
from assistive control to resistive control and error
augmentation as their motor skills improve. As
another example, some patients might benefit from
EEG- or EMG-based assistance while others should
avoid it entirely. However, these two examples
remain educated guesses at the moment. A major
step forward would be to create a set of guidelines
(based on clinical evidence) for how different control
strategies should be combined in order to achieve
optimal rehabilitation outcome.

These guidelines may not be only used by thera-
pists; they could be built into the rehabilitation robot
itself to give it a greater level of autonomy. At the
moment, it is always the therapist’s task to adapt the
exercise and switch between different control meth-
ods. In the future, the rehabilitation robot could per-
form such adaptation autonomously based on the
patient’s diagnosis, impairment level, and perform-
ance. The robot’s autonomy could be further
enhanced by teaching it to detect compensatory
motions: motions where  the patient, for example,
compensates for the inability to lift the arm by lifting
the shoulder instead (Cirstea and Levin 2000). Such
motions must be corrected by therapists because they
impede the recovery process, create additional health
problems, and lead to permanent adoption of patho-
logical movements. However, the artificial intelli-
gence methods needed to detect and correct them are
beyond the current generation of rehabilitation
robots, and may also require additional sensors such
as cameras.

A combination of autonomous exercise adaptation
and detection of compensatory motions would
enable rehabilitation robots to be more efficiently
used in settings such as home exercise, where no
therapist is present, or group exercise, where a single
therapist supervises multiple patients and cannot ful-
ly focus his/her attention on one patient. While the
robot will always lack a certain human aspect, ele-
ments of socially assistive robotics could partially
compensate for this weakness, creating an intelligent
and affable robotic therapist.

Conclusions
Several control strategies have been developed for
rehabilitation robots, from very simple assistive con-
trol to complex error augmentation methods and
task difficulty adaptation based on physiological
responses. However, these strategies need to be fur-
ther evaluated to determine how they can be most
effectively used and combined in clinical practice.
Furthermore, rehabilitation robots themselves need
to be augmented with higher-level decision making
so that they can operate more autonomously in

home or group settings. In the future, this combina-
tion of new artificial intelligence methods and better
knowledge of existing control strategies will increase
the therapeutic advantage of rehabilitation robots
and lead to their widespread adoption in many dif-
ferent settings.

Acknowledgments
This work was supported by the Swiss National Sci-
ence Foundation through the National Centre of
Competence in Research (NCCR) Robotics and by
the Clinical Research Priority Program “NeuroRe-
hab,” University of Zurich.

References
Abdollahi, F.; Case Lazarro, E. D.; Listenberger, M.; Kenyon,
R. V.; Kovic, M.; Bogey, R. A. Hedeker, D.; Jovanovic, B. D.,
Patton J. L. 2014. Error Augmentation Enhancing Arm
Recovery in Individuals with Chronic Stroke. Neurorehabil-
itation and Neural Repair 28(2): 120–128. dx.doi.org/
10.1177/1545968313498649

Cai, L. L.; Fong, A. J.; Otoshi, C. K.; Liang, Y.; Burdick, J. W.;
and Roy, R. R. 2006. Implications of Assist-As-Needed
Robotic Step Training After a Complete Spinal Cord Injury
on Intrinsic Strategies of Motor Learning. Journal of Neuro-
science 26(41): 10564–10568. dx.doi.org/10.1523/JNEU-
ROSCI.2266-06.2006

Cameirão, M. S.; Badia, S. B. I.; Oller, E. D.; and Verschure,
P. F. M. J. 2010. Neurorehabilitation Using the Virtual Real-
ity Based Rehabilitation Gaming System: Methodology,
Design, Psychometrics, Usability, and Validation. Journal of
NeuroeEngineering and Rehabilitation 7(22 Sept 2010): 48.
dx.doi.org/10.1186/1743-0003-7-48

Casadio, M., and Sanguineti, V. 2012. Learning, Retention,
and Slacking: A Model of the Dynamics of Recovery in
Robot Therapy. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 20(3): 286–296. dx.doi.org/10.
1109/TNSRE.2012.2190827

Caurin, G. A. P.; Siqueira, A. A. G.; Andrade, K. O.; Joaquim,
R. C.; and Krebs, H. I. 2011. Adaptive Strategy for Multi-
User Robotic Rehabilitation Games. In Proceedings of the
2011 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, 1395–1398. Piscataway, NJ:
Institute of Electrical and Electronics Engineers. dx.doi.org/
10.1109/IEMBS.2011.6090328

Cesqui, B.; Tropea, P.; Micera, S.; and Krebs, H. I. 2013.
EMG-Based Pattern Recognition Approach in Post Stroke
Robot-Aided Rehabilitation: A Feasibility Study. Journal of
NeuroeEngineering and Rehabilitation 10: 75.
dx.doi.org/10. 1186/1743-0003-10-75

Chemuturi, R.; Amirabdollahian, F.; and Dautenhahn, K.
2013. Adaptive Training Algorithm for Robot-Assisted
Upper-Arm Rehabilitation, Applicable to Individualised
and Therapeutic Human-Robot Interaction. Journal of Neu-
roengineering and Rehabilitation 10(28 Sept. 2013): 102.
dx.doi.org/10.1186/1743-0003-10-102

Cirstea, M. C., and Levin, M. F. 2000. Compensatory Strate-
gies for Reaching in Stroke. Brain 123(5): 940–953.
dx.doi.org/10.1093/brain/123.5.940

Colombo, R.; Pisano, F.; Mazzone, A.; Delconte, C.; Micera,
S.; Carrozza, M. C.; Dario, P.; and Minuco, G. 2007. Design

Articles

WINTER 2015   31



Strategies to Improve Patient Motivation During Robot-Aid-
ed Rehabilitation. Journal of Neuroengineering and Rehabilita-
tion 4:(19 Feb 2007): 3. dx.doi.org/10.1186/1743-0003-4-3

Ekkelenkamp, R.; Veltink, P.; Stramigioli, S.; and van der
Kooij, H. 2007. Evaluation of a Virtual Model Control for
the Selective Support of Gait Functions Using an Exoskele-
ton. In Proceedings of the 10th IEEE International Conference on
Rehabilitation Robotics, 693–699. Piscataway, NJ: Institute of
Electrical and Electronics Engineers. dx.doi.org/10.1109/
icorr.2007.4428501

Fasola, J., and Mataric, M. J. 2012. Using Socially Assistive
Human-Robot Interaction to Motivate Physical Exercise for
Older Adults. Proceedings of the IEEE 100(8): 2512–2526.
dx.doi.org/10.1109/JPROC.2012.2200539

Frisoli, A.; Loconsole, C.; Leonardis, D.; Banno, F.; Barsotti,
M.; Chisari, C.; and Bergamasco, M. 2012. A New Gaze-BCI-
Driven Control of an Upper Limb Exoskeleton for Rehabil-
itation in Real-World Tasks. IEEE Transactions on Systems,
Man, and Cybernetics — Part C: Applications and Reviews
42(6): 1169–1179. dx.doi.org/10.1109/TSMCC.2012.
2226444

Guerrero, C. R.; Fraile Marinero, J. C.; Turiel, J. P.; and
Muñoz, V. 2013. Using “Human State Aware“ Robots to
Enhance Physical Human-Robot Interaction in a Coopera-
tive Scenario. Computer Methods and Programs in Bomedicine
112(2): 250–259. dx.doi.org/10.1016/j.cmpb.2013.02.003

Hassan, M.; Kadone, H.; Suzuki, K.; and Sankai, Y. 2014.
Wearable Gait Measurement System with an Instrumented
Cane for Exoskeleton Control. Sensors 14(1): 1705–1722.
dx.doi.org/10.3390/s140101705

Israel, J. F.; Campbell, D. D.; Kahn, J. H.; and Hornby, T. G.
2006. Metabolic Costs and Muscle Activity Patterns During
Robotic- and Therapist-Assisted Treadmill Walking in Indi-
viduals with Incomplete Spinal Cord Injury. Physical Thera-
py 86(11): 1466–1478. dx.doi.org/10.2522/ptj.20050266

Jezernik, S.; Colombo, G.; and Morari, M. 2004. Automatic
Gait-Pattern Adaptation Algorithms for Rehabilitation with
a 4-Dof Robotic Orthosis. IEEE Transactions on Robotics and
Automation 20(3): 574–582. dx.doi.org/10.1109/TRA.2004.
825515

Klamroth-Marganska, V.; Blanco, J.; Campen, K.; Curt, A.;
Dietz, V.; Ettlin, T.; Felder, M.; Fellinghauer, B.; Guidali, M.;
Killmar, A.; Luft, A.; Nef, T.; Schuster-Amft, C.; Stahel, W.;
and Reiner, R.. 2014. Three-Dimensional, Task-Specific
Robot Therapy of the Arm after Stroke: A Multicentre, Par-
allel-Group Randomised Trial. Lancet Neurology 13(2): 159–
166. dx.doi.org/10.1016/S1474-4422(13)70305-3

Koenig, A.; Novak, D.; Omlin, X.; Pulfer, M.; Perreault, E.;
Zimmerli, L; Mihelj, M.; and Riener, R. 2011. Real-Time
Closed-Loop Control of Cognitive Load in Neurological
Patients During Robot-Assisted Gait Training. IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering 19(4):
453–64. dx.doi.org/10.1109/TNSRE.2011.2160460

Koenig, A.; Omlin, X.; Bergmann, J.; Zimmerli, L.; Bolliger,
M.; Müller, F.; and Riener, R. 2011. Controlling Patient Par-
ticipation During Robot-Assisted Gait Training. Journal of
Neuroengineering and Rehabilitation 8(23 March 2011): 14.
dx.doi.org/10.1186/1743-0003-8-14

Krebs, H. I.; Palazzolo, J. J.; Dipietro, L.; Ferraro, M.; Krol, J.;
Rannekleiv, K.; Volpe, B. T.; and Hogan, N. 2003. Rehabili-
tation Robotics: Performance-Based Progressive Robot-
Assisted Therapy. Autonomous Robots 15(1): 7–20.
dx.doi.org/10.1023/A:1024494031121

Lam, T.; Wirz, M.; Lünenburger, L.; and Dietz, V. 2008.
Swing Phase Resistance Enhances Flexor Muscle Activity
During Treadmill Locomotion in Incomplete Spinal Cord
Injury. Neurorehabilitation and Neural Repair 22(5): 438–446.
dx.doi.org/10.1177/1545968308315595

Lambercy, O.; Dovat, L.; Gassert, R.; Burdet, E.; Teo, C. L.;
and Milner, T. 2007. A Haptic Knob for Rehabilitation of
Hand Function. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 15(3): 356–366. dx.doi.org/10.
1109/TNSRE.2007.903913

Lo, A. C.; Guarino, P. D.; Richards, L. G.; Haselkorn, J. K.;
Wittenberg, G. F.; Federman, D. G.; Ringer, R. J., Wagner, T.
H.; Krebs, H. I.; Volpe, B. T.; Bever Jr., C. T.; Bravata, D. M.;
Duncan P. W.; Corn, B. H.; Maffucci, A. D.; Nadeau, S. E.;
Conroy, S. S.; Powell, J. M.; Huang, G. D.; and Peduzzi, P.
2010. Robot-Assisted Therapy for Long-Term Upper-Limb
Impairment After Stroke. New England Journal of Medicine
362(19): 1772–83. dx.doi.org/10.1056/NEJMoa0911341

Lotze, M.; Braun, C.; Birbaumer, N.; Anders, S.; and Cohen,
L. G. 2003. Motor Learning Elicited by Voluntary Drive.
Brain 126(4): 866–872. dx.doi.org/10.1093/brain/awg079

Lum, P. S.; Burgar, C. G.; Van der Loos, M.; Shor, P. C.; Maj-
mundar, M.; and Yap, R. 2006. Mime Robotic Device for
Upper-Limb Neurorehabilitation in Subacute Stroke Sub-
jects: A Follow-Up Study. Journal of Rehabilitation Research
and Development 43(5): 631–642. dx.doi.org/10.1682/JRRD.
2005.02.0044

Maier, M.; Ballester, B. R.; Duarte, E.; Duff, A.; and Ver-
schure, P. F. M. J. 2014. Social Integration of Stroke Patients
Through the Multiplayer Rehabilitation Gaming System. In
Games for Training, Education, Health, and Sports, Lecture
Notes in Computer Science Volume 8395, 100–114. Berlin:
Springer. dx.doi.org/10.1007/978-3-319-05972-3_12

Marchal-Crespo, L., and Reinkensmeyer, D. J. 2008. Haptic
Guidance Can Enhance Motor Learning of a Steering Task.
Journal of Motor Behavior 40(6): 545–556.

Marchal-Crespo, L., and Reinkensmeyer, D. J. 2009. Review
of Control Strategies for Robotic Movement Training After
Neurologic Injury. Journal of Neuroengineering and Rehabilita-
tion 6(16 June 2009): 20. dx.doi.org/10.1186/1743-0003-6-
20. dx.doi.org/10.3200/JMBR.40.6.545-557

Mihelj, M.; Novak, D.; Milavec, M.; Ziherl, J.; Olensek, A.;
and Munih, M. 2012. Virtual Rehabilitation Environment
Using Principles of Intrinsic Motivation and Game Design.
Presence: Teleoperators and Virtual Environments 21(1): 1–15.
dx.doi.org/10.1162/PRES_a_00078

Novak, D.; Mihelj, M.; Ziherl, J.; Olensek, A.; and Munih, M.
2011. Psychophysiological Measurements in a Biocoopera-
tive Feedback Loop for Upper Extremity Rehabilitation. IEEE
Transactions on Neural Systems and Rehabilitation Engineering
19(4): 400–410. dx.doi.org/10.1186/1743-0003-11-64

Novak, D.; Nagle, A.; Keller, U.; and Riener, R. 2014. Increas-
ing Motivation in Robot-Aided Arm Rehabilitation with
Competitive and Cooperative Gameplay. Journal of Neuro-
engineering and Rehabilitation 11(16 April 2014): 64.

Patton, J. L.; Stoykov, M. E.; Kovic, M.; and Mussa-Ivaldi, F.
A. 2006. Evaluation of Robotic Training Forces That Either
Enhance or Reduce Error in Chronic Hemiparetic Stroke Sur-
vivors. Experimental Brain Research 168(3): 368–383.
dx.doi.org/10.1007/ s00221-005-0097-8

Patton, J. L.; Wei, Y. J.; Bajaj, P.; and Scheidt, R. A. 2013.
Visuomotor Learning Enhanced by Augmenting Instanta-
neous Trajectory Error Feedback During Reaching. PLOS One

Articles

32 AI MAGAZINE



8(1): e46466. dx.doi.org/10.1371/ journal.pone.0046466

Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz,
Ö.; Brasil, F. L.; Liberati, G.; Curado, M. R.; Carcia-Cossio, E.;
Vyziotis, A.; Cho, W.; Agostini, M.; Soares, E.; Soekadar, S.;
Caria, A.; Cohen, L. G.; Birbaumer, N. 2013. Brain-Machine
Interface in Chronic Stroke Rehabilitation: A Controlled
Study. Annals of Neurology 74(1): 100–108. dx.doi.org/10.
1002/ana.23879

Reinkensmeyer, D. J.; Wolbrecht, E. T.; Chan, V.; Chou, C.;
Cramer, S. C.; and Bobrow, J. E. 2012. Comparison of Three-
Dimensional, Assist-As-Needed Robotic Arm/Hand Move-
ment Training Provided with Pneu-Wrex to Conventional
Tabletop Therapy after Chronic Stroke. American Journal of
Physical Medicine and Rehabilitation 91(11): 232–241.
dx.doi.org/10.1097/ PHM.0b013e31826bce79

Riener, R.; Lünenburger, L.; Jezernik, S.; Anderschitz, M.;
Colombo, G.; and Dietz, V. 2005. Patient-Cooperative
Strategies for Robot-Aided Treadmill Training: First Experi-
mental Results. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 13(3): 380–94. dx.doi.org/10.1109/
TNSRE.2005. 848628

Song, R.; Tong, K.; Hu, X.; and Li, L. 2008. Assistive Control
System Using Continuous Myoelectric Signal in Robot-Aid-
ed Arm Training for Patients After Stroke. IEEE Transactions
on Neural Systems and Rehabilitation Engineering 16(4): 371–
379.  dx.doi. org/10.1109/TNSRE.2008.926707

Song, R.; Tong, K.; Hu, X.; and Zhou, W. 2013. Myoelectri-
cally Controlled Wrist Robot for Stroke Rehabilitation. Jour-
nal of Neuroengineering and Rehabilitation 10(10 June 2013):
52.  dx.doi.org/10.1186/1743-0003-10-52

Stauffer, Y.; Allemand, Y.; Bouri, M.; Fournier, J.; Clavel, R.;
Metrailler, P.; Brodard, R.; and Reynard, F. 2009. The Walk-
trainer — A New Generation of Walking Reeducation Device
Combining Orthoses and Muscle Stimulation. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering 17(1):
38–45. dx.doi.org/10.1109/ TNSRE.2008.2008288

Stein, J.; Narendran, K.; McBean, J.; Krebs, K.; and Hughes,
R. 2007. Electromyography-Controlled Exoskeletal Upper-
Limb-Powered Orthosis for Exercise Training After Stroke.
American Journal of Physical Medicine and Rehabilitation 86(4):
255–261. dx.doi. org/10.1097/PHM.0b013e3180383cc5

Tapus, A.; Tapus, C.; and Mataric, M. 2008. User — Robot
Personality Matching and Assistive Robot Behavior Adapta-
tion for Post-Stroke Rehabilitation Therapy. Intelligent Serv-
ice Robotics 1(2): 169–183. dx.doi.org/10.1007/s11370-008-
0017-4

Trlep, M.; Mihelj, M.; and Munih, M. 2012. Skill Transfer
from Symmetric and Asymmetric Bimanual Training Using
a Robotic System to Single Limb Performance. Journal of
Neuroengineering and Rehabilitation 9(17 July 2012): 43.
dx.doi.org/10.1186/1743-0003-9-43

Vallery, H.; van Asseldonk, E. H. F.; Buss, M.; and van der
Kooij, H. 2009. Reference Trajectory Generation for Reha-
bilitation Robots: Complementary Limb Motion Estima-
tion. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 17(1): 23–30. dx.doi.org/10.1109/TNSRE.2008.
2008278

Wolbrecht, E. T.; Chan, V.; Reinkensmeyer, D. J.; and
Bobrow, J. E. 2008. Optimizing Compliant, Model-Based
Robotic Assistance To Promote Neurorehabilitation. IEEE
Transactions on Neural Systems and Rehabilitation Engineering
16(3): 286–97.  dx.doi.org/10.1109/TNSRE.2008.918389

Ziherl, J.; Novak, D.; Olensek, A.; Mihelj, M.; and Munih,

M. 2010. Evaluation of Upper Extremity Robot-Assistances
in Subacute and Chronic Stroke Subjects. Journal of Neuro-
engineering and Rehabilitation 7(18 Oct. 2010): 52. dx.doi.
org/10.1186/1743-0003-7-52

Domen Novak is an assistant professor at the Department
of Electrical and Computer Engineering at the University of
Wyoming. He previously obtained his diploma and Ph.D.
from the University of Ljubljana, and was a postdoctoral
fellow at the Sensory-Motor Systems Lab of ETH Zurich,
Switzerland. His current research interests include motor
and cognitive rehabilitation, human-robot interaction, psy-
chophysiology, and virtual reality.

Robert Riener is a full professor and head of the Sensory-
Motor Systems Lab at ETH Zurich, Switzerland. He holds a
double professorship at the Medical Faculty of the Univer-
sity of Zurich, and is thus active in the Spinal Cord Injury
Center of the Balgrist University Hospital. His research
focuses on human-machine interaction, particularly
human sensory-motor control and the design of novel user-
cooperative robotic devices and virtual reality technologies.

Articles

WINTER 2015   33

AAAI-16 
Registration Is

Now Open!

Students—Be sure to arrive early 
for AAAI-16!

In order to participate fully in all student activities at
AAAI-16, be sure to arrive by Friday, February 12,
2016 in Phoenix.

The first day will include the AAAI Workshop Pro-
gram, Tutorial Forum, and AAAI/SIGAI Doctoral Con-
sortium (attendance open to all students). A wel-
come student reception will be held Friday evening,
February 12, to help new students get acquainted
with others, as well as all the upcoming programs.
Included below are the tutorial and workshop sched-
ules. 

For complete registration and hotel information,
please see www.aaai.org/aaai16. 

Online registration is available at
regonline.com/aaai16.


