Open Access Open Access  Restricted Access Subscription Access

Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography

Ronny Shalev, Daisuke Nakamura, Setsu Nishino, Andrew Rollins, Hiram Bezerra, David Wilson, Soumya Ray

Abstract


An estimated 17.5 million people died from a cardiovascular disease in 2012, representing 31 percent of all global deaths. Most acute coronary events result from rupture of the protective fibrous cap overlying an atherosclerotic plaque. The task of early identification of plaque types that can potentially rupture is, therefore, of great importance. The state-of-the-art approach to imaging blood vessels is intravascular optical coherence tomography (IVOCT). However, currently, this is an offline approach where the images are first collected and then manually analyzed an image at a time to identify regions at risk of thrombosis. This process is extremely laborious, time consuming and prone to human error. We are building a system that, when complete, will provide interactive 3D visualization of a blood vessel as an IVOCT is in progress. The visualization will highlight different plaque types and enable quick identification of regions at risk for thrombosis. In this paper, we describe our approach, focusing on machine learning methods that are a key enabling technology. Our empirical results using real OCT data show that our approach can identify different plaque types efficiently with high accuracy across multiple patients.

Full Text:

PDF


DOI: https://doi.org/10.1609/aimag.v38i1.2713

Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.